1 | //FJSTARTHEADER
|
---|
2 | // $Id: LazyTiling25.cc 4442 2020-05-05 07:50:11Z soyez $
|
---|
3 | //
|
---|
4 | // Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
|
---|
5 | //
|
---|
6 | //----------------------------------------------------------------------
|
---|
7 | // This file is part of FastJet.
|
---|
8 | //
|
---|
9 | // FastJet is free software; you can redistribute it and/or modify
|
---|
10 | // it under the terms of the GNU General Public License as published by
|
---|
11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
12 | // (at your option) any later version.
|
---|
13 | //
|
---|
14 | // The algorithms that underlie FastJet have required considerable
|
---|
15 | // development. They are described in the original FastJet paper,
|
---|
16 | // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
|
---|
17 | // FastJet as part of work towards a scientific publication, please
|
---|
18 | // quote the version you use and include a citation to the manual and
|
---|
19 | // optionally also to hep-ph/0512210.
|
---|
20 | //
|
---|
21 | // FastJet is distributed in the hope that it will be useful,
|
---|
22 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
23 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
24 | // GNU General Public License for more details.
|
---|
25 | //
|
---|
26 | // You should have received a copy of the GNU General Public License
|
---|
27 | // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
|
---|
28 | //----------------------------------------------------------------------
|
---|
29 | //FJENDHEADER
|
---|
30 |
|
---|
31 | #include <iomanip>
|
---|
32 | #include "fastjet/internal/LazyTiling25.hh"
|
---|
33 | #include "fastjet/internal/TilingExtent.hh"
|
---|
34 | using namespace std;
|
---|
35 |
|
---|
36 |
|
---|
37 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
38 |
|
---|
39 | LazyTiling25::LazyTiling25(ClusterSequence & cs) :
|
---|
40 | _cs(cs), _jets(cs.jets())
|
---|
41 | //, _minheap(_jets.size())
|
---|
42 | {
|
---|
43 | #ifdef INSTRUMENT2
|
---|
44 | _ncall = 0; // gps tmp
|
---|
45 | _ncall_dtt = 0; // gps tmp
|
---|
46 | #endif // INSTRUMENT2
|
---|
47 | _Rparam = cs.jet_def().R();
|
---|
48 | _R2 = _Rparam * _Rparam;
|
---|
49 | _invR2 = 1.0 / _R2;
|
---|
50 | _initialise_tiles();
|
---|
51 | }
|
---|
52 |
|
---|
53 |
|
---|
54 | //----------------------------------------------------------------------
|
---|
55 | /// Set up the tiles:
|
---|
56 | /// - decide the range in eta
|
---|
57 | /// - allocate the tiles
|
---|
58 | /// - set up the cross-referencing info between tiles
|
---|
59 | ///
|
---|
60 | /// The neighbourhood of a tile is set up as follows
|
---|
61 | ///
|
---|
62 | /// LLRRR
|
---|
63 | /// LLRRR
|
---|
64 | /// LLXRR
|
---|
65 | /// LLLRR
|
---|
66 | /// LLLRR
|
---|
67 | ///
|
---|
68 | /// such that tiles is an array containing XLL..LLRR..RR with pointers
|
---|
69 | /// | \ RH_tiles
|
---|
70 | /// \ surrounding_tiles
|
---|
71 | ///
|
---|
72 | /// with appropriate precautions when close to the edge of the tiled
|
---|
73 | /// region.
|
---|
74 | ///
|
---|
75 | void LazyTiling25::_initialise_tiles() {
|
---|
76 |
|
---|
77 | // first decide tile sizes (with a lower bound to avoid huge memory use with
|
---|
78 | // very small R)
|
---|
79 | double default_size = max(0.1,_Rparam)/2;
|
---|
80 | _tile_size_eta = default_size;
|
---|
81 | // it makes no sense to go below 5 tiles in phi -- 5 tiles is
|
---|
82 | // sufficient to make sure all pair-wise combinations up to pi in
|
---|
83 | // phi are possible
|
---|
84 | _n_tiles_phi = max(5,int(floor(twopi/default_size)));
|
---|
85 | _tile_size_phi = twopi / _n_tiles_phi; // >= _Rparam and fits in 2pi
|
---|
86 |
|
---|
87 | #define _FASTJET_TILING25_USE_TILING_ANALYSIS_
|
---|
88 | #ifdef _FASTJET_TILING25_USE_TILING_ANALYSIS_
|
---|
89 | // testing
|
---|
90 | TilingExtent tiling_analysis(_cs);
|
---|
91 | _tiles_eta_min = tiling_analysis.minrap();
|
---|
92 | _tiles_eta_max = tiling_analysis.maxrap();
|
---|
93 | //cout << "Using timing analysis " << " " << _tiles_eta_min << " " << _tiles_eta_max << endl;
|
---|
94 | #else // not _FASTJET_TILING25_USE_TILING_ANALYSIS_
|
---|
95 | // always include zero rapidity in the tiling region
|
---|
96 | _tiles_eta_min = 0.0;
|
---|
97 | _tiles_eta_max = 0.0;
|
---|
98 | // but go no further than following
|
---|
99 | const double maxrap = 7.0;
|
---|
100 |
|
---|
101 | // and find out how much further one should go
|
---|
102 | for(unsigned int i = 0; i < _jets.size(); i++) {
|
---|
103 | double eta = _jets[i].rap();
|
---|
104 | // first check if eta is in range -- to avoid taking into account
|
---|
105 | // very spurious rapidities due to particles with near-zero kt.
|
---|
106 | if (abs(eta) < maxrap) {
|
---|
107 | if (eta < _tiles_eta_min) {_tiles_eta_min = eta;}
|
---|
108 | if (eta > _tiles_eta_max) {_tiles_eta_max = eta;}
|
---|
109 | }
|
---|
110 | }
|
---|
111 | //cout << "NOT using timing analysis " << " " << _tiles_eta_min << " " << _tiles_eta_max << endl;
|
---|
112 | #endif // _FASTJET_TILING25_USE_TILING_ANALYSIS_
|
---|
113 |
|
---|
114 |
|
---|
115 | // now adjust the values of the ieta extents
|
---|
116 |
|
---|
117 | // 2014-07-18: the following commented piece of code gives speed
|
---|
118 | // improvements for large-R jets, but occasionally it appears to
|
---|
119 | // hang, e.g. on
|
---|
120 | // gunzip -c < ../data/Pythia-PtMin50-LHC-10kev.dat.gz | time ./example/fastjet_timing_plugins -R 1000 -nev 1000 -strategy -6 -antikt -rapmax 5.0 -repeat 1 -write
|
---|
121 | // 2014-07-23: this was understood because tile centres assumed
|
---|
122 | // tiles_ieta_min = tiles_eta_min (no longer true)
|
---|
123 | //
|
---|
124 | #define FASTJET_LAZY25_MIN3TILESY
|
---|
125 | #ifdef FASTJET_LAZY25_MIN3TILESY
|
---|
126 | if (_tiles_eta_max - _tiles_eta_min < 3*_tile_size_eta) {
|
---|
127 | // if we have a rapidity coverage that is small compared to the
|
---|
128 | // tile size then we can adjust the grid in rapidity so as to
|
---|
129 | // have exactly 3 tiles. This can give relevant speed improvements
|
---|
130 | // for large R jets
|
---|
131 | _tile_size_eta = (_tiles_eta_max - _tiles_eta_min)/3;
|
---|
132 | _tiles_ieta_min = 0;
|
---|
133 | _tiles_ieta_max = 2;
|
---|
134 | // the eta max value is being taken as the lower edge of the
|
---|
135 | // highest-y tile
|
---|
136 | _tiles_eta_max -= _tile_size_eta;
|
---|
137 | } else {
|
---|
138 | #endif //FASTJET_LAZY25_MIN3TILESY
|
---|
139 | _tiles_ieta_min = int(floor(_tiles_eta_min/_tile_size_eta));
|
---|
140 | _tiles_ieta_max = int(floor( _tiles_eta_max/_tile_size_eta));
|
---|
141 | _tiles_eta_min = _tiles_ieta_min * _tile_size_eta;
|
---|
142 | _tiles_eta_max = _tiles_ieta_max * _tile_size_eta;
|
---|
143 | #ifdef FASTJET_LAZY25_MIN3TILESY
|
---|
144 | }
|
---|
145 | #endif
|
---|
146 | _tile_half_size_eta = _tile_size_eta * 0.5;
|
---|
147 | _tile_half_size_phi = _tile_size_phi * 0.5;
|
---|
148 |
|
---|
149 | // set up information about whether we need to allow for "periodic"
|
---|
150 | // wrapping tests in delta_phi calculations
|
---|
151 | vector<bool> use_periodic_delta_phi(_n_tiles_phi, false);
|
---|
152 | if (_n_tiles_phi <= 5) {
|
---|
153 | fill(use_periodic_delta_phi.begin(), use_periodic_delta_phi.end(), true);
|
---|
154 | } else {
|
---|
155 | use_periodic_delta_phi[0] = true;
|
---|
156 | use_periodic_delta_phi[1] = true;
|
---|
157 | use_periodic_delta_phi[_n_tiles_phi-2] = true;
|
---|
158 | use_periodic_delta_phi[_n_tiles_phi-1] = true;
|
---|
159 | }
|
---|
160 |
|
---|
161 | // allocate the tiles
|
---|
162 | _tiles.resize((_tiles_ieta_max-_tiles_ieta_min+1)*_n_tiles_phi);
|
---|
163 |
|
---|
164 | // now set up the cross-referencing between tiles
|
---|
165 | for (int ieta = _tiles_ieta_min; ieta <= _tiles_ieta_max; ieta++) {
|
---|
166 | for (int iphi = 0; iphi < _n_tiles_phi; iphi++) {
|
---|
167 | Tile25 * tile = & _tiles[_tile_index(ieta,iphi)];
|
---|
168 | // no jets in this tile yet
|
---|
169 | tile->head = NULL; // first element of tiles points to itself
|
---|
170 | tile->begin_tiles[0] = tile;
|
---|
171 | Tile25 ** pptile = & (tile->begin_tiles[0]);
|
---|
172 | pptile++;
|
---|
173 | //
|
---|
174 | // set up L's in column to the left of X
|
---|
175 | tile->surrounding_tiles = pptile;
|
---|
176 | if (ieta > _tiles_ieta_min) {
|
---|
177 | // with the itile subroutine, we can safely run tiles from
|
---|
178 | // idphi=-1 to idphi=+1, because it takes care of
|
---|
179 | // negative and positive boundaries
|
---|
180 | for (int idphi = -2; idphi <=+2; idphi++) {
|
---|
181 | *pptile = & _tiles[_tile_index(ieta-1,iphi+idphi)];
|
---|
182 | pptile++;
|
---|
183 | }
|
---|
184 | }
|
---|
185 | // and the column twice to left of X
|
---|
186 | if (ieta > _tiles_ieta_min + 1) {
|
---|
187 | // with the itile subroutine, we can safely run tiles from
|
---|
188 | // idphi=-1 to idphi=+1, because it takes care of
|
---|
189 | // negative and positive boundaries
|
---|
190 | for (int idphi = -2; idphi <= +2; idphi++) {
|
---|
191 | *pptile = & _tiles[_tile_index(ieta-2,iphi+idphi)];
|
---|
192 | pptile++;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | // now set up last two L's (below X)
|
---|
196 | *pptile = & _tiles[_tile_index(ieta,iphi-1)];
|
---|
197 | pptile++;
|
---|
198 | *pptile = & _tiles[_tile_index(ieta,iphi-2)];
|
---|
199 | pptile++;
|
---|
200 | // set up first two R's (above X)
|
---|
201 | tile->RH_tiles = pptile;
|
---|
202 | *pptile = & _tiles[_tile_index(ieta,iphi+1)];
|
---|
203 | pptile++;
|
---|
204 | *pptile = & _tiles[_tile_index(ieta,iphi+2)];
|
---|
205 | pptile++;
|
---|
206 | // set up remaining R's, to the right of X
|
---|
207 | if (ieta < _tiles_ieta_max) {
|
---|
208 | for (int idphi = -2; idphi <= +2; idphi++) {
|
---|
209 | *pptile = & _tiles[_tile_index(ieta+1,iphi+idphi)];
|
---|
210 | pptile++;
|
---|
211 | }
|
---|
212 | }
|
---|
213 | // set up remaining R's, and two cols to the right of X
|
---|
214 | if (ieta < _tiles_ieta_max - 1) {
|
---|
215 | for (int idphi = -2; idphi <= +2; idphi++) {
|
---|
216 | *pptile = & _tiles[_tile_index(ieta+2,iphi+idphi)];
|
---|
217 | pptile++;
|
---|
218 | }
|
---|
219 | }
|
---|
220 | // now put semaphore for end tile
|
---|
221 | tile->end_tiles = pptile;
|
---|
222 | // finally make sure tiles are untagged
|
---|
223 | tile->tagged = false;
|
---|
224 | // and store the information about periodicity in phi
|
---|
225 | tile->use_periodic_delta_phi = use_periodic_delta_phi[iphi];
|
---|
226 | // and ensure max distance is sensibly initialised
|
---|
227 | tile->max_NN_dist = 0;
|
---|
228 | // and also position of centre of tile
|
---|
229 | tile->eta_centre = (ieta-_tiles_ieta_min+0.5)*_tile_size_eta + _tiles_eta_min;
|
---|
230 | tile->phi_centre = (iphi+0.5)*_tile_size_phi;
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | }
|
---|
235 |
|
---|
236 | //----------------------------------------------------------------------
|
---|
237 | /// return the tile index corresponding to the given eta,phi point
|
---|
238 | int LazyTiling25::_tile_index(const double eta, const double phi) const {
|
---|
239 | int ieta, iphi;
|
---|
240 | if (eta <= _tiles_eta_min) {ieta = 0;}
|
---|
241 | else if (eta >= _tiles_eta_max) {ieta = _tiles_ieta_max-_tiles_ieta_min;}
|
---|
242 | else {
|
---|
243 | //ieta = int(floor((eta - _tiles_eta_min) / _tile_size_eta));
|
---|
244 | ieta = int(((eta - _tiles_eta_min) / _tile_size_eta));
|
---|
245 | // following needed in case of rare but nasty rounding errors
|
---|
246 | if (ieta > _tiles_ieta_max-_tiles_ieta_min) {
|
---|
247 | ieta = _tiles_ieta_max-_tiles_ieta_min;}
|
---|
248 | }
|
---|
249 | // allow for some extent of being beyond range in calculation of phi
|
---|
250 | // as well
|
---|
251 | //iphi = (int(floor(phi/_tile_size_phi)) + _n_tiles_phi) % _n_tiles_phi;
|
---|
252 | // with just int and no floor, things run faster but beware
|
---|
253 | iphi = int((phi+twopi)/_tile_size_phi) % _n_tiles_phi;
|
---|
254 | return (iphi + ieta * _n_tiles_phi);
|
---|
255 | }
|
---|
256 |
|
---|
257 |
|
---|
258 | //----------------------------------------------------------------------
|
---|
259 | // sets up information regarding the tiling of the given jet
|
---|
260 | inline void LazyTiling25::_tj_set_jetinfo( TiledJet * const jet,
|
---|
261 | const int _jets_index) {
|
---|
262 | // first call the generic setup
|
---|
263 | _bj_set_jetinfo<>(jet, _jets_index);
|
---|
264 |
|
---|
265 | // Then do the setup specific to the tiled case.
|
---|
266 |
|
---|
267 | // Find out which tile it belonds to
|
---|
268 | jet->tile_index = _tile_index(jet->eta, jet->phi);
|
---|
269 |
|
---|
270 | // Insert it into the tile's linked list of jets
|
---|
271 | Tile25 * tile = &_tiles[jet->tile_index];
|
---|
272 | jet->previous = NULL;
|
---|
273 | jet->next = tile->head;
|
---|
274 | if (jet->next != NULL) {jet->next->previous = jet;}
|
---|
275 | tile->head = jet;
|
---|
276 | }
|
---|
277 |
|
---|
278 |
|
---|
279 | //----------------------------------------------------------------------
|
---|
280 | void LazyTiling25::_bj_remove_from_tiles(TiledJet * const jet) {
|
---|
281 | Tile25 * tile = & _tiles[jet->tile_index];
|
---|
282 |
|
---|
283 | if (jet->previous == NULL) {
|
---|
284 | // we are at head of the tile, so reset it.
|
---|
285 | // If this was the only jet on the tile then tile->head will now be NULL
|
---|
286 | tile->head = jet->next;
|
---|
287 | } else {
|
---|
288 | // adjust link from previous jet in this tile
|
---|
289 | jet->previous->next = jet->next;
|
---|
290 | }
|
---|
291 | if (jet->next != NULL) {
|
---|
292 | // adjust backwards-link from next jet in this tile
|
---|
293 | jet->next->previous = jet->previous;
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 |
|
---|
298 | //----------------------------------------------------------------------
|
---|
299 | /// output the contents of the tiles
|
---|
300 | void LazyTiling25::_print_tiles(TiledJet * briefjets ) const {
|
---|
301 | for (vector<Tile25>::const_iterator tile = _tiles.begin();
|
---|
302 | tile < _tiles.end(); tile++) {
|
---|
303 | cout << "Tile " << tile - _tiles.begin()
|
---|
304 | << " at " << setw(10) << tile->eta_centre << "," << setw(10) << tile->phi_centre
|
---|
305 | << " = ";
|
---|
306 | vector<int> list;
|
---|
307 | for (TiledJet * jetI = tile->head; jetI != NULL; jetI = jetI->next) {
|
---|
308 | list.push_back(jetI-briefjets);
|
---|
309 | //cout <<" "<<jetI-briefjets;
|
---|
310 | }
|
---|
311 | sort(list.begin(),list.end());
|
---|
312 | for (unsigned int i = 0; i < list.size(); i++) {cout <<" "<<list[i];}
|
---|
313 | cout <<"\n";
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 |
|
---|
318 | //----------------------------------------------------------------------
|
---|
319 | /// Add to the vector tile_union the tiles that are in the neighbourhood
|
---|
320 | /// of the specified tile_index, including itself -- start adding
|
---|
321 | /// from position n_near_tiles-1, and increase n_near_tiles as
|
---|
322 | /// you go along (could have done it more C++ like with vector with reserved
|
---|
323 | /// space, but fear is that it would have been slower, e.g. checking
|
---|
324 | /// for end of vector at each stage to decide whether to resize it)
|
---|
325 | void LazyTiling25::_add_neighbours_to_tile_union(const int tile_index,
|
---|
326 | vector<int> & tile_union, int & n_near_tiles) const {
|
---|
327 | for (Tile25 * const * near_tile = _tiles[tile_index].begin_tiles;
|
---|
328 | near_tile != _tiles[tile_index].end_tiles; near_tile++){
|
---|
329 | // get the tile number
|
---|
330 | tile_union[n_near_tiles] = *near_tile - & _tiles[0];
|
---|
331 | n_near_tiles++;
|
---|
332 | }
|
---|
333 | }
|
---|
334 |
|
---|
335 |
|
---|
336 | //----------------------------------------------------------------------
|
---|
337 | /// Like _add_neighbours_to_tile_union, but only adds neighbours if
|
---|
338 | /// their "tagged" status is false; when a neighbour is added its
|
---|
339 | /// tagged status is set to true.
|
---|
340 | inline void LazyTiling25::_add_untagged_neighbours_to_tile_union(
|
---|
341 | const int tile_index,
|
---|
342 | vector<int> & tile_union, int & n_near_tiles) {
|
---|
343 | for (Tile25 ** near_tile = _tiles[tile_index].begin_tiles;
|
---|
344 | near_tile != _tiles[tile_index].end_tiles; near_tile++){
|
---|
345 | if (! (*near_tile)->tagged) {
|
---|
346 | (*near_tile)->tagged = true;
|
---|
347 | // get the tile number
|
---|
348 | tile_union[n_near_tiles] = *near_tile - & _tiles[0];
|
---|
349 | n_near_tiles++;
|
---|
350 | }
|
---|
351 | }
|
---|
352 | }
|
---|
353 |
|
---|
354 | //----------------------------------------------------------------------
|
---|
355 | /// Like _add_neighbours_to_tile_union, but adds tiles that are
|
---|
356 | /// "neighbours" of a jet (rather than a tile) and only if a
|
---|
357 | /// neighbouring tile's max_NN_dist is >= the distance between the jet
|
---|
358 | /// and the nearest point on the tile. It ignores tiles that have
|
---|
359 | /// already been tagged.
|
---|
360 | inline void LazyTiling25::_add_untagged_neighbours_to_tile_union_using_max_info(
|
---|
361 | const TiledJet * jet,
|
---|
362 | vector<int> & tile_union, int & n_near_tiles) {
|
---|
363 | Tile25 & tile = _tiles[jet->tile_index];
|
---|
364 |
|
---|
365 | for (Tile25 ** near_tile = tile.begin_tiles; near_tile != tile.end_tiles; near_tile++){
|
---|
366 | if ((*near_tile)->tagged) continue;
|
---|
367 | // here we are not allowed to miss a tile due to some rounding
|
---|
368 | // error. We therefore allow for a margin of security
|
---|
369 | double dist = _distance_to_tile(jet, *near_tile) - tile_edge_security_margin;
|
---|
370 | // cout << " max info looked at tile " << *near_tile - &_tiles[0]
|
---|
371 | // << ", dist = " << dist << " " << (*near_tile)->max_NN_dist
|
---|
372 | // << " -> diff = " << dist-(*near_tile)->max_NN_dist << endl;
|
---|
373 | if (dist > (*near_tile)->max_NN_dist) continue;
|
---|
374 |
|
---|
375 | // cout << " max info tagged tile " << *near_tile - &_tiles[0] << endl;
|
---|
376 | (*near_tile)->tagged = true;
|
---|
377 | // get the tile number
|
---|
378 | tile_union[n_near_tiles] = *near_tile - & _tiles[0];
|
---|
379 | n_near_tiles++;
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | ////--------TMPTMPTMPTMPTMP-----GPS TEMP--------------------
|
---|
384 | //ostream & operator<<(ostream & ostr, const TiledJet & jet) {
|
---|
385 | // ostr << "j" << setw(3) << jet._jets_index << ":pt2,rap,phi=" ; ostr.flush();
|
---|
386 | // ostr << jet.kt2 << ","; ostr.flush();
|
---|
387 | // ostr << jet.eta << ","; ostr.flush();
|
---|
388 | // ostr << jet.phi; ostr.flush();
|
---|
389 | // ostr << ", tile=" << jet.tile_index; ostr.flush();
|
---|
390 | // return ostr;
|
---|
391 | //}
|
---|
392 |
|
---|
393 |
|
---|
394 | //----------------------------------------------------------------------
|
---|
395 | /// returns a particle's distance to the edge of the specified tile
|
---|
396 | inline double LazyTiling25::_distance_to_tile(const TiledJet * bj, const Tile25 * tile)
|
---|
397 | #ifdef INSTRUMENT2
|
---|
398 | {
|
---|
399 | _ncall_dtt++; // GPS tmp
|
---|
400 | #else
|
---|
401 | const {
|
---|
402 | #endif // INSTRUMENT2
|
---|
403 | // Note the careful way of checking the minimum potential deta:
|
---|
404 | // unlike the phi case below, we don't calculate the distance to the
|
---|
405 | // centre and subtract spacing/2. This is because of issue of
|
---|
406 | // boundary tiles, which can extend far beyond spacing/2 in eta.
|
---|
407 | // Using the positions of tile centers should instead be safe.
|
---|
408 | double deta;
|
---|
409 | if (_tiles[bj->tile_index].eta_centre == tile->eta_centre) deta = 0;
|
---|
410 | //else deta = std::abs(bj->eta - tile->eta_centre) - 0.5*_tile_size_eta;
|
---|
411 | else deta = std::abs(bj->eta - tile->eta_centre) - _tile_half_size_eta;
|
---|
412 | // ------
|
---|
413 | // |
|
---|
414 | // A | B
|
---|
415 | // ------
|
---|
416 | // |
|
---|
417 | // C | D
|
---|
418 | // ------
|
---|
419 |
|
---|
420 | double dphi = std::abs(bj->phi - tile->phi_centre);
|
---|
421 | if (dphi > pi) dphi = twopi-dphi;
|
---|
422 | dphi -= _tile_half_size_phi;
|
---|
423 | //dphi -= 0.5*_tile_size_phi;
|
---|
424 | if (dphi < 0) dphi = 0;
|
---|
425 |
|
---|
426 | return dphi*dphi + deta*deta;
|
---|
427 | }
|
---|
428 |
|
---|
429 |
|
---|
430 |
|
---|
431 |
|
---|
432 | //----------------------------------------------------------------------
|
---|
433 | /// looks at distance between jetX and jetI and updates the NN
|
---|
434 | /// information if relevant; also pushes identity of jetI onto
|
---|
435 | /// the vector of jets for minheap, to signal that it will have
|
---|
436 | /// to be handled later.
|
---|
437 | ///
|
---|
438 | /// GPS TEMP GPS TMP: REMOVE THIS LATER: EVEN LABELLED AS INLINE, THE
|
---|
439 | /// CALL ADDS A SUBSTANTIAL PENALTY...
|
---|
440 | inline void LazyTiling25::_update_jetX_jetI_NN(TiledJet * jetX, TiledJet * jetI, vector<TiledJet *> & jets_for_minheap) {
|
---|
441 | double dist = _bj_dist(jetI,jetX);
|
---|
442 | if (dist < jetI->NN_dist) {
|
---|
443 | if (jetI != jetX) {
|
---|
444 | jetI->NN_dist = dist;
|
---|
445 | jetI->NN = jetX;
|
---|
446 | // label jetI as needing heap action...
|
---|
447 | if (!jetI->minheap_update_needed()) {
|
---|
448 | jetI->label_minheap_update_needed();
|
---|
449 | jets_for_minheap.push_back(jetI);
|
---|
450 | }
|
---|
451 | }
|
---|
452 | }
|
---|
453 | if (dist < jetX->NN_dist) {
|
---|
454 | if (jetI != jetX) {
|
---|
455 | jetX->NN_dist = dist;
|
---|
456 | jetX->NN = jetI;}
|
---|
457 | }
|
---|
458 | }
|
---|
459 |
|
---|
460 |
|
---|
461 | inline void LazyTiling25::_set_NN(TiledJet * jetI,
|
---|
462 | vector<TiledJet *> & jets_for_minheap) {
|
---|
463 | jetI->NN_dist = _R2;
|
---|
464 | jetI->NN = NULL;
|
---|
465 | // label jetI as needing heap action...
|
---|
466 | if (!jetI->minheap_update_needed()) {
|
---|
467 | jetI->label_minheap_update_needed();
|
---|
468 | jets_for_minheap.push_back(jetI);}
|
---|
469 | // now go over tiles that are neighbours of I (include own tile)
|
---|
470 | Tile25 * tile_ptr = &_tiles[jetI->tile_index];
|
---|
471 | //if (tile_ptr->is_near_zero_phi(_tile_size_phi)) {
|
---|
472 | for (Tile25 ** near_tile = tile_ptr->begin_tiles;
|
---|
473 | near_tile != tile_ptr->end_tiles; near_tile++) {
|
---|
474 | // for own tile, this will be zero automatically: should we be clever
|
---|
475 | // and skip the test? (With some doubling of code?)
|
---|
476 | if (jetI->NN_dist < _distance_to_tile(jetI, *near_tile)) continue;
|
---|
477 | // and then over the contents of that tile
|
---|
478 | for (TiledJet * jetJ = (*near_tile)->head;
|
---|
479 | jetJ != NULL; jetJ = jetJ->next) {
|
---|
480 | double dist = _bj_dist(jetI,jetJ);
|
---|
481 | if (dist < jetI->NN_dist && jetJ != jetI) {
|
---|
482 | jetI->NN_dist = dist; jetI->NN = jetJ;
|
---|
483 | }
|
---|
484 | }
|
---|
485 | }
|
---|
486 | // } else {
|
---|
487 | // // second copy that exploits the fact that for this tile we needn't worry
|
---|
488 | // // about periodicity
|
---|
489 | // for (Tile25 ** near_tile = tile_ptr->begin_tiles;
|
---|
490 | // near_tile != tile_ptr->end_tiles; near_tile++) {
|
---|
491 | // // for own tile, this will be zero automatically: should we be clever
|
---|
492 | // // and skip the test? (With some doubling of code?)
|
---|
493 | // if (jetI->NN_dist < _distance_to_tile(jetI, *near_tile)) continue;
|
---|
494 | // // and then over the contents of that tile
|
---|
495 | // for (TiledJet * jetJ = (*near_tile)->head;
|
---|
496 | // jetJ != NULL; jetJ = jetJ->next) {
|
---|
497 | // double dist = _bj_dist_not_periodic(jetI,jetJ);
|
---|
498 | // if (dist < jetI->NN_dist && jetJ != jetI) {
|
---|
499 | // jetI->NN_dist = dist; jetI->NN = jetJ;
|
---|
500 | // }
|
---|
501 | // }
|
---|
502 | // }
|
---|
503 | // }
|
---|
504 | }
|
---|
505 |
|
---|
506 |
|
---|
507 | void LazyTiling25::run() {
|
---|
508 |
|
---|
509 | //_initialise_tiles();
|
---|
510 |
|
---|
511 | int n = _jets.size();
|
---|
512 | if (n == 0) return;
|
---|
513 |
|
---|
514 | TiledJet * briefjets = new TiledJet[n];
|
---|
515 | TiledJet * jetA = briefjets, * jetB;
|
---|
516 | // avoid warning about uninitialised oldB below;
|
---|
517 | // only valid for n>=1 (hence the test n==0 test above)
|
---|
518 | TiledJet oldB = briefjets[0];
|
---|
519 |
|
---|
520 | // will be used quite deep inside loops, but declare it here so that
|
---|
521 | // memory (de)allocation gets done only once
|
---|
522 | vector<int> tile_union(3*25);
|
---|
523 |
|
---|
524 | // initialise the basic jet info
|
---|
525 | for (int i = 0; i< n; i++) {
|
---|
526 | _tj_set_jetinfo(jetA, i);
|
---|
527 | //cout << i<<": "<<jetA->tile_index<<"\n";
|
---|
528 | jetA++; // move on to next entry of briefjets
|
---|
529 | }
|
---|
530 | TiledJet * head = briefjets; // a nicer way of naming start
|
---|
531 |
|
---|
532 | // set up the initial nearest neighbour information
|
---|
533 | vector<Tile25>::iterator tile;
|
---|
534 | for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
|
---|
535 | // first do it on this tile
|
---|
536 | for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
|
---|
537 | for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
|
---|
538 | double dist = _bj_dist_not_periodic(jetA,jetB);
|
---|
539 | if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
|
---|
540 | if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
|
---|
541 | }
|
---|
542 | }
|
---|
543 | for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
|
---|
544 | if (jetA->NN_dist > tile->max_NN_dist) tile->max_NN_dist = jetA->NN_dist;
|
---|
545 | }
|
---|
546 | }
|
---|
547 | for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
|
---|
548 | if (tile->use_periodic_delta_phi) {
|
---|
549 | // then do it for RH tiles;
|
---|
550 | for (Tile25 ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
|
---|
551 | for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
|
---|
552 | double dist_to_tile = _distance_to_tile(jetA, *RTile);
|
---|
553 | // it only makes sense to do a tile if jetA is close enough to the Rtile
|
---|
554 | // either for a jet in the Rtile to be closer to jetA than it's current NN
|
---|
555 | // or if jetA could be closer to something in the Rtile than the largest
|
---|
556 | // NN distance within the RTile.
|
---|
557 | //
|
---|
558 | // GPS note: also tried approach where we perform only the
|
---|
559 | // first test and run over all surrounding tiles
|
---|
560 | // (not just RH ones). The test is passed less
|
---|
561 | // frequently, but one is running over more tiles
|
---|
562 | // and on balance, for the trial event we used, it's
|
---|
563 | // a bit slower.
|
---|
564 | bool relevant_for_jetA = dist_to_tile <= jetA->NN_dist;
|
---|
565 | bool relevant_for_RTile = dist_to_tile <= (*RTile)->max_NN_dist;
|
---|
566 | if (relevant_for_jetA || relevant_for_RTile) {
|
---|
567 | for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
|
---|
568 | double dist = _bj_dist(jetA,jetB);
|
---|
569 | if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
|
---|
570 | if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
|
---|
571 | }
|
---|
572 | }
|
---|
573 | }
|
---|
574 | }
|
---|
575 | } else {
|
---|
576 | // this second version of the code uses the faster
|
---|
577 | // "not_periodic" version because it knows that the tile is
|
---|
578 | // sufficiently far from the edge.
|
---|
579 | for (Tile25 ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
|
---|
580 | for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
|
---|
581 | double dist_to_tile = _distance_to_tile(jetA, *RTile);
|
---|
582 | bool relevant_for_jetA = dist_to_tile <= jetA->NN_dist;
|
---|
583 | bool relevant_for_RTile = dist_to_tile <= (*RTile)->max_NN_dist;
|
---|
584 | if (relevant_for_jetA || relevant_for_RTile) {
|
---|
585 | for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
|
---|
586 | double dist = _bj_dist_not_periodic(jetA,jetB);
|
---|
587 | if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
|
---|
588 | if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
|
---|
589 | }
|
---|
590 | }
|
---|
591 | }
|
---|
592 | }
|
---|
593 | }
|
---|
594 | // no need to do it for LH tiles, since they are implicitly done
|
---|
595 | // when we set NN for both jetA and jetB on the RH tiles.
|
---|
596 | }
|
---|
597 | // Now update the max_NN_dist within each tile. Not strictly
|
---|
598 | // necessary, because existing max_NN_dist is an upper bound. but
|
---|
599 | // costs little and may give some efficiency gain later.
|
---|
600 | for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
|
---|
601 | tile->max_NN_dist = 0;
|
---|
602 | for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
|
---|
603 | if (jetA->NN_dist > tile->max_NN_dist) tile->max_NN_dist = jetA->NN_dist;
|
---|
604 | }
|
---|
605 | }
|
---|
606 |
|
---|
607 | #ifdef INSTRUMENT2
|
---|
608 | cout << "intermediate ncall, dtt = " << _ncall << " " << _ncall_dtt << endl; // GPS tmp
|
---|
609 | #endif // INSTRUMENT2
|
---|
610 |
|
---|
611 | // GPS debugging
|
---|
612 | // _print_tiles(briefjets);
|
---|
613 | // for (jetB = briefjets; jetB < briefjets+n; jetB++) {
|
---|
614 | // cout << "Tiled jet " << jetB->_jets_index << " has NN " << jetB->NN-briefjets << endl;
|
---|
615 | // }
|
---|
616 |
|
---|
617 | vector<double> diJs(n);
|
---|
618 | for (int i = 0; i < n; i++) {
|
---|
619 | diJs[i] = _bj_diJ(&briefjets[i]);
|
---|
620 | briefjets[i].label_minheap_update_done();
|
---|
621 | }
|
---|
622 | MinHeap minheap(diJs);
|
---|
623 | // have a stack telling us which jets we'll have to update on the heap
|
---|
624 | vector<TiledJet *> jets_for_minheap;
|
---|
625 | jets_for_minheap.reserve(n);
|
---|
626 |
|
---|
627 | // now run the recombination loop
|
---|
628 | int history_location = n-1;
|
---|
629 | while (n > 0) {
|
---|
630 |
|
---|
631 | double diJ_min = minheap.minval() *_invR2;
|
---|
632 | jetA = head + minheap.minloc();
|
---|
633 |
|
---|
634 | // do the recombination between A and B
|
---|
635 | history_location++;
|
---|
636 | jetB = jetA->NN;
|
---|
637 |
|
---|
638 | if (jetB != NULL) {
|
---|
639 | // jet-jet recombination
|
---|
640 | // If necessary relabel A & B to ensure jetB < jetA, that way if
|
---|
641 | // the larger of them == newtail then that ends up being jetA and
|
---|
642 | // the new jet that is added as jetB is inserted in a position that
|
---|
643 | // has a future!
|
---|
644 | if (jetA < jetB) {std::swap(jetA,jetB);}
|
---|
645 |
|
---|
646 | int nn; // new jet index
|
---|
647 | _cs.plugin_record_ij_recombination(jetA->_jets_index, jetB->_jets_index, diJ_min, nn);
|
---|
648 |
|
---|
649 | // what was jetB will now become the new jet
|
---|
650 | _bj_remove_from_tiles(jetA);
|
---|
651 | oldB = * jetB; // take a copy because we will need it...
|
---|
652 | _bj_remove_from_tiles(jetB);
|
---|
653 | _tj_set_jetinfo(jetB, nn); // cause jetB to become _jets[nn]
|
---|
654 | // (also registers the jet in the tiling)
|
---|
655 | } else {
|
---|
656 | // jet-beam recombination
|
---|
657 | // get the hist_index
|
---|
658 | _cs.plugin_record_iB_recombination(jetA->_jets_index, diJ_min);
|
---|
659 | _bj_remove_from_tiles(jetA);
|
---|
660 | }
|
---|
661 |
|
---|
662 | // remove the minheap entry for jetA
|
---|
663 | minheap.remove(jetA-head);
|
---|
664 |
|
---|
665 | int n_near_tiles = 0;
|
---|
666 |
|
---|
667 | // GS comment:
|
---|
668 | //
|
---|
669 | // At this stage, we have perforned the clustering in
|
---|
670 | // ClusterSequence and we need to update the NNs. The objects we
|
---|
671 | // deal with are jetA and oldB (the once that have been clustered)
|
---|
672 | // as well as jetB (the result of the clustering)
|
---|
673 | //
|
---|
674 | // There are two types of objects we need to update:
|
---|
675 | // - find jetB NN
|
---|
676 | // - update the NN of points which had jetA or jetB as their NN
|
---|
677 | //
|
---|
678 | // Wile we find jetB's NN, browsing relevant tiles near jetB, we
|
---|
679 | // also search for points which had jetA or jetB as their
|
---|
680 | // NN. These are tagged. Then we list the relevant tiles where we
|
---|
681 | // can potentially have points to update (i.e. points which had
|
---|
682 | // jetA and oldB as NN) in the yet untagged relevant tiles near
|
---|
683 | // jetA and oldB.
|
---|
684 | //
|
---|
685 | // DEBUG:
|
---|
686 | // if (jetB != NULL) {
|
---|
687 | // cout << "jetA = " << jetA->_jets_index << " (tile " << jetA->tile_index << "), "
|
---|
688 | // << "oldB = " << oldB._jets_index << " (tile " << oldB. tile_index << "), "
|
---|
689 | // << "jetB = " << jetB->_jets_index << " (tile " << jetB->tile_index << ")" << endl;
|
---|
690 | // } else {
|
---|
691 | // cout << "jetA = " << jetA->_jets_index << " (tile " << jetA->tile_index << ")" << endl;
|
---|
692 | // }
|
---|
693 |
|
---|
694 | // Initialise jetB's NN distance as well as updating it for other
|
---|
695 | // particles. While doing so, examine whether jetA or old jetB was
|
---|
696 | // some other particle's NN.
|
---|
697 | if (jetB != NULL) {
|
---|
698 | Tile25 & jetB_tile = _tiles[jetB->tile_index];
|
---|
699 | for (Tile25 ** near_tile = jetB_tile.begin_tiles;
|
---|
700 | near_tile != jetB_tile.end_tiles; near_tile++) {
|
---|
701 |
|
---|
702 | double dist_to_tile = _distance_to_tile(jetB, *near_tile);
|
---|
703 | // use <= in next line so that on first tile, relevant_for_jetB is
|
---|
704 | // set to true
|
---|
705 | bool relevant_for_jetB = dist_to_tile <= jetB->NN_dist;
|
---|
706 | bool relevant_for_near_tile = dist_to_tile <= (*near_tile)->max_NN_dist;
|
---|
707 | bool relevant = relevant_for_jetB || relevant_for_near_tile;
|
---|
708 |
|
---|
709 | // cout << " Relevance of tile " << *near_tile - & _tiles[0]
|
---|
710 | // << " wrt jetB is " << relevant << endl;
|
---|
711 |
|
---|
712 | if (! relevant) continue;
|
---|
713 | // now label this tile as having been considered (so that we
|
---|
714 | // don't go over it again later)
|
---|
715 | tile_union[n_near_tiles] = *near_tile - & _tiles[0];
|
---|
716 | (*near_tile)->tagged = true;
|
---|
717 | n_near_tiles++;
|
---|
718 |
|
---|
719 | // if going over the neighbouring tile's jets, check anyway
|
---|
720 | // whether A or B were nearest neighbours, since it comes at a
|
---|
721 | // modest cost relative to the distance computation (and we would
|
---|
722 | // in most cases have to do it again later anyway).
|
---|
723 | for (TiledJet * jetI = (*near_tile)->head; jetI != NULL; jetI = jetI->next) {
|
---|
724 | if (jetI->NN == jetA || jetI->NN == jetB) _set_NN(jetI, jets_for_minheap);
|
---|
725 | _update_jetX_jetI_NN(jetB, jetI, jets_for_minheap);
|
---|
726 | }
|
---|
727 | }
|
---|
728 | }
|
---|
729 |
|
---|
730 | // first establish the set of tiles over which we are going to
|
---|
731 | // have to run searches for updated and new nearest-neighbours --
|
---|
732 | // basically a combination of vicinity of the tiles of the two old
|
---|
733 | // and one new jet.
|
---|
734 | int n_done_tiles = n_near_tiles;
|
---|
735 | //cout << "Looking at relevant tiles to update for jetA" << endl;
|
---|
736 | _add_untagged_neighbours_to_tile_union_using_max_info(jetA,
|
---|
737 | tile_union, n_near_tiles);
|
---|
738 | if (jetB != NULL) {
|
---|
739 | // cout << "Looking at relevant tiles to update for oldB" << endl;
|
---|
740 | _add_untagged_neighbours_to_tile_union_using_max_info(&oldB,
|
---|
741 | tile_union,n_near_tiles);
|
---|
742 | jetB->label_minheap_update_needed();
|
---|
743 | jets_for_minheap.push_back(jetB);
|
---|
744 | }
|
---|
745 |
|
---|
746 |
|
---|
747 | // first untag the tiles we have already dealt with
|
---|
748 | for (int itile = 0; itile < n_done_tiles; itile++) {
|
---|
749 | _tiles[tile_union[itile]].tagged = false;
|
---|
750 | }
|
---|
751 | // now run over the tiles that were tagged earlier and that we haven't yet
|
---|
752 | // had a change to visit.
|
---|
753 | for (int itile = n_done_tiles; itile < n_near_tiles; itile++) {
|
---|
754 | Tile25 * tile_ptr = &_tiles[tile_union[itile]];
|
---|
755 | tile_ptr->tagged = false;
|
---|
756 | // run over all jets in the current tile
|
---|
757 | for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
|
---|
758 | // see if jetI had jetA or jetB as a NN -- if so recalculate the NN
|
---|
759 | if (jetI->NN == jetA || (jetI->NN == jetB && jetB != NULL)) {
|
---|
760 | _set_NN(jetI, jets_for_minheap);
|
---|
761 | }
|
---|
762 | }
|
---|
763 | }
|
---|
764 |
|
---|
765 | // deal with jets whose minheap entry needs updating
|
---|
766 | //if (verbose) cout << " jets whose NN was modified: " << endl;
|
---|
767 | while (jets_for_minheap.size() > 0) {
|
---|
768 | TiledJet * jetI = jets_for_minheap.back();
|
---|
769 | jets_for_minheap.pop_back();
|
---|
770 | minheap.update(jetI-head, _bj_diJ(jetI));
|
---|
771 | jetI->label_minheap_update_done();
|
---|
772 | // handle max_NN_dist update for all jets that might have
|
---|
773 | // seen a change (increase) of distance
|
---|
774 | Tile25 & tile_I = _tiles[jetI->tile_index];
|
---|
775 | if (tile_I.max_NN_dist < jetI->NN_dist) tile_I.max_NN_dist = jetI->NN_dist;
|
---|
776 | }
|
---|
777 | n--;
|
---|
778 | }
|
---|
779 |
|
---|
780 | // final cleaning up;
|
---|
781 | delete[] briefjets;
|
---|
782 | #ifdef INSTRUMENT2
|
---|
783 | cout << "ncall, dtt = " << _ncall << " " << _ncall_dtt << endl; // GPS tmp
|
---|
784 | #endif // INSTRUMENT2
|
---|
785 |
|
---|
786 | }
|
---|
787 |
|
---|
788 | FASTJET_END_NAMESPACE
|
---|