1 | //FJSTARTHEADER
|
---|
2 | // $Id: TilingExtent.cc 4034 2016-03-02 00:20:27Z soyez $
|
---|
3 | //
|
---|
4 | // Copyright (c) 2005-2014, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
|
---|
5 | //
|
---|
6 | //----------------------------------------------------------------------
|
---|
7 | // This file is part of FastJet.
|
---|
8 | //
|
---|
9 | // FastJet is free software; you can redistribute it and/or modify
|
---|
10 | // it under the terms of the GNU General Public License as published by
|
---|
11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
12 | // (at your option) any later version.
|
---|
13 | //
|
---|
14 | // The algorithms that underlie FastJet have required considerable
|
---|
15 | // development. They are described in the original FastJet paper,
|
---|
16 | // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
|
---|
17 | // FastJet as part of work towards a scientific publication, please
|
---|
18 | // quote the version you use and include a citation to the manual and
|
---|
19 | // optionally also to hep-ph/0512210.
|
---|
20 | //
|
---|
21 | // FastJet is distributed in the hope that it will be useful,
|
---|
22 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
23 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
24 | // GNU General Public License for more details.
|
---|
25 | //
|
---|
26 | // You should have received a copy of the GNU General Public License
|
---|
27 | // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
|
---|
28 | //----------------------------------------------------------------------
|
---|
29 | //FJENDHEADER
|
---|
30 |
|
---|
31 | #include <iomanip>
|
---|
32 | #include <limits>
|
---|
33 | #include <cmath>
|
---|
34 | #include "fastjet/internal/TilingExtent.hh"
|
---|
35 | using namespace std;
|
---|
36 |
|
---|
37 |
|
---|
38 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
39 |
|
---|
40 | TilingExtent::TilingExtent(ClusterSequence & cs) {
|
---|
41 | _determine_rapidity_extent(cs.jets());
|
---|
42 | }
|
---|
43 |
|
---|
44 | TilingExtent::TilingExtent(const vector<PseudoJet> &particles) {
|
---|
45 | _determine_rapidity_extent(particles);
|
---|
46 | }
|
---|
47 |
|
---|
48 | void TilingExtent::_determine_rapidity_extent(const vector<PseudoJet> & particles) {
|
---|
49 | // have a binning of rapidity that goes from -nrap to nrap
|
---|
50 | // in bins of size 1; the left and right-most bins include
|
---|
51 | // include overflows from smaller/larger rapidities
|
---|
52 | int nrap = 20;
|
---|
53 | int nbins = 2*nrap;
|
---|
54 | vector<double> counts(nbins, 0);
|
---|
55 |
|
---|
56 | // get the minimum and maximum rapidities and at the same time bin
|
---|
57 | // the multiplicities as a function of rapidity to help decide how
|
---|
58 | // far out it's worth going
|
---|
59 | _minrap = numeric_limits<double>::max();
|
---|
60 | _maxrap = -numeric_limits<double>::max();
|
---|
61 | int ibin;
|
---|
62 | for (unsigned i = 0; i < particles.size(); i++) {
|
---|
63 | // ignore particles with infinite rapidity
|
---|
64 | if (particles[i].E() == abs(particles[i].pz())) continue;
|
---|
65 | double rap = particles[i].rap();
|
---|
66 | if (rap < _minrap) _minrap = rap;
|
---|
67 | if (rap > _maxrap) _maxrap = rap;
|
---|
68 | // now bin the rapidity to decide how far to go with the tiling.
|
---|
69 | // Remember the bins go from ibin=0 (rap=-infinity..-19)
|
---|
70 | // to ibin = nbins-1 (rap=19..infinity for nrap=20)
|
---|
71 | ibin = int(rap+nrap);
|
---|
72 | if (ibin < 0) ibin = 0;
|
---|
73 | if (ibin >= nbins) ibin = nbins - 1;
|
---|
74 | counts[ibin]++;
|
---|
75 | }
|
---|
76 |
|
---|
77 | // now figure out the particle count in the busiest bin
|
---|
78 | double max_in_bin = 0;
|
---|
79 | for (ibin = 0; ibin < nbins; ibin++) {
|
---|
80 | if (max_in_bin < counts[ibin]) max_in_bin = counts[ibin];
|
---|
81 | }
|
---|
82 |
|
---|
83 | // and find _minrap, _maxrap such that edge bin never contains more
|
---|
84 | // than some fraction of busiest, and at least a few particles; first do
|
---|
85 | // it from left. NB: the thresholds chosen here are largely
|
---|
86 | // guesstimates as to what might work.
|
---|
87 | //
|
---|
88 | // 2014-07-17: in some tests at high multiplicity (100k) and particles going up to
|
---|
89 | // about 7.3, anti-kt R=0.4, we found that 0.25 gave 20% better run times
|
---|
90 | // than the original value of 0.5.
|
---|
91 | const double allowed_max_fraction = 0.25;
|
---|
92 | // the edge bins should also contain at least min_multiplicity particles
|
---|
93 | const double min_multiplicity = 4;
|
---|
94 | // now calculate how much we can accumulate into an edge bin
|
---|
95 | double allowed_max_cumul = floor(max(max_in_bin * allowed_max_fraction, min_multiplicity));
|
---|
96 | // make sure we don't require more particles in a bin than max_in_bin
|
---|
97 | if (allowed_max_cumul > max_in_bin) allowed_max_cumul = max_in_bin;
|
---|
98 |
|
---|
99 | // start scan over rapidity bins from the left, to find out minimum rapidity of tiling
|
---|
100 | double cumul_lo = 0;
|
---|
101 | _cumul2 = 0;
|
---|
102 | for (ibin = 0; ibin < nbins; ibin++) {
|
---|
103 | cumul_lo += counts[ibin];
|
---|
104 | if (cumul_lo >= allowed_max_cumul) {
|
---|
105 | double y = ibin-nrap;
|
---|
106 | if (y > _minrap) _minrap = y;
|
---|
107 | break;
|
---|
108 | }
|
---|
109 | }
|
---|
110 | assert(ibin != nbins); // internal consistency check that you found a bin
|
---|
111 | _cumul2 += cumul_lo*cumul_lo;
|
---|
112 |
|
---|
113 | // ibin_lo is the index of the leftmost bin that should be considered
|
---|
114 | int ibin_lo = ibin;
|
---|
115 |
|
---|
116 | // then do it from right, to find out maximum rapidity of tiling
|
---|
117 | double cumul_hi = 0;
|
---|
118 | for (ibin = nbins-1; ibin >= 0; ibin--) {
|
---|
119 | cumul_hi += counts[ibin];
|
---|
120 | if (cumul_hi >= allowed_max_cumul) {
|
---|
121 | double y = ibin-nrap+1; // +1 here is the rapidity bin width
|
---|
122 | if (y < _maxrap) _maxrap = y;
|
---|
123 | break;
|
---|
124 | }
|
---|
125 | }
|
---|
126 | assert(ibin >= 0); // internal consistency check that you found a bin
|
---|
127 |
|
---|
128 | // ibin_hi is the index of the rightmost bin that should be considered
|
---|
129 | int ibin_hi = ibin;
|
---|
130 |
|
---|
131 | // consistency check
|
---|
132 | assert(ibin_hi >= ibin_lo);
|
---|
133 |
|
---|
134 | // now work out cumul2
|
---|
135 | if (ibin_hi == ibin_lo) {
|
---|
136 | // if there is a single bin (potentially including overflows
|
---|
137 | // from both sides), cumul2 is the square of the total contents
|
---|
138 | // of that bin, which we obtain from cumul_lo and cumul_hi minus
|
---|
139 | // the double counting of part that is contained in both
|
---|
140 | // (putting double
|
---|
141 | _cumul2 = pow(double(cumul_lo + cumul_hi - counts[ibin_hi]), 2);
|
---|
142 | } else {
|
---|
143 | // otherwise we have a straightforward sum of squares of bin
|
---|
144 | // contents
|
---|
145 | _cumul2 += cumul_hi*cumul_hi;
|
---|
146 |
|
---|
147 | // now get the rest of the squared bin contents
|
---|
148 | for (ibin = ibin_lo+1; ibin < ibin_hi; ibin++) {
|
---|
149 | _cumul2 += counts[ibin]*counts[ibin];
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | }
|
---|
154 |
|
---|
155 |
|
---|
156 | FASTJET_END_NAMESPACE
|
---|