Fork me on GitHub

source: git/external/TrackCovariance/VertexFit.cc@ 3dc190c

Last change on this file since 3dc190c was 537d24f, checked in by Franco BEDESCHI <bed@…>, 4 years ago

Vertex fit class

  • Property mode set to 100644
File size: 16.9 KB
Line 
1#include <TMath.h>
2#include <TVectorD.h>
3#include <TVector3.h>
4#include <TMatrixD.h>
5#include <TMatrixDSym.h>
6#include "VertexFit.h"
7//
8// Constructors
9//
10// Empty
11VertexFit::VertexFit()
12{
13 fNtr = 0;
14 fVtxDone = kFALSE;
15 fVtxCst = kFALSE;
16 fxCst.ResizeTo(3);
17 fCovCst.ResizeTo(3,3);
18 fXv.ResizeTo(3);
19 fcovXv.ResizeTo(3,3);
20}
21// Parameters and covariances
22VertexFit::VertexFit(Int_t Ntr, TVectorD** trkPar, TMatrixDSym** trkCov)
23{
24 fNtr = Ntr;
25 fVtxDone = kFALSE;
26 fVtxCst = kFALSE;
27 fxCst.ResizeTo(3);
28 fCovCst.ResizeTo(3,3);
29 fXv.ResizeTo(3);
30 fcovXv.ResizeTo(3,3);
31 //
32 fPar = trkPar;
33 fCov = trkCov;
34 fChi2List.ResizeTo(Ntr);
35 //
36 ffi = new Double_t[Ntr]; // Fit phases
37 fx0i = new TVectorD* [Ntr]; // Track expansion points
38 for (Int_t i = 0; i < Ntr; i++) fx0i[i] = new TVectorD(3);
39 fai = new TVectorD * [Ntr]; // dx/dphi
40 for (Int_t i = 0; i < Ntr; i++) fai[i] = new TVectorD(3);
41 fa2i = new Double_t[Ntr]; // a'Wa
42 fDi = new TMatrixDSym*[Ntr]; // W-WBW
43 for (Int_t i = 0; i < Ntr; i++) fDi[i] = new TMatrixDSym(3);
44 fWi = new TMatrixDSym * [Ntr]; // (ACA')^-1
45 for (Int_t i = 0; i < Ntr; i++) fWi[i] = new TMatrixDSym(3);
46 fWinvi = new TMatrixDSym * [Ntr]; // ACA'
47 for (Int_t i = 0; i < Ntr; i++) fWinvi[i] = new TMatrixDSym(3);
48
49}
50// ObsTrk list
51VertexFit::VertexFit(Int_t Ntr, ObsTrk** track)
52{
53 fNtr = Ntr;
54 fVtxDone = kFALSE;
55 fVtxCst = kFALSE;
56 fxCst.ResizeTo(3);
57 fCovCst.ResizeTo(3,3);
58 fXv.ResizeTo(3);
59 fcovXv.ResizeTo(3,3);
60 //
61 fPar = new TVectorD*[Ntr];
62 fCov = new TMatrixDSym*[Ntr];
63 fChi2List.ResizeTo(Ntr);
64 for (Int_t i = 0; i < Ntr; i++)
65 {
66 fPar[i] = new TVectorD(track[i]->GetObsPar());
67 //cout << "fPar = " << endl; fPar[i]->Print();
68 fCov[i] = new TMatrixDSym(track[i]->GetCov());
69 //cout << "fCov = " << endl; fCov[i]->Print();
70 }
71 //
72 ffi = new Double_t[Ntr]; // Fit phases
73 fx0i = new TVectorD * [Ntr]; // Track expansion points
74 for (Int_t i = 0; i < Ntr; i++) fx0i[i] = new TVectorD(3);
75 fai = new TVectorD * [Ntr]; // dx/dphi
76 for (Int_t i = 0; i < Ntr; i++) fai[i] = new TVectorD(3);
77 fa2i = new Double_t[Ntr]; // a'Wa
78 fDi = new TMatrixDSym * [Ntr]; // W-WBW
79 for (Int_t i = 0; i < Ntr; i++) fDi[i] = new TMatrixDSym(3);
80 fWi = new TMatrixDSym * [Ntr]; // (ACA')^-1
81 for (Int_t i = 0; i < Ntr; i++) fWi[i] = new TMatrixDSym(3);
82 fWinvi = new TMatrixDSym * [Ntr]; // ACA'
83 for (Int_t i = 0; i < Ntr; i++) fWinvi[i] = new TMatrixDSym(3);
84
85 //cout << "VertexFit constructor executed" << endl;
86}
87//
88// Destructor
89VertexFit::~VertexFit()
90{
91 fxCst.Clear();
92 fCovCst.Clear();
93 fXv.Clear();
94 fcovXv.Clear();
95 fChi2List.Clear();
96 //
97 for (Int_t i= 0; i < fNtr; i++)
98 {
99 fPar[i]->Clear();
100 fCov[i]->Clear();
101 //
102 fx0i[i]->Clear(); delete fx0i[i];
103 fai[i]->Clear(); delete fai[i];
104 fDi[i]->Clear(); delete fDi[i];
105 fWi[i]->Clear(); delete fWi[i];
106 fWinvi[i]->Clear(); delete fWinvi[i];
107 }
108 fNtr = 0;
109 delete[] fPar;
110 delete[] fCov;
111 delete[] ffi;
112 delete[] fa2i;
113 delete[] fx0i;
114 delete[] fai;
115 delete[] fDi;
116 delete[] fWi;
117 delete[] fWinvi;
118}
119//
120Double_t VertexFit::FastRv1(TVectorD p1, TVectorD p2)
121{
122 //
123 // Find radius of intersection between two tracks in the transverse plane
124 //
125 // p = (D,phi, C, z0, ct)
126 //
127 // Define arrays
128 //
129 Double_t r1 = 1.0 / p1(2);
130 Double_t r2 = 1.0 / p2(2);
131 TVectorD x0 = Fill_x0(p1);
132 TVectorD y0 = Fill_x0(p2);
133 TVectorD n = Fill_a(p1, 0.0);
134 n *= r1;
135 TVectorD k = Fill_a(p2, 0.0);
136 k *= r2;
137 //
138 // Setup and solve linear system
139 //
140 Double_t nn = 0; for (Int_t i = 0; i < 3; i++)nn += n(i) * n(i);
141 Double_t nk = 0; for (Int_t i = 0; i < 3; i++)nk += n(i) * k(i);
142 Double_t kk = 0; for (Int_t i = 0; i < 3; i++)kk += k(i) * k(i);
143 Double_t discr = nn * kk - nk * nk;
144 TMatrixDSym H(2);
145 H(0, 0) = kk;
146 H(0, 1) = nk;
147 H(1, 0) = H(0, 1);
148 H(1, 1) = nn;
149 TVectorD c(2);
150 c(0) = 0; for (Int_t i = 0; i < 3; i++)c(0) += n(i) * (y0(i) - x0(i));
151 c(1) = 0; for (Int_t i = 0; i < 3; i++)c(1) += -k(i) * (y0(i) - x0(i));
152 TVectorD smin = (H * c);
153 smin *= 1.0 / discr;
154 //
155 TVectorD X = x0 + smin(0) * n;
156 TVectorD Y = y0 + smin(1) * k;
157 Double_t R1 = TMath::Sqrt(X(0) * X(0) + X(1) * X(1));
158 Double_t R2 = TMath::Sqrt(Y(0) * Y(0) + Y(1) * Y(1));
159 //
160 return 0.5*(R1+R2);
161}
162Double_t VertexFit::FastRv(TVectorD p1, TVectorD p2)
163{
164 //
165 // Find radius of minimum distance
166 //
167 // p = (D,phi, C)
168 //
169 // Solving matrix
170 TMatrixDSym H(2);
171 H(0, 0) = -TMath::Cos(p2(1));
172 H(0, 1) = TMath::Cos(p1(1));
173 H(1, 0) = -TMath::Sin(p2(1));
174 H(1, 1) = TMath::Sin(p1(1));
175 Double_t Det = TMath::Sin(p2(1) - p1(1));
176 H *= 1.0 / Det;
177 //
178 // Convergence parameters
179 Int_t Ntry = 0;
180 Int_t NtryMax = 100;
181 Double_t eps = 1000.;
182 Double_t epsMin = 1.0e-6;
183 //
184 // Vertex finding loop
185 //
186 TVectorD cterm(2);
187 cterm(0) = p1(0);
188 cterm(1) = p2(0);
189 TVectorD xv(2);
190 Double_t R = 1000.;
191 while (eps > epsMin)
192 {
193 xv = H * cterm;
194 Ntry++;
195 if (Ntry > NtryMax)
196 {
197 cout << "FastRv: maximum number of iteration reached" << endl;
198 break;
199 }
200 Double_t Rnew = TMath::Sqrt(xv(0) * xv(0) + xv(1) * xv(1));
201 eps = Rnew - R;
202 R = Rnew;
203 cterm(0) = p1(2) * R * R;
204 cterm(1) = p2(2) * R * R;
205 }
206 //
207 return R;
208}
209
210TMatrixDSym VertexFit::RegInv3(TMatrixDSym &Smat0)
211{
212 //
213 // Regularized inversion of symmetric 3x3 matrix with positive diagonal elements
214 //
215 TMatrixDSym Smat = Smat0;
216 Int_t N = Smat.GetNrows();
217 if (N != 3)
218 {
219 cout << "RegInv3 called with matrix size != 3. Abort & return standard inversion." << endl;
220 return Smat.Invert();
221 }
222 TMatrixDSym D(N); D.Zero();
223 Bool_t dZero = kTRUE; // No elements less or equal 0 on the diagonal
224 for (Int_t i = 0; i < N; i++) if (Smat(i, i) <= 0.0)dZero = kFALSE;
225 if (dZero)
226 {
227 for (Int_t i = 0; i < N; i++) D(i, i) = 1.0 / TMath::Sqrt(Smat(i, i));
228 TMatrixDSym RegMat = Smat.Similarity(D);
229 TMatrixDSym Q(2);
230 for (Int_t i = 0; i < 2; i++)
231 {
232 for (Int_t j = 0; j < 2; j++)Q(i, j) = RegMat(i, j);
233 }
234 Double_t Det = 1 - Q(0, 1)*Q(1, 0);
235 TMatrixDSym H(2);
236 H = Q;
237 H(0, 1) = -Q(0, 1);
238 H(1, 0) = -Q(1, 0);
239 TVectorD p(2);
240 p(0) = RegMat(0, 2);
241 p(1) = RegMat(1, 2);
242 Double_t pHp = H.Similarity(p);
243 Double_t h = pHp-Det;
244 //
245 TMatrixDSym pp(2); pp.Rank1Update(p);
246 TMatrixDSym F = (h*H) - pp.Similarity(H);
247 F *= 1.0 / Det;
248 TVectorD b = H*p;
249 TMatrixDSym InvReg(3);
250 for (Int_t i = 0; i < 2; i++)
251 {
252 InvReg(i, 2) = b(i);
253 InvReg(2, i) = b(i);
254 for (Int_t j = 0; j < 2; j++) InvReg(i, j) = F(i, j);
255 }
256 InvReg(2, 2) = -Det;
257 //
258 InvReg *= 1.0 / h;
259 //
260 //
261 return InvReg.Similarity(D);
262 }
263 else
264 {
265 cout << "RegInv3: found negative elements in diagonal. Return standard inversion." << endl;
266 return Smat.Invert();
267 }
268}
269//
270//
271//
272TMatrixD VertexFit::Fill_A(TVectorD par, Double_t phi)
273{
274 //
275 // Derivative of track 3D position vector with respect to track parameters at constant phase
276 //
277 // par = vector of track parameters
278 // phi = phase
279 //
280 TMatrixD A(3, 5);
281 //
282 // Decode input arrays
283 //
284 Double_t D = par(0);
285 Double_t p0 = par(1);
286 Double_t C = par(2);
287 Double_t z0 = par(3);
288 Double_t ct = par(4);
289 //
290 // Fill derivative matrix dx/d alpha
291 // D
292 A(0, 0) = -TMath::Sin(p0);
293 A(1, 0) = TMath::Cos(p0);
294 A(2, 0) = 0.0;
295 // phi0
296 A(0, 1) = -D*TMath::Cos(p0) + (TMath::Cos(phi + p0) - TMath::Cos(p0)) / (2 * C);
297 A(1, 1) = -D*TMath::Sin(p0) + (TMath::Sin(phi + p0) - TMath::Sin(p0)) / (2 * C);
298 A(2, 1) = 0.0;
299 // C
300 A(0, 2) = -(TMath::Sin(phi + p0) - TMath::Sin(p0)) / (2 * C*C);
301 A(1, 2) = (TMath::Cos(phi + p0) - TMath::Cos(p0)) / (2 * C*C);
302 A(2, 2) = -ct*phi / (2 * C*C);
303 // z0
304 A(0, 3) = 0.0;
305 A(1, 3) = 0.0;
306 A(2, 3) = 1.0;
307 // ct = lambda
308 A(0, 4) = 0.0;
309 A(1, 4) = 0.0;
310 A(2, 4) = phi / (2 * C);
311 //
312 return A;
313}
314//
315TVectorD VertexFit::Fill_a(TVectorD par, Double_t phi)
316{
317 //
318 // Derivative of track 3D position vector with respect to phase at constant track parameters
319 //
320 // par = vector of track parameters
321 // phi = phase
322 //
323 TVectorD a(3);
324 //
325 // Decode input arrays
326 //
327 Double_t D = par(0);
328 Double_t p0 = par(1);
329 Double_t C = par(2);
330 Double_t z0 = par(3);
331 Double_t ct = par(4);
332 //
333 a(0) = TMath::Cos(phi + p0) / (2 * C);
334 a(1) = TMath::Sin(phi + p0) / (2 * C);
335 a(2) = ct / (2 * C);
336 //
337 return a;
338}
339//
340TVectorD VertexFit::Fill_x0(TVectorD par)
341{
342 //
343 // Calculate track 3D position at R = |D| (minimum approach to z-axis)
344 //
345 TVectorD x0(3);
346 //
347 // Decode input arrays
348 //
349 Double_t D = par(0);
350 Double_t p0 = par(1);
351 Double_t C = par(2);
352 Double_t z0 = par(3);
353 Double_t ct = par(4);
354 //
355 x0(0) = -D *TMath::Sin(p0);
356 x0(1) = D*TMath::Cos(p0);
357 x0(2) = z0;
358 //
359 return x0;
360}
361//
362TVectorD VertexFit::Fill_x(TVectorD par, Double_t phi)
363{
364 //
365 // Calculate track 3D position for a given phase, phi
366 //
367 TVectorD x(3);
368 //
369 // Decode input arrays
370 //
371 Double_t D = par(0);
372 Double_t p0 = par(1);
373 Double_t C = par(2);
374 Double_t z0 = par(3);
375 Double_t ct = par(4);
376 //
377 TVectorD x0 = Fill_x0(par);
378 x(0) = x0(0) + (TMath::Sin(phi + p0) - TMath::Sin(p0)) / (2 * C);
379 x(1) = x0(1) - (TMath::Cos(phi + p0) - TMath::Cos(p0)) / (2 * C);
380 x(2) = x0(2) + ct*phi / (2 * C);
381 //
382 return x;
383}
384//
385void VertexFit::VertexFinder()
386{
387 //
388 // Vertex fit (units are meters)
389 //
390 // Initial variable definitions
391 TVectorD x(3);
392 TMatrixDSym covX(3);
393 TVectorD x0(3); for (Int_t v = 0; v < 3; v++)x0(v) = 100.; // set to large value
394 Double_t Chi2 = 0;
395 //
396 // Stored quantities
397 Double_t *fi = new Double_t[fNtr]; // Phases
398 TVectorD **x0i = new TVectorD*[fNtr]; // Track expansion point
399 TVectorD **ai = new TVectorD*[fNtr]; // dx/dphi
400 Double_t *a2i = new Double_t[fNtr]; // a'Wa
401 TMatrixDSym **Di = new TMatrixDSym*[fNtr]; // W-WBW
402 TMatrixDSym **Wi = new TMatrixDSym*[fNtr]; // (ACA')^-1
403 TMatrixDSym **Winvi = new TMatrixDSym*[fNtr]; // ACA'
404 //
405 // vertex radius approximation
406 // Maximum impact parameter
407 Double_t Rd = 0;
408 for (Int_t i = 0; i < fNtr; i++)
409 {
410 //ObsTrk* t = tracks[i];
411 TVectorD par = *fPar[i];
412 Double_t Dabs = TMath::Abs(par(0));
413 if (Dabs > Rd)Rd = Dabs;
414 }
415 //
416 // Find track pair with largest phi difference
417 Int_t isel=0; Int_t jsel=0; // selected track indices
418 Double_t dphiMax = 0.0; // Max phi difference
419 for (Int_t i = 0; i < fNtr-1; i++)
420 {
421 //ObsTrk* ti = tracks[i];
422 TVectorD pari = *fPar[i];
423 Double_t phi1 = pari(1);
424
425 for (Int_t j = i+1; j < fNtr; j++)
426 {
427 //ObsTrk* tj = tracks[j];
428 TVectorD parj = *fPar[j];
429 Double_t phi2 = parj(1);
430 Double_t dphi = TMath::Abs(phi2 - phi1);
431 if (dphi > TMath::Pi())dphi = TMath::TwoPi() - dphi;
432 if (dphi > dphiMax)
433 {
434 isel = i; jsel = j;
435 dphiMax = dphi;
436 }
437 }
438 }
439 //
440 //
441 //ObsTrk* t1 = tracks[isel];
442 TVectorD p1 = *fPar[isel];
443 //ObsTrk* t2 = tracks[jsel];
444 TVectorD p2 = *fPar[jsel];
445 Double_t R = FastRv1(p1, p2);
446 if (R > 1.0) R = Rd;
447 R = 0.9*R + 0.1*Rd;
448 //
449 //cout << "VertexFinder: fast R = " << R << endl;
450 //
451 // Iteration properties
452 //
453 Int_t Ntry = 0;
454 Int_t TryMax = 100;
455 Double_t eps = 1.0e-9; // vertex stability
456 Double_t epsi = 1000.;
457 //
458 while (epsi > eps && Ntry < TryMax) // Iterate until found vertex is stable
459 {
460 x.Zero();
461 TVectorD cterm(3); TMatrixDSym H(3); TMatrixDSym DW1D(3);
462 covX.Zero(); // Reset vertex covariance
463 cterm.Zero(); // Reset constant term
464 H.Zero(); // Reset H matrix
465 DW1D.Zero();
466 //
467 //cout << "VertexFinder: start loop on tracks" << endl;
468 for (Int_t i = 0; i < fNtr; i++)
469 {
470 // Get track helix parameters and their covariance matrix
471 //ObsTrk *t = tracks[i];
472 TVectorD par = *fPar[i];
473 TMatrixDSym Cov = *fCov[i];
474 Double_t fs;
475 if (Ntry <= 0) // Initialize all phases on first pass
476 {
477 Double_t D = par(0);
478 Double_t C = par(2);
479 Double_t arg = TMath::Max(1.0e-6, (R*R - D*D) / (1 + 2 * C*D));
480 fs = 2 * TMath::ASin(C*TMath::Sqrt(arg));
481 fi[i] = fs;
482 }
483 //
484 // Starting values
485 //
486 fs = fi[i]; // Get phase
487 //cout << "VertexFinder: phase fs set" << endl;
488 TVectorD xs = Fill_x(par, fs);
489 //cout << "VertexFinder: position xs set" << endl;
490 x0i[i] = new TVectorD(xs); // Start helix position
491 //cout << "VertexFinder: position x0i stored" << endl;
492 // W matrix = (A*C*A')^-1; W^-1 = A*C*A'
493 TMatrixD A = Fill_A(par, fs); // A = dx/da = derivatives wrt track parameters
494 //cout << "VertexFinder: derivatives A set" << endl;
495 TMatrixDSym Winv = Cov.Similarity(A); // W^-1 = A*C*A'
496 Winvi[i] = new TMatrixDSym(Winv); // Store W^-1 matrix
497 //cout << "VertexFinder: Winvi stored" << endl;
498 TMatrixDSym W = RegInv3(Winv); // W = (A*C*A')^-1
499 Wi[i] = new TMatrixDSym(W); // Store W matrix
500 //cout << "VertexFinder: Wi stored" << endl;
501 TVectorD a = Fill_a(par, fs); // a = dx/ds = derivatives wrt phase
502 //cout << "VertexFinder: derivatives a set" << endl;
503 ai[i] = new TVectorD(a); // Store a
504 //cout << "VertexFinder: derivatives a stored" << endl;
505 Double_t a2 = W.Similarity(a);
506 a2i[i] = a2; // Store a2
507 // Build D matrix
508 TMatrixDSym B(3);
509 B.Rank1Update(a, 1.0);
510 B *= -1. / a2;
511 B.Similarity(W);
512 TMatrixDSym Ds = W+B; // D matrix
513 Di[i] = new TMatrixDSym(Ds); // Store D matrix
514 //cout << "VertexFinder: matrix Di stored" << endl;
515 TMatrixDSym DsW1Ds = Winv.Similarity(Ds); // Service matrix to calculate covX
516 DW1D += DsW1Ds;
517 // Update hessian
518 H += Ds;
519 // update constant term
520 cterm += Ds * xs;
521 } // End loop on tracks
522 //
523 // update vertex position
524 TMatrixDSym H1 = RegInv3(H);
525 x = H1*cterm;
526 //cout << "VertexFinder: x vertex set" << endl;
527 // Update vertex covariance
528 covX = DW1D.Similarity(H1);
529 //cout << "VertexFinder: cov vertex set" << endl;
530 // Update phases and chi^2
531 Chi2 = 0.0;
532 for (Int_t i = 0; i < fNtr; i++)
533 {
534 TVectorD lambda = (*Di[i])*(*x0i[i] - x);
535 TMatrixDSym Wm1 = *Winvi[i];
536 fChi2List(i) = Wm1.Similarity(lambda);
537 Chi2 += fChi2List(i);
538 TVectorD a = *ai[i];
539 TVectorD b = (*Wi[i])*(x - *x0i[i]);
540 for (Int_t j = 0; j < 3; j++)fi[i] += a(j)*b(j) / a2i[i];
541 }
542
543 //cout << "VertexFinder: end chi2 calculation" << endl;
544 //
545 TVectorD dx = x - x0;
546 x0 = x;
547 // update vertex stability
548 TMatrixDSym Hess = RegInv3(covX);
549 epsi = Hess.Similarity(dx);
550 Ntry++;
551 //
552 // Store result
553 //
554 fXv = x; // Vertex position
555 fcovXv = covX; // Vertex covariance
556 fChi2 = Chi2; // Vertex fit Chi2
557 //
558 // Store intermediate data
559 //
560
561 //cout << "VertexFinder: before store intermediate data" << endl;
562 for (Int_t i = 0; i < fNtr; i++)
563 {
564 //cout << "VertexFinder: inside store intermediate data" << endl;
565 //cout << "i = " << i << ", fi[i] = " << fi[i] << endl;
566 //cout << "i = " << i << ", ffi[i] = " << ffi[i] << endl;
567 ffi[i] = fi[i]; // Fit phases
568 //cout << "VertexFinder: fi stored" << endl;
569 fx0i[i] = x0i[i]; // Track expansion points
570 //cout << "VertexFinder: x0i stored" << endl;
571 fai[i] = ai[i]; // dx/dphi
572 //cout << "VertexFinder: ai stored" << endl;
573 fa2i[i] = a2i[i]; // a'Wa
574 //cout << "VertexFinder: a2i stored" << endl;
575 fDi[i] = Di[i]; // W-WBW
576 //cout << "VertexFinder: Di stored" << endl;
577 fWi[i] = Wi[i]; // (ACA')^-1
578 //cout << "VertexFinder: Wi stored" << endl;
579 fWinvi[i] = Winvi[i]; // ACA'
580 //cout << "VertexFinder: Winvi stored" << endl;
581 }
582 //cout << "Iteration " << Ntry << " completed - Before cleanup" << endl;
583 //
584 // Cleanup
585 //
586 for (Int_t i = 0; i < fNtr; i++)
587 {
588 x0i[i]->Clear();
589 Winvi[i]->Clear();
590 Wi[i]->Clear();
591 ai[i]->Clear();
592 Di[i]->Clear();
593
594 delete x0i[i];
595 delete Winvi[i];
596 delete Wi[i];
597 delete ai[i];
598 delete Di[i];
599 }
600
601 //cout << "Iteration " << Ntry << " completed - After cleanup" << endl;
602 }
603 //
604 fVtxDone = kTRUE; // Set fitting completion flag
605 //
606 delete[] fi; // Phases
607 delete[] x0i; // Track expansion point
608 delete[] ai; // dx/dphi
609 delete[] a2i; // a'Wa
610 delete[] Di; // W-WBW
611 delete[] Wi; // (ACA')^-1
612 delete[] Winvi; // ACA'
613}
614//
615TVectorD VertexFit::GetVtx()
616{
617 //cout << "GetVtx: flag set to " << fVtxDone << endl;
618 if (!fVtxDone)VertexFinder();
619 return fXv;
620}
621
622TMatrixDSym VertexFit::GetVtxCov()
623{
624 if (!fVtxDone)VertexFinder();
625 return fcovXv;
626}
627
628Double_t VertexFit::GetVtxChi2()
629{
630 if (!fVtxDone)VertexFinder();
631 return fChi2;
632}
633
634TVectorD VertexFit::GetVtxChi2List()
635{
636 if (!fVtxDone)VertexFinder();
637 return fChi2List;
638}
639//
640// Handle tracks/constraints
641void VertexFit::AddVtxConstraint(TVectorD xv, TMatrixDSym cov) // Add gaussian vertex constraint
642{
643 cout << "VertexFit::AddVtxConstraint: Not implemented yet" << endl;
644}
645//
646void VertexFit::AddTrk(TVectorD par, TMatrixDSym Cov) // Add track to input list
647{
648 cout << "VertexFit::AddTrk: Not implemented yet" << endl;
649}
650void VertexFit::RemoveTrk(Int_t iTrk) // Remove iTrk track
651{
652 cout << "VertexFit::RemoveTrk: Not implemented yet" << endl;
653}
Note: See TracBrowser for help on using the repository browser.