1 | #include <iostream>
|
---|
2 |
|
---|
3 | #include <TMath.h>
|
---|
4 | #include <TVectorD.h>
|
---|
5 | #include <TVector3.h>
|
---|
6 | #include <TMatrixDSym.h>
|
---|
7 | #include <TDecompChol.h>
|
---|
8 | #include <TMatrixDSymEigen.h>
|
---|
9 |
|
---|
10 | #include "SolGridCov.h"
|
---|
11 | #include "SolGeom.h"
|
---|
12 | #include "SolTrack.h"
|
---|
13 |
|
---|
14 | using namespace std;
|
---|
15 |
|
---|
16 | SolGridCov::SolGridCov()
|
---|
17 | {
|
---|
18 | // Define pt-polar angle grid
|
---|
19 | fNpt = 22;
|
---|
20 | fPta.ResizeTo(fNpt);
|
---|
21 | Double_t p[] = { 0.1, 0.2, 0.5, 0.7, 1., 2., 3., 4., 6., 8., 10., 15.,
|
---|
22 | 20., 25., 30., 40., 50., 60., 80., 100., 150., 200. };
|
---|
23 | for (Int_t ip = 0; ip < fNpt; ip++) fPta(ip) = p[ip];
|
---|
24 |
|
---|
25 | fNang = 13;
|
---|
26 | fAnga.ResizeTo(fNang);
|
---|
27 | Double_t a[] = { 10., 15., 20., 25., 30., 35., 40., 45., 50., 60., 70., 80., 90. };
|
---|
28 | for (Int_t ia = 0; ia < fNang; ia++) fAnga(ia) = a[ia];
|
---|
29 | fCov = new TMatrixDSym[fNpt * fNang];
|
---|
30 | for (Int_t ip = 0; ip < fNpt; ip++)
|
---|
31 | {
|
---|
32 | for (Int_t ia = 0; ia < fNang; ia++) fCov[ip * fNang + ia].ResizeTo(5, 5);
|
---|
33 | }
|
---|
34 | }
|
---|
35 |
|
---|
36 | SolGridCov::~SolGridCov()
|
---|
37 | {
|
---|
38 | delete[] fCov;
|
---|
39 | delete fAcc;
|
---|
40 | }
|
---|
41 |
|
---|
42 | void SolGridCov::Calc(SolGeom *G)
|
---|
43 | {
|
---|
44 | TVectorD pta = fPta;
|
---|
45 | TVectorD anga = fAnga;
|
---|
46 | Bool_t Res = kTRUE; Bool_t MS = kTRUE; // Resolution and multiple scattering flags
|
---|
47 | for (Int_t ip = 0; ip < fNpt; ip++) // Loop on pt grid
|
---|
48 | {
|
---|
49 | Int_t ipt = TMath::Nint(10 * pta(ip));
|
---|
50 | for (Int_t ia = 0; ia < fNang; ia++) // Loop on angle grid
|
---|
51 | {
|
---|
52 | Double_t th = TMath::Pi() * (anga(ia)) / 180.;
|
---|
53 | Double_t x[3], p[3];
|
---|
54 | x[0] = 0; x[1] = 0; x[2] = 0; // Set origin
|
---|
55 | p[0] = pta(ip); p[1] = 0; p[2] = pta(ip) / TMath::Tan(th);
|
---|
56 | //
|
---|
57 | SolTrack *tr = new SolTrack(x, p, G); // Initialize track
|
---|
58 | tr->CovCalc(Res, MS); // Calculate covariance
|
---|
59 | fCov[ip * fNang + ia] = tr->Cov(); // Get covariance
|
---|
60 | }
|
---|
61 | }
|
---|
62 |
|
---|
63 | // Now make acceptance
|
---|
64 | fAcc = new AcceptanceClx(G);
|
---|
65 | }
|
---|
66 |
|
---|
67 |
|
---|
68 | //
|
---|
69 | Bool_t SolGridCov::IsAccepted(Double_t pt, Double_t Theta)
|
---|
70 | {
|
---|
71 | //
|
---|
72 | // pt in GeV, Theta in degrees
|
---|
73 | //
|
---|
74 | Bool_t Accept = kFALSE;
|
---|
75 | if (fAcc->HitNumber(pt, Theta) >= fNminHits)Accept = kTRUE;
|
---|
76 | //
|
---|
77 | return Accept;
|
---|
78 | }
|
---|
79 | //
|
---|
80 | Bool_t SolGridCov::IsAccepted(Double_t *p)
|
---|
81 | {
|
---|
82 | //
|
---|
83 | // pt in GeV, Theta in degrees
|
---|
84 | //
|
---|
85 | Bool_t Accept = kFALSE;
|
---|
86 | Double_t pt = TMath::Sqrt(p[0] * p[0] + p[1] * p[1]);
|
---|
87 | Double_t th = 180. * TMath::ATan2(pt, p[2])/TMath::Pi();
|
---|
88 | if (fAcc->HitNumber(pt,th) >= fNminHits)Accept = kTRUE;
|
---|
89 | //
|
---|
90 | return Accept;
|
---|
91 | }
|
---|
92 | //
|
---|
93 | Bool_t SolGridCov::IsAccepted(TVector3 p)
|
---|
94 | {
|
---|
95 | //
|
---|
96 | // pt in GeV, Theta in degrees
|
---|
97 | //
|
---|
98 | Bool_t Accept = kFALSE;
|
---|
99 | Double_t pt = p.Pt();
|
---|
100 | Double_t th = 180.*TMath::ACos(p.CosTheta())/TMath::Pi();
|
---|
101 | if (fAcc->HitNumber(pt,th) >= fNminHits)Accept = kTRUE;
|
---|
102 | //
|
---|
103 | return Accept;
|
---|
104 | }
|
---|
105 |
|
---|
106 |
|
---|
107 | // Find bin in grid
|
---|
108 | Int_t SolGridCov::GetMinIndex(Double_t xval, Int_t N, TVectorD x)
|
---|
109 | {
|
---|
110 | Int_t min = -1; // default for xval below the lower limit
|
---|
111 | if (xval < x(0))return min;
|
---|
112 | if (xval>x(N - 1)){ min = N; return min; }
|
---|
113 | for (Int_t i = 0; i < N; i++) if (xval>x(i))min = i;
|
---|
114 | return min;
|
---|
115 | }
|
---|
116 | // Force positive definitness in normalized matrix
|
---|
117 | TMatrixDSym SolGridCov::MakePosDef(TMatrixDSym NormMat)
|
---|
118 | {
|
---|
119 | // Input: symmetric matrix with 1's on diagonal
|
---|
120 | // Output: positive definite matrix with 1's on diagonal
|
---|
121 |
|
---|
122 | // Default return value
|
---|
123 | TMatrixDSym rMatN = NormMat;
|
---|
124 | // Check the diagonal
|
---|
125 | Bool_t Check = kFALSE;
|
---|
126 | Int_t Size = NormMat.GetNcols();
|
---|
127 | for (Int_t i = 0; i < Size; i++)if (TMath::Abs(NormMat(i, i) - 1.0)>1.0E-15)Check = kTRUE;
|
---|
128 | if (Check)
|
---|
129 | {
|
---|
130 | cout << "SolGridCov::MakePosDef: input matrix doesn ot have 1 on diagonal. Abort." << endl;
|
---|
131 | return rMatN;
|
---|
132 | }
|
---|
133 | // Diagonalize matrix
|
---|
134 | TMatrixDSymEigen Eign(NormMat);
|
---|
135 | TMatrixD U = Eign.GetEigenVectors();
|
---|
136 | TVectorD lambda = Eign.GetEigenValues();
|
---|
137 | // Reset negative eigenvalues to small positive value
|
---|
138 | TMatrixDSym D(Size); D.Zero(); Double_t eps = 1.0e-13;
|
---|
139 | for (Int_t i = 0; i < Size; i++)
|
---|
140 | {
|
---|
141 | D(i, i) = lambda(i);
|
---|
142 | if (lambda(i) <= 0) D(i, i) = eps;
|
---|
143 | }
|
---|
144 | // Rebuild matrix
|
---|
145 | TMatrixD Ut(TMatrixD::kTransposed, U);
|
---|
146 | TMatrixD rMat = (U*D)*Ut; // Now it is positive defite
|
---|
147 | // Restore all ones on diagonal
|
---|
148 | for (Int_t i1 = 0; i1 < Size; i1++)
|
---|
149 | {
|
---|
150 | Double_t rn1 = TMath::Sqrt(rMat(i1, i1));
|
---|
151 | for (Int_t i2 = 0; i2 <= i1; i2++)
|
---|
152 | {
|
---|
153 | Double_t rn2 = TMath::Sqrt(rMat(i2, i2));
|
---|
154 | rMatN(i1, i2) = 0.5*(rMat(i1, i2) + rMat(i2, i1)) / (rn1*rn2);
|
---|
155 | rMatN(i2, i1) = rMatN(i1, i2);
|
---|
156 | }
|
---|
157 | }
|
---|
158 | return rMatN;
|
---|
159 | }
|
---|
160 | // Interpolate covariance matrix: Bi-linear interpolation
|
---|
161 | TMatrixDSym SolGridCov::GetCov(Double_t pt, Double_t ang)
|
---|
162 | {
|
---|
163 | // pt in GeV and ang in degrees
|
---|
164 | Int_t minPt = GetMinIndex(pt, fNpt, fPta);
|
---|
165 | if (minPt == -1)minPt = 0;
|
---|
166 | if (minPt == fNpt - 1)minPt = fNpt - 2;
|
---|
167 | Double_t dpt = fPta(minPt + 1) - fPta(minPt);
|
---|
168 | // Put ang in 0-90 range
|
---|
169 | ang = TMath::Abs(ang);
|
---|
170 | while (ang > 90.)ang -= 90.; // Needs to be fixed
|
---|
171 | Int_t minAng = GetMinIndex(ang, fNang, fAnga);
|
---|
172 | if (minAng == -1)minAng = 0;
|
---|
173 | if (minAng == fNang - 1)minAng = fNang - 2;
|
---|
174 | Double_t dang = fAnga(minAng + 1) - fAnga(minAng);
|
---|
175 | //
|
---|
176 | Double_t tpt = (pt - fPta(minPt)) / dpt;
|
---|
177 | Double_t tang = (ang - fAnga(minAng)) / dang;
|
---|
178 | //
|
---|
179 | TMatrixDSym C11 = fCov[minPt * fNang + minAng];
|
---|
180 | TMatrixDSym C12 = fCov[minPt * fNang + minAng + 1];
|
---|
181 | TMatrixDSym C21 = fCov[(minPt + 1) * fNang + minAng];
|
---|
182 | TMatrixDSym C22 = fCov[(minPt + 1) * fNang + minAng + 1];
|
---|
183 | TMatrixDSym Cv = ((1-tpt) * (1-tang)) * C11 +
|
---|
184 | ((1-tpt) * tang ) * C12 +
|
---|
185 | ( tpt * (1-tang)) * C21 +
|
---|
186 | ( tpt * tang ) * C22;
|
---|
187 | // Check for positive definiteness
|
---|
188 | TMatrixDSym CvN = Cv;
|
---|
189 | TMatrixDSym DCvInv(5); DCvInv.Zero();
|
---|
190 | for (Int_t id = 0; id < 5; id++) DCvInv(id, id) = 1.0 / TMath::Sqrt(Cv(id, id));
|
---|
191 | CvN.Similarity(DCvInv); // Normalize diagonal to 1
|
---|
192 | TDecompChol Chl(CvN);
|
---|
193 | if (!Chl.Decompose())
|
---|
194 | {
|
---|
195 | cout << "SolGridCov::GetCov: Interpolated matrix not positive definite. Recovering ...." << endl;
|
---|
196 | TMatrixDSym rCv = MakePosDef(CvN); CvN = rCv;
|
---|
197 | TMatrixDSym DCv(5); DCv.Zero();
|
---|
198 | for (Int_t id = 0; id < 5; id++) DCv(id, id) = TMath::Sqrt(Cv(id, id));
|
---|
199 | Cv = CvN.Similarity(DCv); // Normalize diagonal to 1
|
---|
200 | }
|
---|
201 |
|
---|
202 | return Cv;
|
---|
203 | }
|
---|