1 | #include <TMath.h>
|
---|
2 | #include <TVector3.h>
|
---|
3 | #include <TMatrixD.h>
|
---|
4 | #include <TMatrixDSym.h>
|
---|
5 | #include <TDecompChol.h>
|
---|
6 | #include <TRandom.h>
|
---|
7 | #include <iostream>
|
---|
8 | #include "SolGridCov.h"
|
---|
9 | #include "ObsTrk.h"
|
---|
10 | //
|
---|
11 | // Constructors
|
---|
12 | // x(3) track origin, p(3) track momentum at origin, Q charge, B magnetic field in Tesla
|
---|
13 | ObsTrk::ObsTrk(TVector3 x, TVector3 p, Double_t Q, Double_t B, SolGridCov *GC)
|
---|
14 | {
|
---|
15 | fGC = GC;
|
---|
16 | fGenX = x;
|
---|
17 | fGenP = p;
|
---|
18 | fGenQ = Q;
|
---|
19 | fB = B;
|
---|
20 | fGenPar.ResizeTo(5);
|
---|
21 | fGenParACTS.ResizeTo(6);
|
---|
22 | fGenParILC.ResizeTo(5);
|
---|
23 | fObsPar.ResizeTo(5);
|
---|
24 | fObsParACTS.ResizeTo(6);
|
---|
25 | fObsParILC.ResizeTo(5);
|
---|
26 | fCov.ResizeTo(5, 5);
|
---|
27 | fCovACTS.ResizeTo(6, 6);
|
---|
28 | fCovILC.ResizeTo(5, 5);
|
---|
29 | fGenPar = XPtoPar(x,p,Q);
|
---|
30 | fGenParACTS = ParToACTS(fGenPar);
|
---|
31 | fGenParILC = ParToILC(fGenPar);
|
---|
32 | /*
|
---|
33 | std::cout << "ObsTrk::ObsTrk: fGenPar";
|
---|
34 | for (Int_t i = 0; i < 5; i++)std::cout << fGenPar(i) << ", ";
|
---|
35 | std::cout << std::endl;
|
---|
36 | */
|
---|
37 | fObsPar = GenToObsPar(fGenPar, fGC);
|
---|
38 | fObsParACTS = ParToACTS(fObsPar);
|
---|
39 | fObsParILC = ParToILC(fObsPar);
|
---|
40 | fObsX = ParToX(fObsPar);
|
---|
41 | fObsP = ParToP(fObsPar);
|
---|
42 | fObsQ = ParToQ(fObsPar);
|
---|
43 | fCovACTS = CovToACTS(fCov);
|
---|
44 | fCovILC = CovToILC(fCov);
|
---|
45 | }
|
---|
46 | //
|
---|
47 | // Destructor
|
---|
48 | ObsTrk::~ObsTrk()
|
---|
49 | {
|
---|
50 | fGenX.Clear();
|
---|
51 | fGenP.Clear();
|
---|
52 | fGenPar.Clear();
|
---|
53 | fGenParACTS.Clear();
|
---|
54 | fObsX.Clear();
|
---|
55 | fObsP.Clear();
|
---|
56 | fObsPar.Clear();
|
---|
57 | fObsParACTS.Clear();
|
---|
58 | fCov.Clear();
|
---|
59 | fCovACTS.Clear();
|
---|
60 | }
|
---|
61 | TVectorD ObsTrk::XPtoPar(TVector3 x, TVector3 p, Double_t Q)
|
---|
62 | {
|
---|
63 | //
|
---|
64 | TVectorD Par(5);
|
---|
65 | // Transverse parameters
|
---|
66 | Double_t a = -Q*fB*0.2998; // Units are Tesla, GeV and meters
|
---|
67 | Double_t pt = p.Pt();
|
---|
68 | Double_t C = a / (2 * pt); // Half curvature
|
---|
69 | //std::cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << std::endl;
|
---|
70 | Double_t r2 = x.Perp2();
|
---|
71 | Double_t cross = x(0)*p(1) - x(1)*p(0);
|
---|
72 | Double_t T = TMath::Sqrt(pt*pt - 2 * a*cross + a*a*r2);
|
---|
73 | Double_t phi0 = TMath::ATan2((p(1) - a*x(0)) / T, (p(0) + a*x(1)) / T); // Phi0
|
---|
74 | Double_t D; // Impact parameter D
|
---|
75 | if (pt < 10.0) D = (T - pt) / a;
|
---|
76 | else D = (-2 * cross + a*r2) / (T + pt);
|
---|
77 | //
|
---|
78 | Par(0) = D; // Store D
|
---|
79 | Par(1) = phi0; // Store phi0
|
---|
80 | Par(2) = C; // Store C
|
---|
81 | //Longitudinal parameters
|
---|
82 | Double_t B = C*TMath::Sqrt(TMath::Max(r2 - D*D,0.0) / (1 + 2 * C*D));
|
---|
83 | Double_t st = TMath::ASin(B) / C;
|
---|
84 | Double_t ct = p(2) / pt;
|
---|
85 | Double_t z0 = x(2) - ct*st;
|
---|
86 | //
|
---|
87 | Par(3) = z0; // Store z0
|
---|
88 | Par(4) = ct; // Store cot(theta)
|
---|
89 | //
|
---|
90 | return Par;
|
---|
91 | }
|
---|
92 | //
|
---|
93 | TVector3 ObsTrk::ParToX(TVectorD Par)
|
---|
94 | {
|
---|
95 | Double_t D = Par(0);
|
---|
96 | Double_t phi0 = Par(1);
|
---|
97 | Double_t z0 = Par(3);
|
---|
98 | //
|
---|
99 | TVector3 Xval;
|
---|
100 | Xval(0) = -D*TMath::Sin(phi0);
|
---|
101 | Xval(1) = D*TMath::Cos(phi0);
|
---|
102 | Xval(2) = z0;
|
---|
103 | //
|
---|
104 | return Xval;
|
---|
105 | }
|
---|
106 | //
|
---|
107 | TVector3 ObsTrk::ParToP(TVectorD Par)
|
---|
108 | {
|
---|
109 | Double_t C = Par(2);
|
---|
110 | Double_t phi0 = Par(1);
|
---|
111 | Double_t ct = Par(4);
|
---|
112 | //
|
---|
113 | TVector3 Pval;
|
---|
114 | Double_t pt = fB*0.2998 / TMath::Abs(2 * C);
|
---|
115 | Pval(0) = pt*TMath::Cos(phi0);
|
---|
116 | Pval(1) = pt*TMath::Sin(phi0);
|
---|
117 | Pval(2) = pt*ct;
|
---|
118 | //
|
---|
119 | return Pval;
|
---|
120 | }
|
---|
121 | //
|
---|
122 |
|
---|
123 | Double_t ObsTrk::ParToQ(TVectorD Par)
|
---|
124 | {
|
---|
125 | return TMath::Sign(1.0, -Par(2));
|
---|
126 | }
|
---|
127 | //
|
---|
128 | TVectorD ObsTrk::GenToObsPar(TVectorD gPar, SolGridCov *GC)
|
---|
129 | {
|
---|
130 | TVector3 p = ParToP(gPar);
|
---|
131 | Double_t pt = p.Pt();
|
---|
132 | Double_t tanTh = 1.0 / TMath::Abs(gPar(4));
|
---|
133 | Double_t angd = TMath::ATan(tanTh)*180. / TMath::Pi();
|
---|
134 | //
|
---|
135 | // Check ranges
|
---|
136 | Double_t minPt = GC->GetMinPt ();
|
---|
137 | if (pt < minPt) std::cout << "Warning ObsTrk::GenToObsPar: pt " << pt << " is below grid range of " << minPt << std::endl;
|
---|
138 | Double_t maxPt = GC->GetMaxPt();
|
---|
139 | if (pt > maxPt) std::cout << "Warning ObsTrk::GenToObsPar: pt " << pt << " is above grid range of " << maxPt << std::endl;
|
---|
140 | Double_t minAn = GC->GetMinAng();
|
---|
141 | if (angd < minAn) std::cout << "Warning ObsTrk::GenToObsPar: angle " << angd
|
---|
142 | << " is below grid range of " << minAn << std::endl;
|
---|
143 | Double_t maxAn = GC->GetMaxAng();
|
---|
144 | if (angd > maxAn) std::cout << "Warning ObsTrk::GenToObsPar: angle " << angd
|
---|
145 | << " is above grid range of " << maxAn << std::endl;
|
---|
146 | //
|
---|
147 | TMatrixDSym Cov = GC->GetCov(pt, angd);
|
---|
148 | fCov = Cov;
|
---|
149 | //
|
---|
150 | // Now do Choleski decomposition and random number extraction, with appropriate stabilization
|
---|
151 | //
|
---|
152 | TMatrixDSym CvN = Cov;
|
---|
153 | TMatrixDSym DCv(5); DCv.Zero();
|
---|
154 | TMatrixDSym DCvInv(5); DCvInv.Zero();
|
---|
155 | for (Int_t id = 0; id < 5; id++)
|
---|
156 | {
|
---|
157 | Double_t dVal = TMath::Sqrt(Cov(id, id));
|
---|
158 | DCv (id, id) = dVal;
|
---|
159 | DCvInv(id, id) = 1.0 / dVal;
|
---|
160 | }
|
---|
161 | CvN.Similarity(DCvInv); // Normalize diagonal to 1
|
---|
162 | TDecompChol Chl(CvN);
|
---|
163 | Bool_t OK = Chl.Decompose(); // Choleski decomposition of normalized matrix
|
---|
164 | TMatrixD U = Chl.GetU(); // Get Upper triangular matrix
|
---|
165 | TMatrixD Ut(TMatrixD::kTransposed, U); // Transposed of U (lower triangular)
|
---|
166 | TVectorD r(5);
|
---|
167 | for (Int_t i = 0; i < 5; i++)r(i) = gRandom->Gaus(0.0, 1.0); // Array of normal random numbers
|
---|
168 | TVectorD oPar = gPar + DCv*(Ut*r); // Observed parameter vector
|
---|
169 | //
|
---|
170 | return oPar;
|
---|
171 | }
|
---|
172 | // Parameter conversion to ACTS format
|
---|
173 | TVectorD ObsTrk::ParToACTS(TVectorD Par)
|
---|
174 | {
|
---|
175 | TVectorD pACTS(6); // Return vector
|
---|
176 | //
|
---|
177 | Double_t b = -0.29988*fB / 2.;
|
---|
178 | pACTS(0) = 1000*Par(0); // D from m to mm
|
---|
179 | pACTS(1) = 1000 * Par(3); // z0 from m to mm
|
---|
180 | pACTS(2) = Par(1); // Phi0 is unchanged
|
---|
181 | pACTS(3) = TMath::ATan(1.0 / Par(4)) + TMath::PiOver2(); // Theta in [0, pi] range
|
---|
182 | pACTS(4) = Par(2) / (b*TMath::Sqrt(1 + Par(4)*Par(4))); // q/p in GeV
|
---|
183 | pACTS(5) = 0.0; // Time: currently undefined
|
---|
184 | //
|
---|
185 | return pACTS;
|
---|
186 | }
|
---|
187 | // Covariance conversion to ACTS format
|
---|
188 | TMatrixDSym ObsTrk::CovToACTS(TMatrixDSym Cov)
|
---|
189 | {
|
---|
190 | TMatrixDSym cACTS(6); cACTS.Zero();
|
---|
191 | Double_t b = -0.29988*fB / 2.;
|
---|
192 | //
|
---|
193 | // Fill derivative matrix
|
---|
194 | TMatrixD A(5, 5); A.Zero();
|
---|
195 | Double_t ct = fGenPar(4); // cot(theta)
|
---|
196 | Double_t C = fGenPar(2); // half curvature
|
---|
197 | A(0, 0) = 1000.; // D-D conversion to mm
|
---|
198 | A(1, 2) = 1.0; // phi0-phi0
|
---|
199 | A(2, 4) = 1.0/(TMath::Sqrt(1.0 + ct*ct) * b); // q/p-C
|
---|
200 | A(3, 1) = 1000.; // z0-z0 conversion to mm
|
---|
201 | A(4, 3) = -1.0 / (1.0 + ct*ct); // theta - cot(theta)
|
---|
202 | A(4, 4) = -C*ct / (b*pow(1.0 + ct*ct,3.0/2.0)); // q/p-cot(theta)
|
---|
203 | //
|
---|
204 | TMatrixDSym Cv = Cov;
|
---|
205 | TMatrixD At(5, 5);
|
---|
206 | At.Transpose(A);
|
---|
207 | Cv.Similarity(At);
|
---|
208 | TMatrixDSub(cACTS, 0, 4, 0, 4) = Cv;
|
---|
209 | cACTS(5, 5) = 0.1; // Currently undefined: set to arbitrary value to avoid crashes
|
---|
210 | //
|
---|
211 | return cACTS;
|
---|
212 | }
|
---|
213 |
|
---|
214 | // Parameter conversion to ILC format
|
---|
215 | TVectorD ObsTrk::ParToILC(TVectorD Par)
|
---|
216 | {
|
---|
217 | TVectorD pILC(5); // Return vector
|
---|
218 | //
|
---|
219 | pILC(0) = Par(0)*1.0e3; // d0 in mm
|
---|
220 | pILC(1) = Par(1); // phi0 is unchanged
|
---|
221 | pILC(2) = -2 * Par(2)*1.0e-3; // w in mm^-1
|
---|
222 | pILC(3) = Par(3)*1.0e3; // z0 in mm
|
---|
223 | pILC(4) = Par(4); // tan(lambda) = cot(theta)
|
---|
224 | //
|
---|
225 | return pILC;
|
---|
226 | }
|
---|
227 | // Covariance conversion to ILC format
|
---|
228 | TMatrixDSym ObsTrk::CovToILC(TMatrixDSym Cov)
|
---|
229 | {
|
---|
230 | TMatrixDSym cILC(5); cILC.Zero();
|
---|
231 | //
|
---|
232 | // Fill derivative matrix
|
---|
233 | TMatrixD A(5, 5); A.Zero();
|
---|
234 | //
|
---|
235 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
236 | A(1, 1) = 1.0; // phi0-phi0
|
---|
237 | A(2, 2) = -2.0e-3; // w-C
|
---|
238 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
239 | A(4, 4) = 1.0; // tan(lambda) - cot(theta)
|
---|
240 | //
|
---|
241 | TMatrixDSym Cv = Cov;
|
---|
242 | TMatrixD At(5, 5);
|
---|
243 | At.Transpose(A);
|
---|
244 | Cv.Similarity(At);
|
---|
245 | cILC = Cv;
|
---|
246 | //
|
---|
247 | return cILC;
|
---|
248 | }
|
---|
249 |
|
---|
250 |
|
---|
251 |
|
---|
252 |
|
---|