[35cdc46] | 1 | //FJSTARTHEADER
|
---|
[1d208a2] | 2 | // $Id: TilingExtent.cc 4034 2016-03-02 00:20:27Z soyez $
|
---|
[35cdc46] | 3 | //
|
---|
| 4 | // Copyright (c) 2005-2014, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
|
---|
| 5 | //
|
---|
| 6 | //----------------------------------------------------------------------
|
---|
| 7 | // This file is part of FastJet.
|
---|
| 8 | //
|
---|
| 9 | // FastJet is free software; you can redistribute it and/or modify
|
---|
| 10 | // it under the terms of the GNU General Public License as published by
|
---|
| 11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
| 12 | // (at your option) any later version.
|
---|
| 13 | //
|
---|
| 14 | // The algorithms that underlie FastJet have required considerable
|
---|
| 15 | // development. They are described in the original FastJet paper,
|
---|
| 16 | // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
|
---|
| 17 | // FastJet as part of work towards a scientific publication, please
|
---|
| 18 | // quote the version you use and include a citation to the manual and
|
---|
| 19 | // optionally also to hep-ph/0512210.
|
---|
| 20 | //
|
---|
| 21 | // FastJet is distributed in the hope that it will be useful,
|
---|
| 22 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 23 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 24 | // GNU General Public License for more details.
|
---|
| 25 | //
|
---|
| 26 | // You should have received a copy of the GNU General Public License
|
---|
| 27 | // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 28 | //----------------------------------------------------------------------
|
---|
| 29 | //FJENDHEADER
|
---|
| 30 |
|
---|
| 31 | #include <iomanip>
|
---|
| 32 | #include <limits>
|
---|
| 33 | #include <cmath>
|
---|
| 34 | #include "fastjet/internal/TilingExtent.hh"
|
---|
| 35 | using namespace std;
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 39 |
|
---|
| 40 | TilingExtent::TilingExtent(ClusterSequence & cs) {
|
---|
| 41 | _determine_rapidity_extent(cs.jets());
|
---|
| 42 | }
|
---|
[1d208a2] | 43 |
|
---|
| 44 | TilingExtent::TilingExtent(const vector<PseudoJet> &particles) {
|
---|
| 45 | _determine_rapidity_extent(particles);
|
---|
| 46 | }
|
---|
| 47 |
|
---|
[35cdc46] | 48 | void TilingExtent::_determine_rapidity_extent(const vector<PseudoJet> & particles) {
|
---|
| 49 | // have a binning of rapidity that goes from -nrap to nrap
|
---|
| 50 | // in bins of size 1; the left and right-most bins include
|
---|
| 51 | // include overflows from smaller/larger rapidities
|
---|
| 52 | int nrap = 20;
|
---|
| 53 | int nbins = 2*nrap;
|
---|
| 54 | vector<double> counts(nbins, 0);
|
---|
| 55 |
|
---|
| 56 | // get the minimum and maximum rapidities and at the same time bin
|
---|
| 57 | // the multiplicities as a function of rapidity to help decide how
|
---|
| 58 | // far out it's worth going
|
---|
| 59 | _minrap = numeric_limits<double>::max();
|
---|
| 60 | _maxrap = -numeric_limits<double>::max();
|
---|
| 61 | int ibin;
|
---|
| 62 | for (unsigned i = 0; i < particles.size(); i++) {
|
---|
| 63 | // ignore particles with infinite rapidity
|
---|
| 64 | if (particles[i].E() == abs(particles[i].pz())) continue;
|
---|
| 65 | double rap = particles[i].rap();
|
---|
| 66 | if (rap < _minrap) _minrap = rap;
|
---|
| 67 | if (rap > _maxrap) _maxrap = rap;
|
---|
| 68 | // now bin the rapidity to decide how far to go with the tiling.
|
---|
| 69 | // Remember the bins go from ibin=0 (rap=-infinity..-19)
|
---|
| 70 | // to ibin = nbins-1 (rap=19..infinity for nrap=20)
|
---|
| 71 | ibin = int(rap+nrap);
|
---|
| 72 | if (ibin < 0) ibin = 0;
|
---|
| 73 | if (ibin >= nbins) ibin = nbins - 1;
|
---|
| 74 | counts[ibin]++;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | // now figure out the particle count in the busiest bin
|
---|
| 78 | double max_in_bin = 0;
|
---|
| 79 | for (ibin = 0; ibin < nbins; ibin++) {
|
---|
| 80 | if (max_in_bin < counts[ibin]) max_in_bin = counts[ibin];
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | // and find _minrap, _maxrap such that edge bin never contains more
|
---|
| 84 | // than some fraction of busiest, and at least a few particles; first do
|
---|
| 85 | // it from left. NB: the thresholds chosen here are largely
|
---|
| 86 | // guesstimates as to what might work.
|
---|
| 87 | //
|
---|
| 88 | // 2014-07-17: in some tests at high multiplicity (100k) and particles going up to
|
---|
| 89 | // about 7.3, anti-kt R=0.4, we found that 0.25 gave 20% better run times
|
---|
| 90 | // than the original value of 0.5.
|
---|
| 91 | const double allowed_max_fraction = 0.25;
|
---|
| 92 | // the edge bins should also contain at least min_multiplicity particles
|
---|
| 93 | const double min_multiplicity = 4;
|
---|
| 94 | // now calculate how much we can accumulate into an edge bin
|
---|
| 95 | double allowed_max_cumul = floor(max(max_in_bin * allowed_max_fraction, min_multiplicity));
|
---|
| 96 | // make sure we don't require more particles in a bin than max_in_bin
|
---|
| 97 | if (allowed_max_cumul > max_in_bin) allowed_max_cumul = max_in_bin;
|
---|
| 98 |
|
---|
| 99 | // start scan over rapidity bins from the left, to find out minimum rapidity of tiling
|
---|
| 100 | double cumul_lo = 0;
|
---|
| 101 | _cumul2 = 0;
|
---|
| 102 | for (ibin = 0; ibin < nbins; ibin++) {
|
---|
| 103 | cumul_lo += counts[ibin];
|
---|
| 104 | if (cumul_lo >= allowed_max_cumul) {
|
---|
| 105 | double y = ibin-nrap;
|
---|
| 106 | if (y > _minrap) _minrap = y;
|
---|
| 107 | break;
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 | assert(ibin != nbins); // internal consistency check that you found a bin
|
---|
| 111 | _cumul2 += cumul_lo*cumul_lo;
|
---|
| 112 |
|
---|
| 113 | // ibin_lo is the index of the leftmost bin that should be considered
|
---|
| 114 | int ibin_lo = ibin;
|
---|
| 115 |
|
---|
| 116 | // then do it from right, to find out maximum rapidity of tiling
|
---|
| 117 | double cumul_hi = 0;
|
---|
| 118 | for (ibin = nbins-1; ibin >= 0; ibin--) {
|
---|
| 119 | cumul_hi += counts[ibin];
|
---|
| 120 | if (cumul_hi >= allowed_max_cumul) {
|
---|
| 121 | double y = ibin-nrap+1; // +1 here is the rapidity bin width
|
---|
| 122 | if (y < _maxrap) _maxrap = y;
|
---|
| 123 | break;
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | assert(ibin >= 0); // internal consistency check that you found a bin
|
---|
| 127 |
|
---|
| 128 | // ibin_hi is the index of the rightmost bin that should be considered
|
---|
| 129 | int ibin_hi = ibin;
|
---|
| 130 |
|
---|
| 131 | // consistency check
|
---|
| 132 | assert(ibin_hi >= ibin_lo);
|
---|
| 133 |
|
---|
| 134 | // now work out cumul2
|
---|
| 135 | if (ibin_hi == ibin_lo) {
|
---|
| 136 | // if there is a single bin (potentially including overflows
|
---|
| 137 | // from both sides), cumul2 is the square of the total contents
|
---|
| 138 | // of that bin, which we obtain from cumul_lo and cumul_hi minus
|
---|
| 139 | // the double counting of part that is contained in both
|
---|
| 140 | // (putting double
|
---|
| 141 | _cumul2 = pow(double(cumul_lo + cumul_hi - counts[ibin_hi]), 2);
|
---|
| 142 | } else {
|
---|
| 143 | // otherwise we have a straightforward sum of squares of bin
|
---|
| 144 | // contents
|
---|
| 145 | _cumul2 += cumul_hi*cumul_hi;
|
---|
| 146 |
|
---|
| 147 | // now get the rest of the squared bin contents
|
---|
| 148 | for (ibin = ibin_lo+1; ibin < ibin_hi; ibin++) {
|
---|
| 149 | _cumul2 += counts[ibin]*counts[ibin];
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 |
|
---|
| 156 | FASTJET_END_NAMESPACE
|
---|