[1d208a2] | 1 | #ifndef __FASTJET_NNBASE_HH__
|
---|
| 2 | #define __FASTJET_NNBASE_HH__
|
---|
| 3 |
|
---|
| 4 | //FJSTARTHEADER
|
---|
[cb80e6f] | 5 | // $Id: NNBase.hh 4442 2020-05-05 07:50:11Z soyez $
|
---|
[1d208a2] | 6 | //
|
---|
[cb80e6f] | 7 | // Copyright (c) 2016-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
|
---|
[1d208a2] | 8 | //
|
---|
| 9 | //----------------------------------------------------------------------
|
---|
| 10 | // This file is part of FastJet.
|
---|
| 11 | //
|
---|
| 12 | // FastJet is free software; you can redistribute it and/or modify
|
---|
| 13 | // it under the terms of the GNU General Public License as published by
|
---|
| 14 | // the Free Software Foundation; either version 2 of the License, or
|
---|
| 15 | // (at your option) any later version.
|
---|
| 16 | //
|
---|
| 17 | // The algorithms that underlie FastJet have required considerable
|
---|
| 18 | // development. They are described in the original FastJet paper,
|
---|
| 19 | // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
|
---|
| 20 | // FastJet as part of work towards a scientific publication, please
|
---|
| 21 | // quote the version you use and include a citation to the manual and
|
---|
| 22 | // optionally also to hep-ph/0512210.
|
---|
| 23 | //
|
---|
| 24 | // FastJet is distributed in the hope that it will be useful,
|
---|
| 25 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 26 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 27 | // GNU General Public License for more details.
|
---|
| 28 | //
|
---|
| 29 | // You should have received a copy of the GNU General Public License
|
---|
| 30 | // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 31 | //----------------------------------------------------------------------
|
---|
| 32 | //FJENDHEADER
|
---|
| 33 |
|
---|
| 34 | #include<fastjet/ClusterSequence.hh>
|
---|
| 35 |
|
---|
| 36 |
|
---|
| 37 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 38 |
|
---|
| 39 | /// @ingroup advanced_usage
|
---|
| 40 | /// \class _NoInfo
|
---|
| 41 | /// internal dummy class, used as a default template argument
|
---|
| 42 | class _NoInfo {};
|
---|
| 43 |
|
---|
| 44 | /// @ingroup advanced_usage
|
---|
| 45 | /// \class NNInfo
|
---|
| 46 | ///
|
---|
| 47 | /// internal helper template class to facilitate initialisation of a
|
---|
| 48 | /// BJ with a PseudoJet and extra information. Implementations of
|
---|
| 49 | /// NN-based clustering do not need to explicitly use or refer to
|
---|
| 50 | /// this class!
|
---|
| 51 | template<class I> class NNInfo {
|
---|
| 52 | public:
|
---|
| 53 | NNInfo() : _info(NULL) {}
|
---|
| 54 | NNInfo(I * info) : _info(info) {}
|
---|
| 55 | template<class BJ> void init_jet(BJ * briefjet, const fastjet::PseudoJet & jet, int index) { briefjet->init(jet, index, _info);}
|
---|
| 56 | private:
|
---|
| 57 | I * _info;
|
---|
| 58 | };
|
---|
| 59 |
|
---|
| 60 | /// @ingroup advanced_usage Internal helper specialisation of NNInfo
|
---|
| 61 | /// for cases where there is no extra info
|
---|
| 62 | template<> class NNInfo<_NoInfo> {
|
---|
| 63 | public:
|
---|
| 64 | NNInfo() {}
|
---|
| 65 | NNInfo(_NoInfo * ) {}
|
---|
| 66 | template<class BJ> void init_jet(BJ * briefjet, const fastjet::PseudoJet & jet, int index) { briefjet->init(jet, index);}
|
---|
| 67 | };
|
---|
| 68 |
|
---|
| 69 |
|
---|
| 70 | //----------------------------------------------------------------------
|
---|
| 71 | /// @ingroup advanced_usage
|
---|
| 72 | /// \class NNBase
|
---|
| 73 | /// Helps solve closest pair problems with generic interparticle and
|
---|
| 74 | /// particle-beam distances.
|
---|
| 75 | ///
|
---|
| 76 | /// \section Description Description and derived classes:
|
---|
| 77 | ///
|
---|
| 78 | /// This is an abstract base class which defines the interface for
|
---|
| 79 | /// several classes that help carry out nearest-neighbour
|
---|
| 80 | /// clustering:
|
---|
| 81 | ///
|
---|
| 82 | /// - NNH provides an implementation for generic measures,
|
---|
| 83 | ///
|
---|
| 84 | /// - NNFJN2Plain provides an implementation for distances
|
---|
| 85 | /// satisfying the FastJet lemma i.e. distances for
|
---|
| 86 | /// which the minimum dij has the property that i is
|
---|
| 87 | /// the geometrical nearest neighbour of j, or vice
|
---|
| 88 | /// versa. I.e. the distance can be factorised in a
|
---|
| 89 | /// momentum factor and a geometric piece. This is
|
---|
| 90 | /// based on the fastjet N2Plain clustering strategy
|
---|
| 91 | ///
|
---|
| 92 | /// - NNFJN2Tiled is a tiled version of NNFJN2Plain (based on the
|
---|
| 93 | /// N2Tiled FastJet clustering strategy). Like
|
---|
| 94 | /// NNPlain2 it applies to distance measures that
|
---|
| 95 | /// satisfy the FastJet lemma, with the additional
|
---|
| 96 | /// restriction that: (a) the underlying geometry
|
---|
| 97 | /// should be cylindrical (e.g. rapidity--azimuth)
|
---|
| 98 | /// and (b) the search for the geometric nearest
|
---|
| 99 | /// neighbour of each particle can be limited to
|
---|
| 100 | /// that particle's tile and its neighbouring tiles.
|
---|
| 101 | ///
|
---|
| 102 | /// If you can use NNFJN2Plain it will usually be faster than
|
---|
| 103 | /// NNH. NNFJN2Tiled, where it can be used, will be faster for
|
---|
| 104 | /// multiplicities above a few tens of particles.
|
---|
| 105 | ///
|
---|
| 106 | /// NOTE: IN ALL CASES, THE DISTANCE MUST BE SYMMETRIC (dij=dji)!!!
|
---|
| 107 | ///
|
---|
| 108 | /// \section BJ Underlying BriefJet (BJ) class:
|
---|
| 109 | ///
|
---|
| 110 | /// All derived classes must be templated with a BriefJet (BJ)
|
---|
| 111 | /// class --- BJ should basically cache the minimal amount of
|
---|
| 112 | /// information that is needed to efficiently calculate
|
---|
| 113 | /// interparticle distances and particle-beam distances.
|
---|
| 114 | ///
|
---|
| 115 | /// This class can be used with or without an extra "Information"
|
---|
| 116 | /// template, i.e. `NN*<BJ>` or `NN*<BJ,I>`. Accordingly BJ must provide
|
---|
| 117 | /// one of the two following init functions:
|
---|
| 118 | ///
|
---|
| 119 | /// \code
|
---|
| 120 | /// void BJ::init(const PseudoJet & jet); // initialise with a PseudoJet
|
---|
| 121 | /// void BJ::init(const PseudoJet & jet, I * info); // initialise with a PseudoJet + info
|
---|
| 122 | /// \endcode
|
---|
| 123 | ///
|
---|
| 124 | /// where info might be a pointer to a class that contains, e.g.,
|
---|
| 125 | /// information about R, or other parameters of the jet algorithm
|
---|
| 126 | ///
|
---|
| 127 | /// The BJ then provides information about interparticle and
|
---|
| 128 | /// particle-beam distances. The exact requirements depend on
|
---|
| 129 | /// whether you use NNH, NNFJN2Plain or NNFJN2Tiled. (See the
|
---|
| 130 | /// corresponding classes for details).
|
---|
| 131 | ///
|
---|
| 132 | ///
|
---|
| 133 | /// \section Workflow Workflow:
|
---|
| 134 | ///
|
---|
| 135 | /// In all cases, the usage of NNBase classes works as follows:
|
---|
| 136 | ///
|
---|
| 137 | /// First, from the list of particles, create an `NN*<BJ>`
|
---|
| 138 | /// object of the appropriate type with the appropriate BJ class
|
---|
| 139 | /// (and optional extra info).
|
---|
| 140 | ///
|
---|
| 141 | /// Then, cluster using a loop like this (assuming a FastJet plugin)
|
---|
| 142 | ///
|
---|
| 143 | /// \code
|
---|
| 144 | /// while (njets > 0) {
|
---|
| 145 | /// int i, j, k;
|
---|
| 146 | /// // get the i and j that minimize the distance
|
---|
| 147 | /// double dij = nn.dij_min(i, j);
|
---|
| 148 | ///
|
---|
| 149 | /// // do the appropriate recombination and update the nn
|
---|
| 150 | /// if (j >= 0) { // interparticle recombination
|
---|
| 151 | /// cs.plugin_record_ij_recombination(i, j, dij, k);
|
---|
| 152 | /// nn.merge_jets(i, j, cs.jets()[k], k);
|
---|
| 153 | /// } else { // bbeam recombination
|
---|
| 154 | /// double diB = cs.jets()[i].E()*cs.jets()[i].E(); // get new diB
|
---|
| 155 | /// cs.plugin_record_iB_recombination(i, diB);
|
---|
| 156 | /// nn.remove_jet(i);
|
---|
| 157 | /// }
|
---|
| 158 | /// njets--;
|
---|
| 159 | /// }
|
---|
| 160 | /// \endcode
|
---|
| 161 | ///
|
---|
| 162 | /// For an example of how the NNH<BJ> class is used, see the
|
---|
| 163 | /// JadePlugin or EECambridgePlugin.
|
---|
| 164 | template<class I = _NoInfo> class NNBase : public NNInfo<I> {
|
---|
| 165 | public:
|
---|
| 166 | /// Default constructor
|
---|
| 167 | NNBase() {}
|
---|
| 168 | /// Constuctor with additional Info
|
---|
| 169 | NNBase(I * info) : NNInfo<I>(info) {}
|
---|
| 170 |
|
---|
| 171 | /// initialisation from a given list of particles
|
---|
| 172 | virtual void start(const std::vector<PseudoJet> & jets) = 0;
|
---|
| 173 |
|
---|
| 174 | /// returns the dij_min and indices iA, iB, for the corresponding jets.
|
---|
| 175 | /// If iB < 0 then iA recombines with the beam
|
---|
| 176 | virtual double dij_min(int & iA, int & iB) = 0;
|
---|
| 177 |
|
---|
| 178 | /// removes the jet pointed to by index iA
|
---|
| 179 | virtual void remove_jet(int iA) = 0;
|
---|
| 180 |
|
---|
| 181 | /// merges the jets pointed to by indices A and B and replaces them with
|
---|
| 182 | /// jet, assigning it an index jet_index.
|
---|
| 183 | virtual void merge_jets(int iA, int iB, const PseudoJet & jet, int jet_index) = 0;
|
---|
| 184 |
|
---|
| 185 | virtual ~NNBase() {};
|
---|
| 186 | };
|
---|
| 187 |
|
---|
| 188 |
|
---|
| 189 | FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 190 |
|
---|
| 191 |
|
---|
| 192 | #endif // __FASTJET_NNBASE_HH__
|
---|