[d7d2da3] | 1 | //STARTHEADER
|
---|
| 2 | // $Id$
|
---|
| 3 | //
|
---|
| 4 | // Copyright (c) 2006-2007 Matteo Cacciari, Gavin Salam and Gregory Soyez
|
---|
| 5 | //
|
---|
| 6 | //----------------------------------------------------------------------
|
---|
| 7 | // This file is part of a simple command-line handling environment
|
---|
| 8 | //
|
---|
| 9 | // FastJet is free software; you can redistribute it and/or modify
|
---|
| 10 | // it under the terms of the GNU General Public License as published by
|
---|
| 11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
| 12 | // (at your option) any later version.
|
---|
| 13 | //
|
---|
| 14 | // The algorithms that underlie FastJet have required considerable
|
---|
| 15 | // development and are described in hep-ph/0512210. If you use
|
---|
| 16 | // FastJet as part of work towards a scientific publication, please
|
---|
| 17 | // include a citation to the FastJet paper.
|
---|
| 18 | //
|
---|
| 19 | // FastJet is distributed in the hope that it will be useful,
|
---|
| 20 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 21 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 22 | // GNU General Public License for more details.
|
---|
| 23 | //
|
---|
| 24 | // You should have received a copy of the GNU General Public License
|
---|
| 25 | // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 26 | //----------------------------------------------------------------------
|
---|
| 27 | //ENDHEADER
|
---|
| 28 |
|
---|
| 29 | #include "fastjet/ClusterSequenceVoronoiArea.hh"
|
---|
| 30 | #include "fastjet/internal/Voronoi.hh"
|
---|
| 31 | #include <list>
|
---|
| 32 | #include <cassert>
|
---|
| 33 | #include <ostream>
|
---|
| 34 | #include <fstream>
|
---|
| 35 | #include <iterator>
|
---|
| 36 | #include <cmath>
|
---|
| 37 | #include <limits>
|
---|
| 38 |
|
---|
| 39 | using namespace std;
|
---|
| 40 |
|
---|
| 41 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 42 |
|
---|
| 43 | typedef ClusterSequenceVoronoiArea::VoronoiAreaCalc VAC;
|
---|
| 44 |
|
---|
| 45 | /// class for carrying out a voronoi area calculation on a set of
|
---|
| 46 | /// initial vectors
|
---|
| 47 | class ClusterSequenceVoronoiArea::VoronoiAreaCalc {
|
---|
| 48 | public:
|
---|
| 49 | /// constructor that takes a range of a vector together with the
|
---|
| 50 | /// effective radius for the intersection of discs with voronoi
|
---|
| 51 | /// cells
|
---|
| 52 | VoronoiAreaCalc(const vector<PseudoJet>::const_iterator &,
|
---|
| 53 | const vector<PseudoJet>::const_iterator &,
|
---|
| 54 | double effective_R);
|
---|
| 55 |
|
---|
| 56 | /// return the area of the particle associated with the given
|
---|
| 57 | /// index
|
---|
| 58 | inline double area (int index) const {return _areas[index];};
|
---|
| 59 |
|
---|
| 60 | private:
|
---|
| 61 | std::vector<double> _areas; ///< areas, numbered as jets
|
---|
| 62 | double _effective_R; ///< effective radius
|
---|
| 63 | double _effective_R_squared; ///< effective radius squared
|
---|
| 64 |
|
---|
| 65 | /**
|
---|
| 66 | * compute the intersection of one triangle with the circle
|
---|
| 67 | * the area is returned
|
---|
| 68 | */
|
---|
| 69 | double edge_circle_intersection(const VPoint &p0,
|
---|
| 70 | const GraphEdge &edge);
|
---|
| 71 |
|
---|
| 72 | /// get the area of a circle of radius R centred on the point 0 with
|
---|
| 73 | /// 1 and 2 on each "side" of the arc. dij is the distance between
|
---|
| 74 | /// point i and point j and all distances are squared
|
---|
| 75 | inline double circle_area(const double d12_2, double d01_2, double d02_2){
|
---|
| 76 | return 0.5*_effective_R_squared
|
---|
| 77 | *acos(min(1.0,(d01_2+d02_2-d12_2)/(2*sqrt(d01_2*d02_2))));
|
---|
| 78 | }
|
---|
| 79 | };
|
---|
| 80 |
|
---|
| 81 |
|
---|
| 82 | /**
|
---|
| 83 | * compute the intersection of one triangle with the circle
|
---|
| 84 | * the area is returned
|
---|
| 85 | */
|
---|
| 86 | double VAC::edge_circle_intersection(const VPoint &p0,
|
---|
| 87 | const GraphEdge &edge){
|
---|
| 88 | VPoint p1(edge.x1-p0.x, edge.y1-p0.y);
|
---|
| 89 | VPoint p2(edge.x2-p0.x, edge.y2-p0.y);
|
---|
| 90 | VPoint pdiff = p2-p1;
|
---|
| 91 |
|
---|
| 92 | //fprintf(stdout, "\tpt(%f,%f)\n", p0.x, p0.y);
|
---|
| 93 |
|
---|
| 94 | double cross = vector_product(p1, p2);
|
---|
| 95 | double d12_2 = norm(pdiff);
|
---|
| 96 | double d01_2 = norm(p1);
|
---|
| 97 | double d02_2 = norm(p2);
|
---|
| 98 |
|
---|
| 99 | // compute intersections between edge line and circle
|
---|
| 100 | double delta = d12_2*_effective_R_squared - cross*cross;
|
---|
| 101 |
|
---|
| 102 | // if no intersection, area=area_circle
|
---|
| 103 | if (delta<=0){
|
---|
| 104 | return circle_area(d12_2, d01_2, d02_2);
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | // we'll only need delta's sqrt now
|
---|
| 108 | delta = sqrt(delta);
|
---|
| 109 |
|
---|
| 110 | // b is the projection of 01 onto 12
|
---|
| 111 | double b = scalar_product(pdiff, p1);
|
---|
| 112 |
|
---|
| 113 | // intersections with the circle:
|
---|
| 114 | // we compute the "coordinate along the line" of the intersection
|
---|
| 115 | // with t=0 (1) corresponding to p1 (p2)
|
---|
| 116 | // points with 0<t<1 are within the circle others are outside
|
---|
| 117 |
|
---|
| 118 | // positive intersection
|
---|
| 119 | double tp = (delta-b)/d12_2;
|
---|
| 120 |
|
---|
| 121 | // if tp is negative, tm also => inters = circle
|
---|
| 122 | if (tp<0)
|
---|
| 123 | return circle_area(d12_2, d01_2, d02_2);
|
---|
| 124 |
|
---|
| 125 | // we need the second intersection
|
---|
| 126 | double tm = -(delta+b)/d12_2;
|
---|
| 127 |
|
---|
| 128 | // if tp<1, it lies in the circle
|
---|
| 129 | if (tp<1){
|
---|
| 130 | // if tm<0, the segment has one intersection
|
---|
| 131 | // with the circle at p (t=tp)
|
---|
| 132 | // the area is a triangle from 1 to p
|
---|
| 133 | // then a circle from p to 2
|
---|
| 134 | // several tricks can be used:
|
---|
| 135 | // - the area of the triangle is tp*area triangle
|
---|
| 136 | // - the lenght for the circle are easily obtained
|
---|
| 137 | if (tm<0)
|
---|
| 138 | return tp*0.5*fabs(cross)
|
---|
| 139 | +circle_area((1-tp)*(1-tp)*d12_2, _effective_R_squared, d02_2);
|
---|
| 140 |
|
---|
| 141 | // now, 0 < tm < tp < 1
|
---|
| 142 | // the segment intersects twice the circle
|
---|
| 143 | // area = 2 cirles at ends + a triangle in the middle
|
---|
| 144 | // again, simplifications are staightforward
|
---|
| 145 | return (tp-tm)*0.5*fabs(cross)
|
---|
| 146 | + circle_area(tm*tm*d12_2, d01_2, _effective_R_squared)
|
---|
| 147 | + circle_area((1-tp)*(1-tp)*d12_2, _effective_R_squared, d02_2);
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | // now, we have tp>1
|
---|
| 151 |
|
---|
| 152 | // if in addition tm>1, intersectino is a circle
|
---|
| 153 | if (tm>1)
|
---|
| 154 | return circle_area(d12_2, d01_2, d02_2);
|
---|
| 155 |
|
---|
| 156 | // if tm<0, the triangle is inside the circle
|
---|
| 157 | if (tm<0)
|
---|
| 158 | return 0.5*fabs(cross);
|
---|
| 159 |
|
---|
| 160 | // otherwise, only the "tm point" is on the segment
|
---|
| 161 | // area = circle from 1 to m and triangle from m to 2
|
---|
| 162 |
|
---|
| 163 | return (1-tm)*0.5*fabs(cross)
|
---|
| 164 | +circle_area(tm*tm*d12_2, d01_2, _effective_R_squared);
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 |
|
---|
| 168 | // the constructor...
|
---|
| 169 | //----------------------------------------------------------------------
|
---|
| 170 | VAC::VoronoiAreaCalc(const vector<PseudoJet>::const_iterator &jet_begin,
|
---|
| 171 | const vector<PseudoJet>::const_iterator &jet_end,
|
---|
| 172 | double effective_R) {
|
---|
| 173 |
|
---|
| 174 | assert(effective_R < 0.5*pi);
|
---|
| 175 |
|
---|
| 176 | vector<VPoint> voronoi_particles;
|
---|
| 177 | vector<int> voronoi_indices;
|
---|
| 178 |
|
---|
| 179 | _effective_R = effective_R;
|
---|
| 180 | _effective_R_squared = effective_R*effective_R;
|
---|
| 181 |
|
---|
| 182 | double minrap = numeric_limits<double>::max();
|
---|
| 183 | double maxrap = -minrap;
|
---|
| 184 |
|
---|
| 185 | unsigned int n_tot = 0, n_added = 0;
|
---|
| 186 |
|
---|
| 187 | // loop over jets and create the triangulation, as well as cross-referencing
|
---|
| 188 | // info
|
---|
| 189 | for (vector<PseudoJet>::const_iterator jet_it = jet_begin;
|
---|
| 190 | jet_it != jet_end; jet_it++) {
|
---|
| 191 | _areas.push_back(0.0);
|
---|
| 192 | if ((jet_it->perp2()) != 0.0 || (jet_it->E() != jet_it->pz())){
|
---|
| 193 | // generate the corresponding point
|
---|
| 194 | double rap = jet_it->rap(), phi = jet_it->phi();
|
---|
| 195 | voronoi_particles.push_back(VPoint(rap, phi));
|
---|
| 196 | voronoi_indices.push_back(n_tot);
|
---|
| 197 | n_added++;
|
---|
| 198 |
|
---|
| 199 | // insert a copy of the point if it falls within 2*_R_effective
|
---|
| 200 | // of the 0,2pi borders (because we are interested in any
|
---|
| 201 | // voronoi edge within _R_effective of the other border)
|
---|
| 202 | if (phi < 2*_effective_R) {
|
---|
| 203 | voronoi_particles.push_back(VPoint(rap,phi+twopi));
|
---|
| 204 | voronoi_indices.push_back(-1);
|
---|
| 205 | n_added++;
|
---|
| 206 | } else if (twopi-phi < 2*_effective_R) {
|
---|
| 207 | voronoi_particles.push_back(VPoint(rap,phi-twopi));
|
---|
| 208 | voronoi_indices.push_back(-1);
|
---|
| 209 | n_added++;
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | // track the rapidity range
|
---|
| 213 | maxrap = max(maxrap,rap);
|
---|
| 214 | minrap = min(minrap,rap);
|
---|
| 215 | }
|
---|
| 216 | n_tot++;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | // allow for 0-particle case in graceful way
|
---|
| 220 | if (n_added == 0) return;
|
---|
| 221 | // assert(n_added > 0); // old (pre 2.4) non-graceful exit
|
---|
| 222 |
|
---|
| 223 | // add extreme cases (corner particles):
|
---|
| 224 | double max_extend = 2*max(maxrap-minrap+4*_effective_R, twopi+8*_effective_R);
|
---|
| 225 | voronoi_particles.push_back(VPoint(0.5*(minrap+maxrap)-max_extend, pi));
|
---|
| 226 | voronoi_particles.push_back(VPoint(0.5*(minrap+maxrap)+max_extend, pi));
|
---|
| 227 | voronoi_particles.push_back(VPoint(0.5*(minrap+maxrap), pi-max_extend));
|
---|
| 228 | voronoi_particles.push_back(VPoint(0.5*(minrap+maxrap), pi+max_extend));
|
---|
| 229 |
|
---|
| 230 | // Build the VD
|
---|
| 231 | VoronoiDiagramGenerator vdg;
|
---|
| 232 | vdg.generateVoronoi(&voronoi_particles,
|
---|
| 233 | 0.5*(minrap+maxrap)-max_extend, 0.5*(minrap+maxrap)+max_extend,
|
---|
| 234 | pi-max_extend, pi+max_extend);
|
---|
| 235 |
|
---|
| 236 | vdg.resetIterator();
|
---|
| 237 | GraphEdge *e=NULL;
|
---|
| 238 | unsigned int v_index;
|
---|
| 239 | int p_index;
|
---|
| 240 | vector<PseudoJet>::const_iterator jet;
|
---|
| 241 |
|
---|
| 242 | while(vdg.getNext(&e)){
|
---|
| 243 | v_index = e->point1;
|
---|
| 244 | if (v_index<n_added){ // this removes the corner particles
|
---|
| 245 | p_index = voronoi_indices[v_index];
|
---|
| 246 | if (p_index!=-1){ // this removes the copies
|
---|
| 247 | jet = jet_begin+voronoi_indices[v_index];
|
---|
| 248 | _areas[p_index]+=
|
---|
| 249 | edge_circle_intersection(voronoi_particles[v_index], *e);
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | v_index = e->point2;
|
---|
| 253 | if (v_index<n_added){ // this removes the corner particles
|
---|
| 254 | p_index = voronoi_indices[v_index];
|
---|
| 255 | if (p_index!=-1){ // this removes the copies
|
---|
| 256 | jet = jet_begin+voronoi_indices[v_index];
|
---|
| 257 | _areas[p_index]+=
|
---|
| 258 | edge_circle_intersection(voronoi_particles[v_index], *e);
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 |
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 |
|
---|
| 267 | //----------------------------------------------------------------------
|
---|
| 268 | ///
|
---|
| 269 | void ClusterSequenceVoronoiArea::_initializeVA () {
|
---|
| 270 | // run the VAC on our original particles
|
---|
| 271 | _pa_calc = new VAC(_jets.begin(),
|
---|
| 272 | _jets.begin()+n_particles(),
|
---|
| 273 | _effective_Rfact*_jet_def.R());
|
---|
| 274 |
|
---|
| 275 | // transfer the areas to our local structure
|
---|
| 276 | // -- first the initial ones
|
---|
| 277 | _voronoi_area.reserve(2*n_particles());
|
---|
| 278 | for (unsigned int i=0; i<n_particles(); i++) {
|
---|
| 279 | _voronoi_area.push_back(_pa_calc->area(i));
|
---|
| 280 | // make a stab at a 4-vector area
|
---|
| 281 | if (_jets[i].perp2() > 0) {
|
---|
| 282 | _voronoi_area_4vector.push_back((_pa_calc->area(i)/_jets[i].perp())
|
---|
| 283 | * _jets[i]);
|
---|
| 284 | } else {
|
---|
| 285 | // not sure what to do here -- just put zero (it won't be meaningful
|
---|
| 286 | // anyway)
|
---|
| 287 | _voronoi_area_4vector.push_back(PseudoJet(0.0,0.0,0.0,0.0));
|
---|
| 288 | }
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | // -- then the combined areas that arise from the clustering
|
---|
| 292 | for (unsigned int i = n_particles(); i < _history.size(); i++) {
|
---|
| 293 | double area_local;
|
---|
| 294 | PseudoJet area_4vect;
|
---|
| 295 | if (_history[i].parent2 >= 0) {
|
---|
| 296 | area_local = _voronoi_area[_history[i].parent1] +
|
---|
| 297 | _voronoi_area[_history[i].parent2];
|
---|
| 298 | area_4vect = _voronoi_area_4vector[_history[i].parent1] +
|
---|
| 299 | _voronoi_area_4vector[_history[i].parent2];
|
---|
| 300 | } else {
|
---|
| 301 | area_local = _voronoi_area[_history[i].parent1];
|
---|
| 302 | area_4vect = _voronoi_area_4vector[_history[i].parent1];
|
---|
| 303 | }
|
---|
| 304 | _voronoi_area.push_back(area_local);
|
---|
| 305 | _voronoi_area_4vector.push_back(area_4vect);
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | //----------------------------------------------------------------------
|
---|
| 311 | ClusterSequenceVoronoiArea::~ClusterSequenceVoronoiArea() {
|
---|
| 312 | delete _pa_calc;
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | FASTJET_END_NAMESPACE
|
---|