1 | // Nsubjettiness Package
|
---|
2 | // Questions/Comments? jthaler@jthaler.net
|
---|
3 | //
|
---|
4 | // Copyright (c) 2011-14
|
---|
5 | // Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
|
---|
6 | //
|
---|
7 | //----------------------------------------------------------------------
|
---|
8 | // This file is part of FastJet contrib.
|
---|
9 | //
|
---|
10 | // It is free software; you can redistribute it and/or modify it under
|
---|
11 | // the terms of the GNU General Public License as published by the
|
---|
12 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
13 | // your option) any later version.
|
---|
14 | //
|
---|
15 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
17 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
18 | // License for more details.
|
---|
19 | //
|
---|
20 | // You should have received a copy of the GNU General Public License
|
---|
21 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | //----------------------------------------------------------------------
|
---|
23 |
|
---|
24 | #include "AxesFinder.hh"
|
---|
25 |
|
---|
26 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
27 |
|
---|
28 | namespace contrib{
|
---|
29 |
|
---|
30 | ///////
|
---|
31 | //
|
---|
32 | // Functions for minimization.
|
---|
33 | //
|
---|
34 | ///////
|
---|
35 |
|
---|
36 | // Given starting axes, update to find better axes by using Kmeans clustering around the old axes
|
---|
37 | template <int N>
|
---|
38 | std::vector<LightLikeAxis> AxesFinderFromOnePassMinimization::UpdateAxesFast(const std::vector <LightLikeAxis> & old_axes,
|
---|
39 | const std::vector <fastjet::PseudoJet> & inputJets) {
|
---|
40 | assert(old_axes.size() == N);
|
---|
41 |
|
---|
42 | // some storage, declared static to save allocation/re-allocation costs
|
---|
43 | static LightLikeAxis new_axes[N];
|
---|
44 | static fastjet::PseudoJet new_jets[N];
|
---|
45 | for (int n = 0; n < N; ++n) {
|
---|
46 | new_axes[n].reset(0.0,0.0,0.0,0.0);
|
---|
47 | #ifdef FASTJET2
|
---|
48 | new_jets[n].reset(0.0,0.0,0.0,0.0);
|
---|
49 | #else
|
---|
50 | // use cheaper reset if available
|
---|
51 | new_jets[n].reset_momentum(0.0,0.0,0.0,0.0);
|
---|
52 | #endif
|
---|
53 | }
|
---|
54 |
|
---|
55 | double precision = _precision;
|
---|
56 |
|
---|
57 | /////////////// Assignment Step //////////////////////////////////////////////////////////
|
---|
58 | std::vector<int> assignment_index(inputJets.size());
|
---|
59 | int k_assign = -1;
|
---|
60 |
|
---|
61 | for (unsigned i = 0; i < inputJets.size(); i++){
|
---|
62 | double smallestDist = std::numeric_limits<double>::max(); //large number
|
---|
63 | for (int k = 0; k < N; k++) {
|
---|
64 | double thisDist = old_axes[k].DistanceSq(inputJets[i]);
|
---|
65 | if (thisDist < smallestDist) {
|
---|
66 | smallestDist = thisDist;
|
---|
67 | k_assign = k;
|
---|
68 | }
|
---|
69 | }
|
---|
70 | if (smallestDist > sq(_Rcutoff)) {k_assign = -1;}
|
---|
71 | assignment_index[i] = k_assign;
|
---|
72 | }
|
---|
73 |
|
---|
74 | //////////////// Update Step /////////////////////////////////////////////////////////////
|
---|
75 | double distPhi, old_dist;
|
---|
76 | for (unsigned i = 0; i < inputJets.size(); i++) {
|
---|
77 | int old_jet_i = assignment_index[i];
|
---|
78 | if (old_jet_i == -1) {continue;}
|
---|
79 |
|
---|
80 | const fastjet::PseudoJet& inputJet_i = inputJets[i];
|
---|
81 | LightLikeAxis& new_axis_i = new_axes[old_jet_i];
|
---|
82 | double inputPhi_i = inputJet_i.phi();
|
---|
83 | double inputRap_i = inputJet_i.rap();
|
---|
84 |
|
---|
85 | // optimize pow() call
|
---|
86 | // add noise (the precision term) to make sure we don't divide by zero
|
---|
87 | if (_beta == 1.0) {
|
---|
88 | double DR = std::sqrt(sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i));
|
---|
89 | old_dist = 1.0/DR;
|
---|
90 | } else if (_beta == 2.0) {
|
---|
91 | old_dist = 1.0;
|
---|
92 | } else if (_beta == 0.0) {
|
---|
93 | double DRSq = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
|
---|
94 | old_dist = 1.0/DRSq;
|
---|
95 | } else {
|
---|
96 | old_dist = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
|
---|
97 | old_dist = std::pow(old_dist, (0.5*_beta-1.0));
|
---|
98 | }
|
---|
99 |
|
---|
100 | // TODO: Put some of these addition functions into light-like axes
|
---|
101 | // rapidity sum
|
---|
102 | new_axis_i.set_rap(new_axis_i.rap() + inputJet_i.perp() * inputRap_i * old_dist);
|
---|
103 | // phi sum
|
---|
104 | distPhi = inputPhi_i - old_axes[old_jet_i].phi();
|
---|
105 | if (fabs(distPhi) <= M_PI){
|
---|
106 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * inputPhi_i * old_dist );
|
---|
107 | } else if (distPhi > M_PI) {
|
---|
108 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (-2*M_PI + inputPhi_i) * old_dist );
|
---|
109 | } else if (distPhi < -M_PI) {
|
---|
110 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (+2*M_PI + inputPhi_i) * old_dist );
|
---|
111 | }
|
---|
112 | // weights sum
|
---|
113 | new_axis_i.set_weight( new_axis_i.weight() + inputJet_i.perp() * old_dist );
|
---|
114 | // momentum magnitude sum
|
---|
115 | new_jets[old_jet_i] += inputJet_i;
|
---|
116 | }
|
---|
117 | // normalize sums
|
---|
118 | for (int k = 0; k < N; k++) {
|
---|
119 | if (new_axes[k].weight() == 0) {
|
---|
120 | // no particles were closest to this axis! Return to old axis instead of (0,0,0,0)
|
---|
121 | new_axes[k] = old_axes[k];
|
---|
122 | } else {
|
---|
123 | new_axes[k].set_rap( new_axes[k].rap() / new_axes[k].weight() );
|
---|
124 | new_axes[k].set_phi( new_axes[k].phi() / new_axes[k].weight() );
|
---|
125 | new_axes[k].set_phi( std::fmod(new_axes[k].phi() + 2*M_PI, 2*M_PI) );
|
---|
126 | new_axes[k].set_mom( std::sqrt(new_jets[k].modp2()) );
|
---|
127 | }
|
---|
128 | }
|
---|
129 | std::vector<LightLikeAxis> new_axes_vec(N);
|
---|
130 | for (unsigned k = 0; k < N; ++k) new_axes_vec[k] = new_axes[k];
|
---|
131 | return new_axes_vec;
|
---|
132 | }
|
---|
133 |
|
---|
134 | // Given N starting axes, this function updates all axes to find N better axes.
|
---|
135 | // (This is just a wrapper for the templated version above.)
|
---|
136 | std::vector<LightLikeAxis> AxesFinderFromOnePassMinimization::UpdateAxes(const std::vector <LightLikeAxis> & old_axes,
|
---|
137 | const std::vector <fastjet::PseudoJet> & inputJets) {
|
---|
138 | int N = old_axes.size();
|
---|
139 | switch (N) {
|
---|
140 | case 1: return UpdateAxesFast<1>(old_axes, inputJets);
|
---|
141 | case 2: return UpdateAxesFast<2>(old_axes, inputJets);
|
---|
142 | case 3: return UpdateAxesFast<3>(old_axes, inputJets);
|
---|
143 | case 4: return UpdateAxesFast<4>(old_axes, inputJets);
|
---|
144 | case 5: return UpdateAxesFast<5>(old_axes, inputJets);
|
---|
145 | case 6: return UpdateAxesFast<6>(old_axes, inputJets);
|
---|
146 | case 7: return UpdateAxesFast<7>(old_axes, inputJets);
|
---|
147 | case 8: return UpdateAxesFast<8>(old_axes, inputJets);
|
---|
148 | case 9: return UpdateAxesFast<9>(old_axes, inputJets);
|
---|
149 | case 10: return UpdateAxesFast<10>(old_axes, inputJets);
|
---|
150 | case 11: return UpdateAxesFast<11>(old_axes, inputJets);
|
---|
151 | case 12: return UpdateAxesFast<12>(old_axes, inputJets);
|
---|
152 | case 13: return UpdateAxesFast<13>(old_axes, inputJets);
|
---|
153 | case 14: return UpdateAxesFast<14>(old_axes, inputJets);
|
---|
154 | case 15: return UpdateAxesFast<15>(old_axes, inputJets);
|
---|
155 | case 16: return UpdateAxesFast<16>(old_axes, inputJets);
|
---|
156 | case 17: return UpdateAxesFast<17>(old_axes, inputJets);
|
---|
157 | case 18: return UpdateAxesFast<18>(old_axes, inputJets);
|
---|
158 | case 19: return UpdateAxesFast<19>(old_axes, inputJets);
|
---|
159 | case 20: return UpdateAxesFast<20>(old_axes, inputJets);
|
---|
160 | default: std::cout << "N-jettiness is hard-coded to only allow up to 20 jets!" << std::endl;
|
---|
161 | return std::vector<LightLikeAxis>();
|
---|
162 | }
|
---|
163 |
|
---|
164 | }
|
---|
165 |
|
---|
166 | // uses minimization of N-jettiness to continually update axes until convergence.
|
---|
167 | // The function returns the axes found at the (local) minimum
|
---|
168 | std::vector<fastjet::PseudoJet> AxesFinderFromOnePassMinimization::getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputJets, const std::vector<fastjet::PseudoJet>& seedAxes) {
|
---|
169 |
|
---|
170 | // convert from PseudoJets to LightLikeAxes
|
---|
171 | std::vector< LightLikeAxis > old_axes(n_jets, LightLikeAxis(0,0,0,0));
|
---|
172 | for (int k = 0; k < n_jets; k++) {
|
---|
173 | old_axes[k].set_rap( seedAxes[k].rap() );
|
---|
174 | old_axes[k].set_phi( seedAxes[k].phi() );
|
---|
175 | }
|
---|
176 |
|
---|
177 | // Find new axes by iterating (only one pass here)
|
---|
178 | std::vector< LightLikeAxis > new_axes(n_jets, LightLikeAxis(0,0,0,0));
|
---|
179 | double cmp = std::numeric_limits<double>::max(); //large number
|
---|
180 | int h = 0;
|
---|
181 | while (cmp > _precision && h < _halt) { // Keep updating axes until near-convergence or too many update steps
|
---|
182 | cmp = 0.0;
|
---|
183 | h++;
|
---|
184 | new_axes = UpdateAxes(old_axes, inputJets); // Update axes
|
---|
185 | for (int k = 0; k < n_jets; k++) {
|
---|
186 | cmp += old_axes[k].Distance(new_axes[k]);
|
---|
187 | }
|
---|
188 | cmp = cmp / ((double) n_jets);
|
---|
189 | old_axes = new_axes;
|
---|
190 | }
|
---|
191 |
|
---|
192 | // Convert from internal LightLikeAxes to PseudoJet
|
---|
193 | std::vector<fastjet::PseudoJet> outputAxes;
|
---|
194 | for (int k = 0; k < n_jets; k++) {
|
---|
195 | fastjet::PseudoJet temp = old_axes[k].ConvertToPseudoJet();
|
---|
196 | outputAxes.push_back(temp);
|
---|
197 | }
|
---|
198 |
|
---|
199 | // this is used to debug the minimization routine to make sure that it works.
|
---|
200 | bool do_debug = false;
|
---|
201 | if (do_debug) {
|
---|
202 | // get this information to make sure that minimization is working properly
|
---|
203 | TauComponents seed_tau_components = _measureFunction.result(inputJets, seedAxes);
|
---|
204 | double seed_tau = seed_tau_components.tau();
|
---|
205 | TauComponents tau_components = _measureFunction.result(inputJets, outputAxes);
|
---|
206 | double outputTau = tau_components.tau();
|
---|
207 | assert(outputTau <= seed_tau);
|
---|
208 | }
|
---|
209 |
|
---|
210 | return outputAxes;
|
---|
211 | }
|
---|
212 |
|
---|
213 | PseudoJet AxesFinderFromKmeansMinimization::jiggle(const PseudoJet& axis) {
|
---|
214 | double phi_noise = ((double)rand()/(double)RAND_MAX) * _noise_range * 2.0 - _noise_range;
|
---|
215 | double rap_noise = ((double)rand()/(double)RAND_MAX) * _noise_range * 2.0 - _noise_range;
|
---|
216 |
|
---|
217 | double new_phi = axis.phi() + phi_noise;
|
---|
218 | if (new_phi >= 2.0*M_PI) new_phi -= 2.0*M_PI;
|
---|
219 | if (new_phi <= -2.0*M_PI) new_phi += 2.0*M_PI;
|
---|
220 |
|
---|
221 | PseudoJet newAxis(0,0,0,0);
|
---|
222 | newAxis.reset_PtYPhiM(axis.perp(),axis.rap() + rap_noise,new_phi);
|
---|
223 | return newAxis;
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | // Repeatedly calls the one pass finder to try to find global minimum
|
---|
228 | std::vector<fastjet::PseudoJet> AxesFinderFromKmeansMinimization::getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & inputJets, const std::vector<fastjet::PseudoJet>& seedAxes) {
|
---|
229 |
|
---|
230 | // first iteration
|
---|
231 | std::vector<fastjet::PseudoJet> bestAxes = _onePassFinder.getAxes(n_jets, inputJets, seedAxes);
|
---|
232 |
|
---|
233 | double bestTau = (_measureFunction.result(inputJets,bestAxes)).tau();
|
---|
234 |
|
---|
235 | for (int l = 1; l < _n_iterations; l++) { // Do minimization procedure multiple times (l = 1 to start since first iteration is done already)
|
---|
236 |
|
---|
237 | // Add noise to current best axes
|
---|
238 | std::vector< PseudoJet > noiseAxes(n_jets, PseudoJet(0,0,0,0));
|
---|
239 | for (int k = 0; k < n_jets; k++) {
|
---|
240 | noiseAxes[k] = jiggle(bestAxes[k]);
|
---|
241 | }
|
---|
242 |
|
---|
243 | std::vector<fastjet::PseudoJet> testAxes = _onePassFinder.getAxes(n_jets, inputJets, noiseAxes);
|
---|
244 | double testTau = (_measureFunction.result(inputJets,testAxes)).tau();
|
---|
245 |
|
---|
246 | if (testTau < bestTau) {
|
---|
247 | bestTau = testTau;
|
---|
248 | bestAxes = testAxes;
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | return bestAxes;
|
---|
253 | }
|
---|
254 |
|
---|
255 | // Uses minimization of the geometric distance in order to find the minimum axes.
|
---|
256 | // It continually updates until it reaches convergence or it reaches the maximum number of attempts.
|
---|
257 | // This is essentially the same as a stable cone finder.
|
---|
258 | std::vector<fastjet::PseudoJet> AxesFinderFromGeometricMinimization::getBetterAxes(int n_jets, const std::vector <fastjet::PseudoJet> & particles, const std::vector<fastjet::PseudoJet>& currentAxes) {
|
---|
259 |
|
---|
260 | std::vector<fastjet::PseudoJet> seedAxes = currentAxes;
|
---|
261 | double seedTau = _function->tau(particles, seedAxes);
|
---|
262 |
|
---|
263 | for (int i = 0; i < _nAttempts; i++) {
|
---|
264 |
|
---|
265 | std::vector<fastjet::PseudoJet> newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
266 |
|
---|
267 | // find closest axis and assign to that
|
---|
268 | for (unsigned int i = 0; i < particles.size(); i++) {
|
---|
269 |
|
---|
270 | // start from unclustered beam measure
|
---|
271 | int minJ = -1;
|
---|
272 | double minDist = _function->beam_distance_squared(particles[i]);
|
---|
273 |
|
---|
274 | // which axis am I closest to?
|
---|
275 | for (unsigned int j = 0; j < seedAxes.size(); j++) {
|
---|
276 | double tempDist = _function->jet_distance_squared(particles[i],seedAxes[j]);
|
---|
277 | if (tempDist < minDist) {
|
---|
278 | minDist = tempDist;
|
---|
279 | minJ = j;
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | // if not unclustered, then cluster
|
---|
284 | if (minJ != -1) newAxes[minJ] += particles[i];
|
---|
285 | }
|
---|
286 |
|
---|
287 | // calculate tau on new axes
|
---|
288 | seedAxes = newAxes;
|
---|
289 | double tempTau = _function->tau(particles, newAxes);
|
---|
290 |
|
---|
291 | // close enough to stop?
|
---|
292 | if (fabs(tempTau - seedTau) < _accuracy) break;
|
---|
293 | seedTau = tempTau;
|
---|
294 | }
|
---|
295 |
|
---|
296 | return seedAxes;
|
---|
297 | }
|
---|
298 |
|
---|
299 | // Go from internal LightLikeAxis to PseudoJet
|
---|
300 | fastjet::PseudoJet LightLikeAxis::ConvertToPseudoJet() {
|
---|
301 | double px, py, pz, E;
|
---|
302 | E = _mom;
|
---|
303 | pz = (std::exp(2.0*_rap) - 1.0) / (std::exp(2.0*_rap) + 1.0) * E;
|
---|
304 | px = std::cos(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
|
---|
305 | py = std::sin(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
|
---|
306 | return fastjet::PseudoJet(px,py,pz,E);
|
---|
307 | }
|
---|
308 |
|
---|
309 | } //namespace contrib
|
---|
310 |
|
---|
311 | FASTJET_END_NAMESPACE
|
---|