Fork me on GitHub

source: git/external/fastjet/ClusterSequence_TiledN2.cc@ 5862d1f

Last change on this file since 5862d1f was cb80e6f, checked in by Pavel Demin <pavel.demin@…>, 4 years ago

update FastJet library to 3.3.4 and FastJet Contrib library to 1.045

  • Property mode set to 100644
File size: 34.7 KB
Line 
1//FJSTARTHEADER
2// $Id: ClusterSequence_TiledN2.cc 4442 2020-05-05 07:50:11Z soyez $
3//
4// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
5//
6//----------------------------------------------------------------------
7// This file is part of FastJet.
8//
9// FastJet is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 2 of the License, or
12// (at your option) any later version.
13//
14// The algorithms that underlie FastJet have required considerable
15// development. They are described in the original FastJet paper,
16// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
17// FastJet as part of work towards a scientific publication, please
18// quote the version you use and include a citation to the manual and
19// optionally also to hep-ph/0512210.
20//
21// FastJet is distributed in the hope that it will be useful,
22// but WITHOUT ANY WARRANTY; without even the implied warranty of
23// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24// GNU General Public License for more details.
25//
26// You should have received a copy of the GNU General Public License
27// along with FastJet. If not, see <http://www.gnu.org/licenses/>.
28//----------------------------------------------------------------------
29//FJENDHEADER
30
31
32// The tiled N^2 part of the ClusterSequence class -- separated out
33// from the rest of the class implementation so as to speed up
34// compilation of this particular part while it is under test.
35
36#include<iostream>
37#include<vector>
38#include<cmath>
39#include<algorithm>
40#include "fastjet/PseudoJet.hh"
41#include "fastjet/ClusterSequence.hh"
42#include "fastjet/internal/MinHeap.hh"
43#include "fastjet/internal/TilingExtent.hh"
44
45FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
46
47using namespace std;
48
49
50//----------------------------------------------------------------------
51void ClusterSequence::_bj_remove_from_tiles(TiledJet * const jet) {
52 Tile * tile = & _tiles[jet->tile_index];
53
54 if (jet->previous == NULL) {
55 // we are at head of the tile, so reset it.
56 // If this was the only jet on the tile then tile->head will now be NULL
57 tile->head = jet->next;
58 } else {
59 // adjust link from previous jet in this tile
60 jet->previous->next = jet->next;
61 }
62 if (jet->next != NULL) {
63 // adjust backwards-link from next jet in this tile
64 jet->next->previous = jet->previous;
65 }
66}
67
68//----------------------------------------------------------------------
69/// Set up the tiles:
70/// - decide the range in eta
71/// - allocate the tiles
72/// - set up the cross-referencing info between tiles
73///
74/// The neighbourhood of a tile is set up as follows
75///
76/// LRR
77/// LXR
78/// LLR
79///
80/// such that tiles is an array containing XLLLLRRRR with pointers
81/// | \ RH_tiles
82/// \ surrounding_tiles
83///
84/// with appropriate precautions when close to the edge of the tiled
85/// region.
86///
87void ClusterSequence::_initialise_tiles() {
88
89 // first decide tile sizes (with a lower bound to avoid huge memory use with
90 // very small R)
91 double default_size = max(0.1,_Rparam);
92 _tile_size_eta = default_size;
93 // it makes no sense to go below 3 tiles in phi -- 3 tiles is
94 // sufficient to make sure all pair-wise combinations up to pi in
95 // phi are possible
96 _n_tiles_phi = max(3,int(floor(twopi/default_size)));
97 _tile_size_phi = twopi / _n_tiles_phi; // >= _Rparam and fits in 2pi
98
99 TilingExtent tiling_analysis(*this);
100 _tiles_eta_min = tiling_analysis.minrap();
101 _tiles_eta_max = tiling_analysis.maxrap();
102
103 // // always include zero rapidity in the tiling region
104 // _tiles_eta_min = 0.0;
105 // _tiles_eta_max = 0.0;
106 // // but go no further than following
107 // const double maxrap = 7.0;
108 //
109 // // and find out how much further one should go
110 // for(unsigned int i = 0; i < _jets.size(); i++) {
111 // double eta = _jets[i].rap();
112 // // first check if eta is in range -- to avoid taking into account
113 // // very spurious rapidities due to particles with near-zero kt.
114 // if (abs(eta) < maxrap) {
115 // if (eta < _tiles_eta_min) {_tiles_eta_min = eta;}
116 // if (eta > _tiles_eta_max) {_tiles_eta_max = eta;}
117 // }
118 // }
119
120 // now adjust the values
121 _tiles_ieta_min = int(floor(_tiles_eta_min/_tile_size_eta));
122 _tiles_ieta_max = int(floor( _tiles_eta_max/_tile_size_eta));
123 _tiles_eta_min = _tiles_ieta_min * _tile_size_eta;
124 _tiles_eta_max = _tiles_ieta_max * _tile_size_eta;
125
126 // allocate the tiles
127 _tiles.resize((_tiles_ieta_max-_tiles_ieta_min+1)*_n_tiles_phi);
128
129 // now set up the cross-referencing between tiles
130 for (int ieta = _tiles_ieta_min; ieta <= _tiles_ieta_max; ieta++) {
131 for (int iphi = 0; iphi < _n_tiles_phi; iphi++) {
132 Tile * tile = & _tiles[_tile_index(ieta,iphi)];
133 // no jets in this tile yet
134 tile->head = NULL; // first element of tiles points to itself
135 tile->begin_tiles[0] = tile;
136 Tile ** pptile = & (tile->begin_tiles[0]);
137 pptile++;
138 //
139 // set up L's in column to the left of X
140 tile->surrounding_tiles = pptile;
141 if (ieta > _tiles_ieta_min) {
142 // with the itile subroutine, we can safely run tiles from
143 // idphi=-1 to idphi=+1, because it takes care of
144 // negative and positive boundaries
145 for (int idphi = -1; idphi <=+1; idphi++) {
146 *pptile = & _tiles[_tile_index(ieta-1,iphi+idphi)];
147 pptile++;
148 }
149 }
150 // now set up last L (below X)
151 *pptile = & _tiles[_tile_index(ieta,iphi-1)];
152 pptile++;
153 // set up first R (above X)
154 tile->RH_tiles = pptile;
155 *pptile = & _tiles[_tile_index(ieta,iphi+1)];
156 pptile++;
157 // set up remaining R's, to the right of X
158 if (ieta < _tiles_ieta_max) {
159 for (int idphi = -1; idphi <= +1; idphi++) {
160 *pptile = & _tiles[_tile_index(ieta+1,iphi+idphi)];
161 pptile++;
162 }
163 }
164 // now put semaphore for end tile
165 tile->end_tiles = pptile;
166 // finally make sure tiles are untagged
167 tile->tagged = false;
168 }
169 }
170
171}
172
173
174//----------------------------------------------------------------------
175/// return the tile index corresponding to the given eta,phi point
176int ClusterSequence::_tile_index(const double eta, const double phi) const {
177 int ieta, iphi;
178 if (eta <= _tiles_eta_min) {ieta = 0;}
179 else if (eta >= _tiles_eta_max) {ieta = _tiles_ieta_max-_tiles_ieta_min;}
180 else {
181 //ieta = int(floor((eta - _tiles_eta_min) / _tile_size_eta));
182 ieta = int(((eta - _tiles_eta_min) / _tile_size_eta));
183 // following needed in case of rare but nasty rounding errors
184 if (ieta > _tiles_ieta_max-_tiles_ieta_min) {
185 ieta = _tiles_ieta_max-_tiles_ieta_min;}
186 }
187 // allow for some extent of being beyond range in calculation of phi
188 // as well
189 //iphi = (int(floor(phi/_tile_size_phi)) + _n_tiles_phi) % _n_tiles_phi;
190 // with just int and no floor, things run faster but beware
191 iphi = int((phi+twopi)/_tile_size_phi) % _n_tiles_phi;
192 return (iphi + ieta * _n_tiles_phi);
193}
194
195
196//----------------------------------------------------------------------
197// overloaded version which additionally sets up information regarding the
198// tiling
199inline void ClusterSequence::_tj_set_jetinfo( TiledJet * const jet,
200 const int _jets_index) {
201 // first call the generic setup
202 _bj_set_jetinfo<>(jet, _jets_index);
203
204 // Then do the setup specific to the tiled case.
205
206 // Find out which tile it belonds to
207 jet->tile_index = _tile_index(jet->eta, jet->phi);
208
209 // Insert it into the tile's linked list of jets
210 Tile * tile = &_tiles[jet->tile_index];
211 jet->previous = NULL;
212 jet->next = tile->head;
213 if (jet->next != NULL) {jet->next->previous = jet;}
214 tile->head = jet;
215}
216
217
218//----------------------------------------------------------------------
219/// output the contents of the tiles
220void ClusterSequence::_print_tiles(TiledJet * briefjets ) const {
221 for (vector<Tile>::const_iterator tile = _tiles.begin();
222 tile < _tiles.end(); tile++) {
223 cout << "Tile " << tile - _tiles.begin()<<" = ";
224 vector<int> list;
225 for (TiledJet * jetI = tile->head; jetI != NULL; jetI = jetI->next) {
226 list.push_back(jetI-briefjets);
227 //cout <<" "<<jetI-briefjets;
228 }
229 sort(list.begin(),list.end());
230 for (unsigned int i = 0; i < list.size(); i++) {cout <<" "<<list[i];}
231 cout <<"\n";
232 }
233}
234
235
236//----------------------------------------------------------------------
237/// Add to the vector tile_union the tiles that are in the neighbourhood
238/// of the specified tile_index, including itself -- start adding
239/// from position n_near_tiles-1, and increase n_near_tiles as
240/// you go along (could have done it more C++ like with vector with reserved
241/// space, but fear is that it would have been slower, e.g. checking
242/// for end of vector at each stage to decide whether to resize it)
243void ClusterSequence::_add_neighbours_to_tile_union(const int tile_index,
244 vector<int> & tile_union, int & n_near_tiles) const {
245 for (Tile * const * near_tile = _tiles[tile_index].begin_tiles;
246 near_tile != _tiles[tile_index].end_tiles; near_tile++){
247 // get the tile number
248 tile_union[n_near_tiles] = *near_tile - & _tiles[0];
249 n_near_tiles++;
250 }
251}
252
253
254//----------------------------------------------------------------------
255/// Like _add_neighbours_to_tile_union, but only adds neighbours if
256/// their "tagged" status is false; when a neighbour is added its
257/// tagged status is set to true.
258///
259/// Note that with a high level of warnings (-pedantic -Wextra -ansi,
260/// gcc complains about tile_index maybe being used uninitialised for
261/// oldB in ClusterSequence::_minheap_faster_tiled_N2_cluster(). We
262/// have explicitly checked that it was harmless so we could disable
263/// the gcc warning by hand using the construct below
264///
265/// #pragma GCC diagnostic push
266/// #pragma GCC diagnostic ignored "-Wpragmas"
267/// #pragma GCC diagnostic ignored "-Wuninitialized"
268/// #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
269/// ...
270/// #pragma GCC diagnostic pop
271///
272/// the @GCC diagnostic push/pop directive was only introduced in
273/// gcc-4.6, so for broader usage, we'd need to insert #pragma GCC
274/// diagnostic ignored "-Wpragmas" at the top of this file
275inline void ClusterSequence::_add_untagged_neighbours_to_tile_union(
276 const int tile_index,
277 vector<int> & tile_union, int & n_near_tiles) {
278 for (Tile ** near_tile = _tiles[tile_index].begin_tiles;
279 near_tile != _tiles[tile_index].end_tiles; near_tile++){
280 if (! (*near_tile)->tagged) {
281 (*near_tile)->tagged = true;
282 // get the tile number
283 tile_union[n_near_tiles] = *near_tile - & _tiles[0];
284 n_near_tiles++;
285 }
286 }
287}
288
289
290//----------------------------------------------------------------------
291/// run a tiled clustering
292void ClusterSequence::_tiled_N2_cluster() {
293
294 _initialise_tiles();
295
296 int n = _jets.size();
297 TiledJet * briefjets = new TiledJet[n];
298 TiledJet * jetA = briefjets, * jetB;
299 TiledJet oldB;
300 oldB.tile_index=0; // prevents a gcc warning
301
302 // will be used quite deep inside loops, but declare it here so that
303 // memory (de)allocation gets done only once
304 vector<int> tile_union(3*n_tile_neighbours);
305
306 // initialise the basic jet info
307 for (int i = 0; i< n; i++) {
308 _tj_set_jetinfo(jetA, i);
309 //cout << i<<": "<<jetA->tile_index<<"\n";
310 jetA++; // move on to next entry of briefjets
311 }
312 TiledJet * tail = jetA; // a semaphore for the end of briefjets
313 TiledJet * head = briefjets; // a nicer way of naming start
314
315 // set up the initial nearest neighbour information
316 vector<Tile>::const_iterator tile;
317 for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
318 // first do it on this tile
319 for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
320 for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
321 double dist = _bj_dist(jetA,jetB);
322 if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
323 if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
324 }
325 }
326 // then do it for RH tiles
327 for (Tile ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
328 for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
329 for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
330 double dist = _bj_dist(jetA,jetB);
331 if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
332 if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
333 }
334 }
335 }
336 }
337
338 // now create the diJ (where J is i's NN) table -- remember that
339 // we differ from standard normalisation here by a factor of R2
340 double * diJ = new double[n];
341 jetA = head;
342 for (int i = 0; i < n; i++) {
343 diJ[i] = _bj_diJ(jetA);
344 jetA++; // have jetA follow i
345 }
346
347 // now run the recombination loop
348 int history_location = n-1;
349 while (tail != head) {
350
351 // find the minimum of the diJ on this round
352 double diJ_min = diJ[0];
353 int diJ_min_jet = 0;
354 for (int i = 1; i < n; i++) {
355 if (diJ[i] < diJ_min) {diJ_min_jet = i; diJ_min = diJ[i];}
356 }
357
358 // do the recombination between A and B
359 history_location++;
360 jetA = & briefjets[diJ_min_jet];
361 jetB = jetA->NN;
362 // put the normalisation back in
363 diJ_min *= _invR2;
364
365 //if (n == 19) {cout << "Hello "<<jetA-head<<" "<<jetB-head<<"\n";}
366
367 //cout <<" WILL RECOMBINE "<< jetA-briefjets<<" "<<jetB-briefjets<<"\n";
368
369 if (jetB != NULL) {
370 // jet-jet recombination
371 // If necessary relabel A & B to ensure jetB < jetA, that way if
372 // the larger of them == newtail then that ends up being jetA and
373 // the new jet that is added as jetB is inserted in a position that
374 // has a future!
375 if (jetA < jetB) {std::swap(jetA,jetB);}
376
377 int nn; // new jet index
378 _do_ij_recombination_step(jetA->_jets_index, jetB->_jets_index, diJ_min, nn);
379
380 //OBS// get the two history indices
381 //OBSint hist_a = _jets[jetA->_jets_index].cluster_hist_index();
382 //OBSint hist_b = _jets[jetB->_jets_index].cluster_hist_index();
383 //OBS// create the recombined jet
384 //OBS_jets.push_back(_jets[jetA->_jets_index] + _jets[jetB->_jets_index]);
385 //OBSint nn = _jets.size() - 1;
386 //OBS_jets[nn].set_cluster_hist_index(history_location);
387 //OBS// update history
388 //OBS//cout <<n-1<<" "<<jetA-head<<" "<<jetB-head<<"; ";
389 //OBS_add_step_to_history(history_location,
390 //OBS min(hist_a,hist_b),max(hist_a,hist_b),
391 //OBS nn, diJ_min);
392
393 // what was jetB will now become the new jet
394 _bj_remove_from_tiles(jetA);
395 oldB = * jetB; // take a copy because we will need it...
396 _bj_remove_from_tiles(jetB);
397 _tj_set_jetinfo(jetB, nn); // also registers the jet in the tiling
398 } else {
399 // jet-beam recombination
400 _do_iB_recombination_step(jetA->_jets_index, diJ_min);
401
402 //OBS// get the hist_index
403 //OBSint hist_a = _jets[jetA->_jets_index].cluster_hist_index();
404 //OBS//cout <<n-1<<" "<<jetA-head<<" "<<-1<<"; ";
405 //OBS_add_step_to_history(history_location,hist_a,BeamJet,Invalid,diJ_min);
406 _bj_remove_from_tiles(jetA);
407 }
408
409 // first establish the set of tiles over which we are going to
410 // have to run searches for updated and new nearest-neighbours
411 int n_near_tiles = 0;
412 _add_neighbours_to_tile_union(jetA->tile_index, tile_union, n_near_tiles);
413 if (jetB != NULL) {
414 bool sort_it = false;
415 if (jetB->tile_index != jetA->tile_index) {
416 sort_it = true;
417 _add_neighbours_to_tile_union(jetB->tile_index,tile_union,n_near_tiles);
418 }
419 if (oldB.tile_index != jetA->tile_index &&
420 oldB.tile_index != jetB->tile_index) {
421 sort_it = true;
422 _add_neighbours_to_tile_union(oldB.tile_index,tile_union,n_near_tiles);
423 }
424
425 if (sort_it) {
426 // sort the tiles before then compressing the list
427 sort(tile_union.begin(), tile_union.begin()+n_near_tiles);
428 // and now condense the list
429 int nnn = 1;
430 for (int i = 1; i < n_near_tiles; i++) {
431 if (tile_union[i] != tile_union[nnn-1]) {
432 tile_union[nnn] = tile_union[i];
433 nnn++;
434 }
435 }
436 n_near_tiles = nnn;
437 }
438 }
439
440 // now update our nearest neighbour info and diJ table
441 // first reduce size of table
442 tail--; n--;
443 if (jetA == tail) {
444 // there is nothing to be done
445 } else {
446 // Copy last jet contents and diJ info into position of jetA
447 *jetA = *tail;
448 diJ[jetA - head] = diJ[tail-head];
449 // IN the tiling fix pointers to tail and turn them into
450 // pointers to jetA (from predecessors, successors and the tile
451 // head if need be)
452 if (jetA->previous == NULL) {
453 _tiles[jetA->tile_index].head = jetA;
454 } else {
455 jetA->previous->next = jetA;
456 }
457 if (jetA->next != NULL) {jetA->next->previous = jetA;}
458 }
459
460 // Initialise jetB's NN distance as well as updating it for
461 // other particles.
462 for (int itile = 0; itile < n_near_tiles; itile++) {
463 Tile * tile_ptr = &_tiles[tile_union[itile]];
464 for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
465 // see if jetI had jetA or jetB as a NN -- if so recalculate the NN
466 if (jetI->NN == jetA || (jetI->NN == jetB && jetB != NULL)) {
467 jetI->NN_dist = _R2;
468 jetI->NN = NULL;
469 // now go over tiles that are neighbours of I (include own tile)
470 for (Tile ** near_tile = tile_ptr->begin_tiles;
471 near_tile != tile_ptr->end_tiles; near_tile++) {
472 // and then over the contents of that tile
473 for (TiledJet * jetJ = (*near_tile)->head;
474 jetJ != NULL; jetJ = jetJ->next) {
475 double dist = _bj_dist(jetI,jetJ);
476 if (dist < jetI->NN_dist && jetJ != jetI) {
477 jetI->NN_dist = dist; jetI->NN = jetJ;
478 }
479 }
480 }
481 diJ[jetI-head] = _bj_diJ(jetI); // update diJ
482 }
483 // check whether new jetB is closer than jetI's current NN and
484 // if need to update things
485 if (jetB != NULL) {
486 double dist = _bj_dist(jetI,jetB);
487 if (dist < jetI->NN_dist) {
488 if (jetI != jetB) {
489 jetI->NN_dist = dist;
490 jetI->NN = jetB;
491 diJ[jetI-head] = _bj_diJ(jetI); // update diJ...
492 }
493 }
494 if (dist < jetB->NN_dist) {
495 if (jetI != jetB) {
496 jetB->NN_dist = dist;
497 jetB->NN = jetI;}
498 }
499 }
500 }
501 }
502
503
504 if (jetB != NULL) {diJ[jetB-head] = _bj_diJ(jetB);}
505 //cout << n<<" "<<briefjets[95].NN-briefjets<<" "<<briefjets[95].NN_dist <<"\n";
506
507 // remember to update pointers to tail
508 for (Tile ** near_tile = _tiles[tail->tile_index].begin_tiles;
509 near_tile!= _tiles[tail->tile_index].end_tiles; near_tile++){
510 // and then the contents of that tile
511 for (TiledJet * jetJ = (*near_tile)->head;
512 jetJ != NULL; jetJ = jetJ->next) {
513 if (jetJ->NN == tail) {jetJ->NN = jetA;}
514 }
515 }
516
517 //for (int i = 0; i < n; i++) {
518 // if (briefjets[i].NN-briefjets >= n && briefjets[i].NN != NULL) {cout <<"YOU MUST BE CRAZY for n ="<<n<<", i = "<<i<<", NN = "<<briefjets[i].NN-briefjets<<"\n";}
519 //}
520
521
522 if (jetB != NULL) {diJ[jetB-head] = _bj_diJ(jetB);}
523 //cout << briefjets[95].NN-briefjets<<" "<<briefjets[95].NN_dist <<"\n";
524
525 }
526
527 // final cleaning up;
528 delete[] diJ;
529 delete[] briefjets;
530}
531
532
533//----------------------------------------------------------------------
534/// run a tiled clustering
535void ClusterSequence::_faster_tiled_N2_cluster() {
536
537 _initialise_tiles();
538
539 int n = _jets.size();
540 TiledJet * briefjets = new TiledJet[n];
541 TiledJet * jetA = briefjets, * jetB;
542 TiledJet oldB;
543 oldB.tile_index=0; // prevents a gcc warning
544
545 // will be used quite deep inside loops, but declare it here so that
546 // memory (de)allocation gets done only once
547 vector<int> tile_union(3*n_tile_neighbours);
548
549 // initialise the basic jet info
550 for (int i = 0; i< n; i++) {
551 _tj_set_jetinfo(jetA, i);
552 //cout << i<<": "<<jetA->tile_index<<"\n";
553 jetA++; // move on to next entry of briefjets
554 }
555 TiledJet * head = briefjets; // a nicer way of naming start
556
557 // set up the initial nearest neighbour information
558 vector<Tile>::const_iterator tile;
559 for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
560 // first do it on this tile
561 for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
562 for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
563 double dist = _bj_dist(jetA,jetB);
564 if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
565 if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
566 }
567 }
568 // then do it for RH tiles
569 for (Tile ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
570 for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
571 for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
572 double dist = _bj_dist(jetA,jetB);
573 if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
574 if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
575 }
576 }
577 }
578 // no need to do it for LH tiles, since they are implicitly done
579 // when we set NN for both jetA and jetB on the RH tiles.
580 }
581
582 // now create the diJ (where J is i's NN) table -- remember that
583 // we differ from standard normalisation here by a factor of R2
584 // (corrected for at the end).
585 struct diJ_plus_link {
586 double diJ; // the distance
587 TiledJet * jet; // the jet (i) for which we've found this distance
588 // (whose NN will the J).
589 };
590 diJ_plus_link * diJ = new diJ_plus_link[n];
591 jetA = head;
592 for (int i = 0; i < n; i++) {
593 diJ[i].diJ = _bj_diJ(jetA); // kt distance * R^2
594 diJ[i].jet = jetA; // our compact diJ table will not be in
595 jetA->diJ_posn = i; // one-to-one corresp. with non-compact jets,
596 // so set up bi-directional correspondence here.
597 jetA++; // have jetA follow i
598 }
599
600 // now run the recombination loop
601 int history_location = n-1;
602 while (n > 0) {
603
604 // find the minimum of the diJ on this round
605 diJ_plus_link * best, *stop; // pointers a bit faster than indices
606 // could use best to keep track of diJ min, but it turns out to be
607 // marginally faster to have a separate variable (avoids n
608 // dereferences at the expense of n/2 assignments).
609 double diJ_min = diJ[0].diJ; // initialise the best one here.
610 best = diJ; // and here
611 stop = diJ+n;
612 for (diJ_plus_link * here = diJ+1; here != stop; here++) {
613 if (here->diJ < diJ_min) {best = here; diJ_min = here->diJ;}
614 }
615
616 // do the recombination between A and B
617 history_location++;
618 jetA = best->jet;
619 jetB = jetA->NN;
620 // put the normalisation back in
621 diJ_min *= _invR2;
622
623 if (jetB != NULL) {
624 // jet-jet recombination
625 // If necessary relabel A & B to ensure jetB < jetA, that way if
626 // the larger of them == newtail then that ends up being jetA and
627 // the new jet that is added as jetB is inserted in a position that
628 // has a future!
629 if (jetA < jetB) {std::swap(jetA,jetB);}
630
631 int nn; // new jet index
632 _do_ij_recombination_step(jetA->_jets_index, jetB->_jets_index, diJ_min, nn);
633
634 //OBS// get the two history indices
635 //OBSint ihstry_a = _jets[jetA->_jets_index].cluster_hist_index();
636 //OBSint ihstry_b = _jets[jetB->_jets_index].cluster_hist_index();
637 //OBS// create the recombined jet
638 //OBS_jets.push_back(_jets[jetA->_jets_index] + _jets[jetB->_jets_index]);
639 //OBSint nn = _jets.size() - 1;
640 //OBS_jets[nn].set_cluster_hist_index(history_location);
641 //OBS// update history
642 //OBS//cout <<n-1<<" "<<jetA-head<<" "<<jetB-head<<"; ";
643 //OBS_add_step_to_history(history_location,
644 //OBS min(ihstry_a,ihstry_b),max(ihstry_a,ihstry_b),
645 //OBS nn, diJ_min);
646 // what was jetB will now become the new jet
647 _bj_remove_from_tiles(jetA);
648 oldB = * jetB; // take a copy because we will need it...
649 _bj_remove_from_tiles(jetB);
650 _tj_set_jetinfo(jetB, nn); // cause jetB to become _jets[nn]
651 // (also registers the jet in the tiling)
652 } else {
653 // jet-beam recombination
654 // get the hist_index
655 _do_iB_recombination_step(jetA->_jets_index, diJ_min);
656 //OBSint ihstry_a = _jets[jetA->_jets_index].cluster_hist_index();
657 //OBS//cout <<n-1<<" "<<jetA-head<<" "<<-1<<"; ";
658 //OBS_add_step_to_history(history_location,ihstry_a,BeamJet,Invalid,diJ_min);
659 _bj_remove_from_tiles(jetA);
660 }
661
662 // first establish the set of tiles over which we are going to
663 // have to run searches for updated and new nearest-neighbours --
664 // basically a combination of vicinity of the tiles of the two old
665 // and one new jet.
666 int n_near_tiles = 0;
667 _add_untagged_neighbours_to_tile_union(jetA->tile_index,
668 tile_union, n_near_tiles);
669 if (jetB != NULL) {
670 if (jetB->tile_index != jetA->tile_index) {
671 _add_untagged_neighbours_to_tile_union(jetB->tile_index,
672 tile_union,n_near_tiles);
673 }
674 if (oldB.tile_index != jetA->tile_index &&
675 oldB.tile_index != jetB->tile_index) {
676 _add_untagged_neighbours_to_tile_union(oldB.tile_index,
677 tile_union,n_near_tiles);
678 }
679 }
680
681 // now update our nearest neighbour info and diJ table
682 // first reduce size of table
683 n--;
684 // then compactify the diJ by taking the last of the diJ and copying
685 // it to the position occupied by the diJ for jetA
686 diJ[n].jet->diJ_posn = jetA->diJ_posn;
687 diJ[jetA->diJ_posn] = diJ[n];
688
689 // Initialise jetB's NN distance as well as updating it for
690 // other particles.
691 // Run over all tiles in our union
692 for (int itile = 0; itile < n_near_tiles; itile++) {
693 Tile * tile_ptr = &_tiles[tile_union[itile]];
694 tile_ptr->tagged = false; // reset tag, since we're done with unions
695 // run over all jets in the current tile
696 for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
697 // see if jetI had jetA or jetB as a NN -- if so recalculate the NN
698 if (jetI->NN == jetA || (jetI->NN == jetB && jetB != NULL)) {
699 jetI->NN_dist = _R2;
700 jetI->NN = NULL;
701 // now go over tiles that are neighbours of I (include own tile)
702 for (Tile ** near_tile = tile_ptr->begin_tiles;
703 near_tile != tile_ptr->end_tiles; near_tile++) {
704 // and then over the contents of that tile
705 for (TiledJet * jetJ = (*near_tile)->head;
706 jetJ != NULL; jetJ = jetJ->next) {
707 double dist = _bj_dist(jetI,jetJ);
708 if (dist < jetI->NN_dist && jetJ != jetI) {
709 jetI->NN_dist = dist; jetI->NN = jetJ;
710 }
711 }
712 }
713 diJ[jetI->diJ_posn].diJ = _bj_diJ(jetI); // update diJ kt-dist
714 }
715 // check whether new jetB is closer than jetI's current NN and
716 // if jetI is closer than jetB's current (evolving) nearest
717 // neighbour. Where relevant update things
718 if (jetB != NULL) {
719 double dist = _bj_dist(jetI,jetB);
720 if (dist < jetI->NN_dist) {
721 if (jetI != jetB) {
722 jetI->NN_dist = dist;
723 jetI->NN = jetB;
724 diJ[jetI->diJ_posn].diJ = _bj_diJ(jetI); // update diJ...
725 }
726 }
727 if (dist < jetB->NN_dist) {
728 if (jetI != jetB) {
729 jetB->NN_dist = dist;
730 jetB->NN = jetI;}
731 }
732 }
733 }
734 }
735
736 // finally, register the updated kt distance for B
737 if (jetB != NULL) {diJ[jetB->diJ_posn].diJ = _bj_diJ(jetB);}
738
739 }
740
741 // final cleaning up;
742 delete[] diJ;
743 delete[] briefjets;
744}
745
746//----------------------------------------------------------------------
747/// run a tiled clustering, with our minheap for keeping track of the
748/// smallest dij
749void ClusterSequence::_minheap_faster_tiled_N2_cluster() {
750
751 _initialise_tiles();
752
753 int n = _jets.size();
754 TiledJet * briefjets = new TiledJet[n];
755 TiledJet * jetA = briefjets, * jetB;
756 TiledJet oldB;
757 oldB.tile_index=0; // prevents a gcc warning
758
759 // will be used quite deep inside loops, but declare it here so that
760 // memory (de)allocation gets done only once
761 vector<int> tile_union(3*n_tile_neighbours);
762
763 // initialise the basic jet info
764 for (int i = 0; i< n; i++) {
765 _tj_set_jetinfo(jetA, i);
766 //cout << i<<": "<<jetA->tile_index<<"\n";
767 jetA++; // move on to next entry of briefjets
768 }
769 TiledJet * head = briefjets; // a nicer way of naming start
770
771 // set up the initial nearest neighbour information
772 vector<Tile>::const_iterator tile;
773 for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
774 // first do it on this tile
775 for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
776 for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
777 double dist = _bj_dist(jetA,jetB);
778 if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
779 if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
780 }
781 }
782 // then do it for RH tiles
783 for (Tile ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
784 for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
785 for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
786 double dist = _bj_dist(jetA,jetB);
787 if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
788 if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
789 }
790 }
791 }
792 // no need to do it for LH tiles, since they are implicitly done
793 // when we set NN for both jetA and jetB on the RH tiles.
794 }
795
796
797 //// now create the diJ (where J is i's NN) table -- remember that
798 //// we differ from standard normalisation here by a factor of R2
799 //// (corrected for at the end).
800 //struct diJ_plus_link {
801 // double diJ; // the distance
802 // TiledJet * jet; // the jet (i) for which we've found this distance
803 // // (whose NN will the J).
804 //};
805 //diJ_plus_link * diJ = new diJ_plus_link[n];
806 //jetA = head;
807 //for (int i = 0; i < n; i++) {
808 // diJ[i].diJ = _bj_diJ(jetA); // kt distance * R^2
809 // diJ[i].jet = jetA; // our compact diJ table will not be in
810 // jetA->diJ_posn = i; // one-to-one corresp. with non-compact jets,
811 // // so set up bi-directional correspondence here.
812 // jetA++; // have jetA follow i
813 //}
814
815 vector<double> diJs(n);
816 for (int i = 0; i < n; i++) {
817 diJs[i] = _bj_diJ(&briefjets[i]);
818 briefjets[i].label_minheap_update_done();
819 }
820 MinHeap minheap(diJs);
821 // have a stack telling us which jets we'll have to update on the heap
822 vector<TiledJet *> jets_for_minheap;
823 jets_for_minheap.reserve(n);
824
825 // now run the recombination loop
826 int history_location = n-1;
827 while (n > 0) {
828
829 double diJ_min = minheap.minval() *_invR2;
830 jetA = head + minheap.minloc();
831
832 // do the recombination between A and B
833 history_location++;
834 jetB = jetA->NN;
835
836 if (jetB != NULL) {
837 // jet-jet recombination
838 // If necessary relabel A & B to ensure jetB < jetA, that way if
839 // the larger of them == newtail then that ends up being jetA and
840 // the new jet that is added as jetB is inserted in a position that
841 // has a future!
842 if (jetA < jetB) {std::swap(jetA,jetB);}
843
844 int nn; // new jet index
845 _do_ij_recombination_step(jetA->_jets_index, jetB->_jets_index, diJ_min, nn);
846
847 // what was jetB will now become the new jet
848 _bj_remove_from_tiles(jetA);
849 oldB = * jetB; // take a copy because we will need it...
850 _bj_remove_from_tiles(jetB);
851 _tj_set_jetinfo(jetB, nn); // cause jetB to become _jets[nn]
852 // (also registers the jet in the tiling)
853 } else {
854 // jet-beam recombination
855 // get the hist_index
856 _do_iB_recombination_step(jetA->_jets_index, diJ_min);
857 _bj_remove_from_tiles(jetA);
858 }
859
860 // remove the minheap entry for jetA
861 minheap.remove(jetA-head);
862
863 // first establish the set of tiles over which we are going to
864 // have to run searches for updated and new nearest-neighbours --
865 // basically a combination of vicinity of the tiles of the two old
866 // and one new jet.
867 int n_near_tiles = 0;
868 _add_untagged_neighbours_to_tile_union(jetA->tile_index,
869 tile_union, n_near_tiles);
870 if (jetB != NULL) {
871 if (jetB->tile_index != jetA->tile_index) {
872 _add_untagged_neighbours_to_tile_union(jetB->tile_index,
873 tile_union,n_near_tiles);
874 }
875 if (oldB.tile_index != jetA->tile_index &&
876 oldB.tile_index != jetB->tile_index) {
877 // GS: the line below generates a warning that oldB.tile_index
878 // may be used uninitialised. However, to reach this point, we
879 // ned jetB != NULL (see test a few lines above) and is jetB
880 // !=NULL, one would have gone through "oldB = *jetB before
881 // (see piece of code ~20 line above), so the index is
882 // initialised. We do not do anything to avoid the warning to
883 // avoid any potential speed impact.
884 _add_untagged_neighbours_to_tile_union(oldB.tile_index,
885 tile_union,n_near_tiles);
886 }
887 // indicate that we'll have to update jetB in the minheap
888 jetB->label_minheap_update_needed();
889 jets_for_minheap.push_back(jetB);
890 }
891
892
893 // Initialise jetB's NN distance as well as updating it for
894 // other particles.
895 // Run over all tiles in our union
896 for (int itile = 0; itile < n_near_tiles; itile++) {
897 Tile * tile_ptr = &_tiles[tile_union[itile]];
898 tile_ptr->tagged = false; // reset tag, since we're done with unions
899 // run over all jets in the current tile
900 for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
901 // see if jetI had jetA or jetB as a NN -- if so recalculate the NN
902 if (jetI->NN == jetA || (jetI->NN == jetB && jetB != NULL)) {
903 jetI->NN_dist = _R2;
904 jetI->NN = NULL;
905 // label jetI as needing heap action...
906 if (!jetI->minheap_update_needed()) {
907 jetI->label_minheap_update_needed();
908 jets_for_minheap.push_back(jetI);}
909 // now go over tiles that are neighbours of I (include own tile)
910 for (Tile ** near_tile = tile_ptr->begin_tiles;
911 near_tile != tile_ptr->end_tiles; near_tile++) {
912 // and then over the contents of that tile
913 for (TiledJet * jetJ = (*near_tile)->head;
914 jetJ != NULL; jetJ = jetJ->next) {
915 double dist = _bj_dist(jetI,jetJ);
916 if (dist < jetI->NN_dist && jetJ != jetI) {
917 jetI->NN_dist = dist; jetI->NN = jetJ;
918 }
919 }
920 }
921 }
922 // check whether new jetB is closer than jetI's current NN and
923 // if jetI is closer than jetB's current (evolving) nearest
924 // neighbour. Where relevant update things
925 if (jetB != NULL) {
926 double dist = _bj_dist(jetI,jetB);
927 if (dist < jetI->NN_dist) {
928 if (jetI != jetB) {
929 jetI->NN_dist = dist;
930 jetI->NN = jetB;
931 // label jetI as needing heap action...
932 if (!jetI->minheap_update_needed()) {
933 jetI->label_minheap_update_needed();
934 jets_for_minheap.push_back(jetI);}
935 }
936 }
937 if (dist < jetB->NN_dist) {
938 if (jetI != jetB) {
939 jetB->NN_dist = dist;
940 jetB->NN = jetI;}
941 }
942 }
943 }
944 }
945
946 // deal with jets whose minheap entry needs updating
947 while (jets_for_minheap.size() > 0) {
948 TiledJet * jetI = jets_for_minheap.back();
949 jets_for_minheap.pop_back();
950 minheap.update(jetI-head, _bj_diJ(jetI));
951 jetI->label_minheap_update_done();
952 }
953 n--;
954 }
955
956 // final cleaning up;
957 delete[] briefjets;
958}
959
960
961FASTJET_END_NAMESPACE
962
Note: See TracBrowser for help on using the repository browser.