1 | // Nsubjettiness Package
|
---|
2 | // Questions/Comments? jthaler@jthaler.net
|
---|
3 | //
|
---|
4 | // Copyright (c) 2011-14
|
---|
5 | // Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
|
---|
6 | //
|
---|
7 | //----------------------------------------------------------------------
|
---|
8 | // This file is part of FastJet contrib.
|
---|
9 | //
|
---|
10 | // It is free software; you can redistribute it and/or modify it under
|
---|
11 | // the terms of the GNU General Public License as published by the
|
---|
12 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
13 | // your option) any later version.
|
---|
14 | //
|
---|
15 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
17 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
18 | // License for more details.
|
---|
19 | //
|
---|
20 | // You should have received a copy of the GNU General Public License
|
---|
21 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | //----------------------------------------------------------------------
|
---|
23 |
|
---|
24 |
|
---|
25 | #ifndef __FASTJET_CONTRIB_AXESFINDER_HH__
|
---|
26 | #define __FASTJET_CONTRIB_AXESFINDER_HH__
|
---|
27 |
|
---|
28 | #include "WinnerTakeAllRecombiner.hh"
|
---|
29 | #include "MeasureFunction.hh"
|
---|
30 |
|
---|
31 | #include "fastjet/PseudoJet.hh"
|
---|
32 | #include "fastjet/ClusterSequence.hh"
|
---|
33 | #include "fastjet/JetDefinition.hh"
|
---|
34 |
|
---|
35 | #include <cmath>
|
---|
36 | #include <vector>
|
---|
37 | #include <list>
|
---|
38 |
|
---|
39 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
40 |
|
---|
41 | namespace contrib{
|
---|
42 |
|
---|
43 | ///////
|
---|
44 | //
|
---|
45 | // Axes Finder Options
|
---|
46 | //
|
---|
47 | ///////
|
---|
48 |
|
---|
49 | //------------------------------------------------------------------------
|
---|
50 | /// \class AxesFinder
|
---|
51 | // This is the base class for all axes finders. These axes are used along with the MeasureFunctions to calculate
|
---|
52 | // tau_N. There are different implementations of axes finding that are defined in derived classes below.
|
---|
53 | class AxesFinder {
|
---|
54 |
|
---|
55 | protected:
|
---|
56 | AxesFinder* _startingFinder; // storing a possible starting finder if needed
|
---|
57 | std::vector<fastjet::PseudoJet> _seedAxes;
|
---|
58 |
|
---|
59 | AxesFinder(AxesFinder* startingFinder = NULL) : _startingFinder(startingFinder) {}
|
---|
60 |
|
---|
61 | public:
|
---|
62 | virtual ~AxesFinder(){
|
---|
63 | if (_startingFinder) delete _startingFinder; //TODO: Convert to smart pointers to avoid this.
|
---|
64 | }
|
---|
65 |
|
---|
66 | // Allow setting of seedAxes from a starting finder
|
---|
67 | std::vector<fastjet::PseudoJet> getAxes(int n_jets, const std::vector<fastjet::PseudoJet> & inputs, const std::vector<fastjet::PseudoJet>& currentAxes) {
|
---|
68 | if (_startingFinder) {
|
---|
69 | _seedAxes = _startingFinder->getAxes(n_jets,inputs,currentAxes);
|
---|
70 | return getBetterAxes(n_jets,inputs,_seedAxes);
|
---|
71 | } else {
|
---|
72 | _seedAxes = getBetterAxes(n_jets,inputs,currentAxes);
|
---|
73 | return _seedAxes;
|
---|
74 | }
|
---|
75 | }
|
---|
76 |
|
---|
77 | // say what the current seed axes are
|
---|
78 | std::vector<fastjet::PseudoJet> seedAxes() const {
|
---|
79 | return _seedAxes;
|
---|
80 | }
|
---|
81 |
|
---|
82 | // This function should be overloaded, and updates the seedAxes
|
---|
83 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector<fastjet::PseudoJet> & inputs, const std::vector<fastjet::PseudoJet>& seedAxes) = 0;
|
---|
84 |
|
---|
85 | };
|
---|
86 |
|
---|
87 | //------------------------------------------------------------------------
|
---|
88 | /// \class AxesFinderFromExclusiveJetDefinition
|
---|
89 | // This class finds axes by clustering the particles and then finding the exclusive jets. This can be implemented
|
---|
90 | // with different jet algorithms.
|
---|
91 | class AxesFinderFromExclusiveJetDefinition : public AxesFinder {
|
---|
92 |
|
---|
93 | private:
|
---|
94 | fastjet::JetDefinition _def;
|
---|
95 |
|
---|
96 | public:
|
---|
97 | AxesFinderFromExclusiveJetDefinition(fastjet::JetDefinition def) : _def(def) {}
|
---|
98 |
|
---|
99 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputs, const std::vector<fastjet::PseudoJet>& currentAxes) {
|
---|
100 | fastjet::ClusterSequence jet_clust_seq(inputs, _def);
|
---|
101 | return jet_clust_seq.exclusive_jets(n_jets);
|
---|
102 | }
|
---|
103 | };
|
---|
104 |
|
---|
105 | //------------------------------------------------------------------------
|
---|
106 | /// \class AxesFinderFromWTA_KT
|
---|
107 | // This class finds axes by finding the exlusive jets after clustering according to a kT algorithm and a
|
---|
108 | // winner take all recombination scheme.
|
---|
109 | class AxesFinderFromWTA_KT : public AxesFinderFromExclusiveJetDefinition {
|
---|
110 | private:
|
---|
111 | const WinnerTakeAllRecombiner *recomb;
|
---|
112 | public:
|
---|
113 | AxesFinderFromWTA_KT() : AxesFinderFromExclusiveJetDefinition(
|
---|
114 | fastjet::JetDefinition(fastjet::kt_algorithm,
|
---|
115 | fastjet::JetDefinition::max_allowable_R, //maximum jet radius constant
|
---|
116 | recomb = new WinnerTakeAllRecombiner(),
|
---|
117 | fastjet::Best)) {}
|
---|
118 | ~AxesFinderFromWTA_KT() {delete recomb;}
|
---|
119 | };
|
---|
120 |
|
---|
121 | //------------------------------------------------------------------------
|
---|
122 | /// \class AxesFinderFromWTA_CA
|
---|
123 | // This class finds axes by finding the exlusive jets after clustering according to a CA algorithm and a
|
---|
124 | // winner take all recombination scheme.
|
---|
125 | class AxesFinderFromWTA_CA : public AxesFinderFromExclusiveJetDefinition {
|
---|
126 | private:
|
---|
127 | const WinnerTakeAllRecombiner *recomb;
|
---|
128 | public:
|
---|
129 | AxesFinderFromWTA_CA() : AxesFinderFromExclusiveJetDefinition(
|
---|
130 | fastjet::JetDefinition(fastjet::cambridge_algorithm,
|
---|
131 | fastjet::JetDefinition::max_allowable_R, //maximum jet radius constant
|
---|
132 | recomb = new WinnerTakeAllRecombiner(),
|
---|
133 | fastjet::Best)) {}
|
---|
134 | ~AxesFinderFromWTA_CA() {delete recomb;}
|
---|
135 | };
|
---|
136 |
|
---|
137 | // The following classes are for testing, and are commented out for initial release
|
---|
138 | //
|
---|
139 | ////------------------------------------------------------------------------
|
---|
140 | ///// \class AxesFinderFromWTA2_KT
|
---|
141 | //// This class finds axes by finding the exlusive jets after clustering according to a kT algorithm and a
|
---|
142 | //// winner take all recombination scheme with alpha = 2.
|
---|
143 | //class AxesFinderFromWTA2_KT : public AxesFinderFromExclusiveJetDefinition {
|
---|
144 | // private:
|
---|
145 | // const WinnerTakeAllRecombiner *recomb;
|
---|
146 | // public:
|
---|
147 | // AxesFinderFromWTA2_KT() : AxesFinderFromExclusiveJetDefinition(
|
---|
148 | // fastjet::JetDefinition(fastjet::kt_algorithm,
|
---|
149 | // fastjet::JetDefinition::max_allowable_R, //maximum jet radius constant
|
---|
150 | // recomb = new WinnerTakeAllRecombiner(2), // uses alpha = 2 here
|
---|
151 | // fastjet::Best)) {}
|
---|
152 | // ~AxesFinderFromWTA2_KT() {delete recomb;}
|
---|
153 | // };
|
---|
154 | //
|
---|
155 | ////------------------------------------------------------------------------
|
---|
156 | ///// \class AxesFinderFromWTA2_CA
|
---|
157 | //// This class finds axes by finding the exlusive jets after clustering according to a CA algorithm and a
|
---|
158 | //// winner take all recombination scheme with alpha = 2.
|
---|
159 | //class AxesFinderFromWTA2_CA : public AxesFinderFromExclusiveJetDefinition {
|
---|
160 | // private:
|
---|
161 | // const WinnerTakeAllRecombiner *recomb;
|
---|
162 | // public:
|
---|
163 | // AxesFinderFromWTA2_CA() : AxesFinderFromExclusiveJetDefinition(
|
---|
164 | // fastjet::JetDefinition(fastjet::cambridge_algorithm,
|
---|
165 | // fastjet::JetDefinition::max_allowable_R, //maximum jet radius constant
|
---|
166 | // recomb = new WinnerTakeAllRecombiner(2), //uses alpha = 2 here
|
---|
167 | // fastjet::Best)) {}
|
---|
168 | // ~AxesFinderFromWTA2_CA() {delete recomb;}
|
---|
169 | //};
|
---|
170 |
|
---|
171 | //------------------------------------------------------------------------
|
---|
172 | /// \class AxesFinderFromKT
|
---|
173 | // This class finds axes by finding the exlusive jets after clustering according to a kT algorithm and a
|
---|
174 | // E_scheme recombination.
|
---|
175 | class AxesFinderFromKT : public AxesFinderFromExclusiveJetDefinition {
|
---|
176 | public:
|
---|
177 | AxesFinderFromKT() : AxesFinderFromExclusiveJetDefinition(
|
---|
178 | fastjet::JetDefinition(fastjet::kt_algorithm,
|
---|
179 | fastjet::JetDefinition::max_allowable_R, //maximum jet radius constant
|
---|
180 | fastjet::E_scheme,
|
---|
181 | fastjet::Best)) {}
|
---|
182 | };
|
---|
183 |
|
---|
184 | //------------------------------------------------------------------------
|
---|
185 | /// \class AxesFinderFromCA
|
---|
186 | // This class finds axes by finding the exlusive jets after clustering according to a CA algorithm and a
|
---|
187 | // E_scheme recombination.
|
---|
188 | class AxesFinderFromCA : public AxesFinderFromExclusiveJetDefinition {
|
---|
189 | public:
|
---|
190 | AxesFinderFromCA() : AxesFinderFromExclusiveJetDefinition(
|
---|
191 | fastjet::JetDefinition(fastjet::cambridge_algorithm,
|
---|
192 | fastjet::JetDefinition::max_allowable_R, //maximum jet radius constant
|
---|
193 | fastjet::E_scheme,
|
---|
194 | fastjet::Best)) {}
|
---|
195 | };
|
---|
196 |
|
---|
197 |
|
---|
198 | //------------------------------------------------------------------------
|
---|
199 | /// \class AxesFinderFromHardestJetDefinition
|
---|
200 | // This class finds axes by clustering the particles and then finding the n hardest inclusive jets.
|
---|
201 | // This can be implemented with different jet algorithms.
|
---|
202 | class AxesFinderFromHardestJetDefinition : public AxesFinder {
|
---|
203 |
|
---|
204 | private:
|
---|
205 | fastjet::JetDefinition _def;
|
---|
206 |
|
---|
207 | public:
|
---|
208 | AxesFinderFromHardestJetDefinition(fastjet::JetDefinition def) : _def(def) {}
|
---|
209 |
|
---|
210 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputs, const std::vector<fastjet::PseudoJet>& currentAxes) {
|
---|
211 | fastjet::ClusterSequence jet_clust_seq(inputs, _def);
|
---|
212 | std::vector<fastjet::PseudoJet> myJets = sorted_by_pt(jet_clust_seq.inclusive_jets());
|
---|
213 | myJets.resize(n_jets); // only keep n hardest
|
---|
214 | return myJets;
|
---|
215 | }
|
---|
216 | };
|
---|
217 |
|
---|
218 | //------------------------------------------------------------------------
|
---|
219 | /// \class AxesFinderFromAntiKT
|
---|
220 | // This class finds axes by finding the n hardest jets after clustering the particles according
|
---|
221 | // to an anti kT algorithm and E_scheme.
|
---|
222 | class AxesFinderFromAntiKT : public AxesFinderFromHardestJetDefinition {
|
---|
223 | public:
|
---|
224 | AxesFinderFromAntiKT(double R0) : AxesFinderFromHardestJetDefinition(fastjet::JetDefinition(fastjet::antikt_algorithm,R0,fastjet::E_scheme,fastjet::Best)) {}
|
---|
225 | };
|
---|
226 |
|
---|
227 |
|
---|
228 | //------------------------------------------------------------------------
|
---|
229 | /// \class AxesFinderFromUserInput
|
---|
230 | // This class allows the user to manually define the axes.
|
---|
231 | class AxesFinderFromUserInput : public AxesFinder {
|
---|
232 |
|
---|
233 | public:
|
---|
234 | AxesFinderFromUserInput() {}
|
---|
235 |
|
---|
236 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputs, const std::vector<fastjet::PseudoJet>& currentAxes) {
|
---|
237 | assert(currentAxes.size() == (unsigned int) n_jets);
|
---|
238 | return currentAxes;
|
---|
239 | }
|
---|
240 | };
|
---|
241 |
|
---|
242 | //This is a helper class for the Minimum Axes Finders. It is defined later.
|
---|
243 | class LightLikeAxis;
|
---|
244 |
|
---|
245 |
|
---|
246 | //------------------------------------------------------------------------
|
---|
247 | /// \class AxesFinderFromOnePassMinimization
|
---|
248 | // This class defines an AxesFinder that uses Kmeans minimization, but only on a single pass.
|
---|
249 | class AxesFinderFromOnePassMinimization : public AxesFinder {
|
---|
250 |
|
---|
251 | private:
|
---|
252 | double _precision; // Desired precision in axes alignment
|
---|
253 | int _halt; // maximum number of steps per iteration
|
---|
254 |
|
---|
255 | double _beta;
|
---|
256 | double _Rcutoff;
|
---|
257 |
|
---|
258 | DefaultUnnormalizedMeasure _measureFunction;
|
---|
259 |
|
---|
260 | public:
|
---|
261 |
|
---|
262 | // From a startingFinder, try to minimize the unnormalized_measure
|
---|
263 | AxesFinderFromOnePassMinimization(AxesFinder* startingFinder, double beta, double Rcutoff)
|
---|
264 | : AxesFinder(startingFinder),
|
---|
265 | _precision(0.0001), //hard coded for now
|
---|
266 | _halt(1000), //hard coded for now
|
---|
267 | _beta(beta),
|
---|
268 | _Rcutoff(Rcutoff),
|
---|
269 | _measureFunction(beta, Rcutoff)
|
---|
270 | {}
|
---|
271 |
|
---|
272 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputJets, const std::vector<fastjet::PseudoJet>& currentAxes);
|
---|
273 |
|
---|
274 | template <int N> std::vector<LightLikeAxis> UpdateAxesFast(const std::vector <LightLikeAxis> & old_axes,
|
---|
275 | const std::vector <fastjet::PseudoJet> & inputJets);
|
---|
276 |
|
---|
277 | std::vector<LightLikeAxis> UpdateAxes(const std::vector <LightLikeAxis> & old_axes,
|
---|
278 | const std::vector <fastjet::PseudoJet> & inputJets);
|
---|
279 |
|
---|
280 | };
|
---|
281 |
|
---|
282 |
|
---|
283 | //------------------------------------------------------------------------
|
---|
284 | /// \class AxesFinderFromKmeansMinimization
|
---|
285 | // This class finds finds axes by using Kmeans clustering to minimizaiton N-jettiness. Given a first set of
|
---|
286 | // starting axes, it updates n times to get as close to the global minimum as possible. This class calls OnePass many times,
|
---|
287 | // added noise to the axes.
|
---|
288 | class AxesFinderFromKmeansMinimization : public AxesFinder{
|
---|
289 |
|
---|
290 | private:
|
---|
291 | int _n_iterations; // Number of iterations to run (0 for no minimization, 1 for one-pass, >>1 for global minimum)
|
---|
292 | double _noise_range; // noise range for random initialization
|
---|
293 |
|
---|
294 | DefaultUnnormalizedMeasure _measureFunction; //function to test whether minimum is reached
|
---|
295 |
|
---|
296 | AxesFinderFromOnePassMinimization _onePassFinder; //one pass finder for minimization
|
---|
297 |
|
---|
298 | PseudoJet jiggle(const PseudoJet& axis);
|
---|
299 |
|
---|
300 | public:
|
---|
301 | AxesFinderFromKmeansMinimization(AxesFinder *startingFinder, double beta, double Rcutoff, int n_iterations) :
|
---|
302 | AxesFinder(startingFinder),
|
---|
303 | _n_iterations(n_iterations),
|
---|
304 | _noise_range(1.0), // hard coded for the time being
|
---|
305 | _measureFunction(beta, Rcutoff),
|
---|
306 | _onePassFinder(NULL, beta, Rcutoff)
|
---|
307 | {}
|
---|
308 |
|
---|
309 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputJets, const std::vector<fastjet::PseudoJet>& currentAxes);
|
---|
310 |
|
---|
311 | };
|
---|
312 |
|
---|
313 | //------------------------------------------------------------------------
|
---|
314 | /// \class AxesFinderFromGeometricMinimization
|
---|
315 | // This class finds axes by minimizing the Lorentz dot product distance between axes and particles. Given a first set of starting axes,
|
---|
316 | // it essentially does stable cone finxing.
|
---|
317 | class AxesFinderFromGeometricMinimization : public AxesFinder {
|
---|
318 |
|
---|
319 | private:
|
---|
320 | MeasureFunction* _function;
|
---|
321 | double _Rcutoff;
|
---|
322 | double _nAttempts;
|
---|
323 | double _accuracy;
|
---|
324 |
|
---|
325 |
|
---|
326 | public:
|
---|
327 | AxesFinderFromGeometricMinimization(AxesFinder* startingFinder, double beta, double Rcutoff) : AxesFinder(startingFinder), _Rcutoff(Rcutoff) {
|
---|
328 | if (beta != 2.0) {
|
---|
329 | std::cerr << "Geometric minimization is currently only defined for beta = 2.0." << std::endl;
|
---|
330 | exit(1);
|
---|
331 | }
|
---|
332 |
|
---|
333 | _nAttempts = 100;
|
---|
334 | _accuracy = 0.000000001;
|
---|
335 | _function = new GeometricMeasure(beta,_Rcutoff);
|
---|
336 | }
|
---|
337 |
|
---|
338 | ~AxesFinderFromGeometricMinimization() {
|
---|
339 | delete _function;
|
---|
340 | }
|
---|
341 |
|
---|
342 | virtual std::vector<fastjet::PseudoJet> getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & particles, const std::vector<fastjet::PseudoJet>& currentAxes);
|
---|
343 | };
|
---|
344 |
|
---|
345 | //------------------------------------------------------------------------
|
---|
346 | /// \class LightLikeAxis
|
---|
347 | // This is a helper class for the minimum Axes Finders classes above. It creates a convenient way of defining axes
|
---|
348 | // in order to better facilitate calculations.
|
---|
349 | class LightLikeAxis {
|
---|
350 | private:
|
---|
351 | double _rap, _phi, _weight, _mom;
|
---|
352 |
|
---|
353 | double DistanceSq(double rap2, double phi2) const {
|
---|
354 | double rap1 = _rap;
|
---|
355 | double phi1 = _phi;
|
---|
356 |
|
---|
357 | double distRap = rap1-rap2;
|
---|
358 | double distPhi = std::fabs(phi1-phi2);
|
---|
359 | if (distPhi > M_PI) {distPhi = 2.0*M_PI - distPhi;}
|
---|
360 | return sq(distRap) + sq(distPhi);
|
---|
361 | }
|
---|
362 |
|
---|
363 | double Distance(double rap2, double phi2) const {
|
---|
364 | return std::sqrt(DistanceSq(rap2,phi2));
|
---|
365 | }
|
---|
366 |
|
---|
367 |
|
---|
368 | public:
|
---|
369 | LightLikeAxis() : _rap(0.0), _phi(0.0), _weight(0.0), _mom(0.0) {}
|
---|
370 | LightLikeAxis(double my_rap, double my_phi, double my_weight, double my_mom) :
|
---|
371 | _rap(my_rap), _phi(my_phi), _weight(my_weight), _mom(my_mom) {}
|
---|
372 | double rap() const {return _rap;}
|
---|
373 | double phi() const {return _phi;}
|
---|
374 | double weight() const {return _weight;}
|
---|
375 | double mom() const {return _mom;}
|
---|
376 | void set_rap(double my_set_rap) {_rap = my_set_rap;}
|
---|
377 | void set_phi(double my_set_phi) {_phi = my_set_phi;}
|
---|
378 | void set_weight(double my_set_weight) {_weight = my_set_weight;}
|
---|
379 | void set_mom(double my_set_mom) {_mom = my_set_mom;}
|
---|
380 | void reset(double my_rap, double my_phi, double my_weight, double my_mom) {_rap=my_rap; _phi=my_phi; _weight=my_weight; _mom=my_mom;}
|
---|
381 |
|
---|
382 | // return PseudoJet with information
|
---|
383 | fastjet::PseudoJet ConvertToPseudoJet();
|
---|
384 |
|
---|
385 | double DistanceSq(const fastjet::PseudoJet& input) const {
|
---|
386 | return DistanceSq(input.rap(),input.phi());
|
---|
387 | }
|
---|
388 |
|
---|
389 | double Distance(const fastjet::PseudoJet& input) const {
|
---|
390 | return std::sqrt(DistanceSq(input));
|
---|
391 | }
|
---|
392 |
|
---|
393 | double DistanceSq(const LightLikeAxis& input) const {
|
---|
394 | return DistanceSq(input.rap(),input.phi());
|
---|
395 | }
|
---|
396 |
|
---|
397 | double Distance(const LightLikeAxis& input) const {
|
---|
398 | return std::sqrt(DistanceSq(input));
|
---|
399 | }
|
---|
400 |
|
---|
401 | };
|
---|
402 |
|
---|
403 | } //namespace contrib
|
---|
404 |
|
---|
405 | FASTJET_END_NAMESPACE
|
---|
406 |
|
---|
407 | #endif // __FASTJET_CONTRIB_AXESFINDER_HH__
|
---|