1 | #ifndef _H_TransportMatrices_
|
---|
2 | #define _H_TransportMatrices_
|
---|
3 |
|
---|
4 | /*
|
---|
5 | ---- Hector the simulator ----
|
---|
6 | A fast simulator of particles through generic beamlines.
|
---|
7 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
8 |
|
---|
9 | http://www.fynu.ucl.ac.be/hector.html
|
---|
10 |
|
---|
11 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
12 | Université Catholique de Louvain (UCL)
|
---|
13 | */
|
---|
14 |
|
---|
15 | /** \file H_TransportMatrices.h
|
---|
16 | * \brief Contains the matrices defining the propagation of the beam.
|
---|
17 | *
|
---|
18 | * The matrices should have the following units :
|
---|
19 | * \f$
|
---|
20 | * \mathbf{M} =
|
---|
21 | * \left(
|
---|
22 | * \begin{array}{cccccc}
|
---|
23 | * 1 & 1/m & 1 & 1/m & GeV/m & 1 \\
|
---|
24 | * m & 1 & m & 1 & GeV & 1 \\
|
---|
25 | * 1 & 1/m & 1 & 1/m & GeV/m & 1\\
|
---|
26 | * m & 1 & m & 1 & GeV & 1 \\
|
---|
27 | * m/GeV & 1/GeV & m/GeV & 1/GeV & 1 & 1\\
|
---|
28 | * 1 & 1 & 1 & 1 & 1 & 1 \\
|
---|
29 | * \end{array}
|
---|
30 | * \right)
|
---|
31 | * \f$
|
---|
32 | *
|
---|
33 | * Note : convention is transposed compared to ref : x0.M = x1
|
---|
34 | * instead of x1 = M.x0 so the matrices should be transposed.
|
---|
35 | */
|
---|
36 |
|
---|
37 | // ROOT #includes
|
---|
38 | #include "TMatrix.h"
|
---|
39 | using namespace std;
|
---|
40 |
|
---|
41 | /// transport matrix dimension
|
---|
42 | #define MDIM 6
|
---|
43 |
|
---|
44 | /// \f$ \omega(k,l) = l \sqrt{|k|} \f$ is needed for the quadrupole matrices
|
---|
45 | extern double omega(const double , const double );
|
---|
46 |
|
---|
47 | /// \f$ r(k) \f$ is needed for the dipole matrices
|
---|
48 | extern double radius(const double );
|
---|
49 |
|
---|
50 | /// Prints the matrix
|
---|
51 | extern void printMatrix(TMatrix * );
|
---|
52 |
|
---|
53 | /// \brief Returns the matrix for a vertically focussing quadrupole (H_VerticalQuadrupole)
|
---|
54 |
|
---|
55 | /*! \f$
|
---|
56 | \mathbf{M} =
|
---|
57 | \left(
|
---|
58 | \begin{array}{cccccc}
|
---|
59 | \cosh(\omega) & \sqrt{k}\sinh(\omega) & 0 & 0 & 0 & 0\\
|
---|
60 | (1/\sqrt{k})sinh(\omega) & \cosh(\omega) & 0 & 0 & 0 &0\\
|
---|
61 | 0 & 0 & \cos(\omega) & -\sqrt{k}sin(\omega) & 0 &0\\
|
---|
62 | 0 & 0 & (1/\sqrt{k})*sin(\omega) & \cos(\omega) & 0 &0\\
|
---|
63 | 0 & 0 & 0 & 0 & 1 &0\\
|
---|
64 | 0 & 0 & 0 & 0 & 0 &1 \\
|
---|
65 | \end{array}
|
---|
66 | \right)
|
---|
67 | \f$
|
---|
68 |
|
---|
69 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ \omega(k,l) = l \sqrt{|k|} \f$
|
---|
70 | */
|
---|
71 |
|
---|
72 | extern TMatrix vquadmat(const float , const float , const float , const float , const float);
|
---|
73 |
|
---|
74 | /// \brief Returns the matrix for a horizontally focussing quadrupole (H_HorizontalQuadrupole)
|
---|
75 |
|
---|
76 | /*! \f$
|
---|
77 | \mathbf{M} =
|
---|
78 | \left(
|
---|
79 | \begin{array}{cccccc}
|
---|
80 | \cos(\omega) & -\sqrt{k}\sin(\omega) & 0 & 0 & 0 & 0\\
|
---|
81 | (1/\sqrt{k})sin(\omega) & \cos(\omega) & 0 & 0 & 0 & 0\\
|
---|
82 | 0 & 0 & \cosh(\omega) & \sqrt{k}sinh(\omega) & 0 & 0\\
|
---|
83 | 0 & 0 & (1/\sqrt{k})sinh(\omega) & \cosh(\omega) & 0 & 0\\
|
---|
84 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
85 | 0 & 0 & 0 & 0 & 0 & 1 \\
|
---|
86 | \end{array}
|
---|
87 | \right)
|
---|
88 | \f$
|
---|
89 |
|
---|
90 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ \omega(k,l) = l \sqrt{|k|} \f$
|
---|
91 | */
|
---|
92 | extern TMatrix hquadmat(const float , const float , const float , const float , const float);
|
---|
93 |
|
---|
94 | /// \brief Returns the matrix for a rectangle dipole (H_RectangularDipole)
|
---|
95 |
|
---|
96 | /*! \f$
|
---|
97 | \mathbf{M} =
|
---|
98 | \left(
|
---|
99 | \begin{array}{cccccc}
|
---|
100 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
101 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
102 | 0 & 0 & 1 & 0 & 0 &0\\
|
---|
103 | 0 & 0 & l & 1 & 0 &0\\
|
---|
104 | 2r \sin^2(l/2r)/BE & \sin(l/r)/BE & 0 & 0 & 1 &0\\
|
---|
105 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
106 | \end{array}
|
---|
107 | \right)
|
---|
108 | \f$
|
---|
109 |
|
---|
110 | assuming \f$ 1/r = k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ BE = 7000 GeV \f$.
|
---|
111 |
|
---|
112 | Attention : numerical sensitivity with \f$ r*(1-\cos(l/r))/BE\f$. \\
|
---|
113 | Using \f$ 2\sin^2(x/2) = 1-\cos(x)\f$ instead (see the variable called "simp")
|
---|
114 | */
|
---|
115 | extern TMatrix rdipmat(const float, const float , const float , const float , const float);
|
---|
116 |
|
---|
117 | /// \brief Returns the matrix for a sector dipole (H_SectorDipole)
|
---|
118 |
|
---|
119 | /*! The matrix is different if the bending is on or off.
|
---|
120 |
|
---|
121 | \f$
|
---|
122 | \mathbf{M_{bending-off}} =
|
---|
123 | \left(
|
---|
124 | \begin{array}{cccccc}
|
---|
125 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
126 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
127 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
128 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
129 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
130 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
131 | \end{array}
|
---|
132 | \right)
|
---|
133 | \f$
|
---|
134 |
|
---|
135 | \f$
|
---|
136 | \mathbf{M_{bending-on}} =
|
---|
137 | \left(
|
---|
138 | \begin{array}{cccccc}
|
---|
139 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
140 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
141 | 0 & 0 & 1 & 0 & 0 &0\\
|
---|
142 | 0 & 0 & l & 1 & 0 &0\\
|
---|
143 | 2r \sin^2(l/2r)/BE & \sin(l/r)/BE & 0 & 0 & 1 & 0\\
|
---|
144 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
145 | \end{array}
|
---|
146 | \right)
|
---|
147 | \f$
|
---|
148 |
|
---|
149 | assuming \f$ 1/r = k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
150 |
|
---|
151 | */
|
---|
152 | extern TMatrix sdipmat(const float, const float , const float , const float , const float );
|
---|
153 |
|
---|
154 | /// \brief Returns the matrix for a drift (H_Drift)
|
---|
155 |
|
---|
156 | /*! \f$
|
---|
157 | \mathbf{M} =
|
---|
158 | \left(
|
---|
159 | \begin{array}{cccccc}
|
---|
160 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
161 | l & 1 & 0 & 0 & 0 & 0\\
|
---|
162 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
163 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
164 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
165 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
166 | \end{array}
|
---|
167 | \right)
|
---|
168 | \f$
|
---|
169 | */
|
---|
170 | extern TMatrix driftmat(const float );
|
---|
171 |
|
---|
172 | /// \brief Returns the matrix for a horizontal kicker (H_HorizontalKicker)
|
---|
173 | /*! \f$
|
---|
174 | \mathbf{M} =
|
---|
175 | \left(
|
---|
176 | \begin{array}{cccccc}
|
---|
177 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
178 | l & 1 & 0 & 0 & 0 & 0 \\
|
---|
179 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
180 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
181 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
182 | l \tan(k) /2 & k & 0 & 0 & 0 & 1\\
|
---|
183 | \end{array}
|
---|
184 | \right)
|
---|
185 | \f$
|
---|
186 |
|
---|
187 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
188 | */
|
---|
189 | extern TMatrix hkickmat(const float, const float , const float , const float, const float);
|
---|
190 |
|
---|
191 | /// \brief Returns the matrix for a vertical kicker (H_VerticalKicker)
|
---|
192 | /*! \f$
|
---|
193 | \mathbf{M} =
|
---|
194 | \left(
|
---|
195 | \begin{array}{cccccc}
|
---|
196 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
197 | l & 1 & 0 & 0 & 0 & 0 \\
|
---|
198 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
199 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
200 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
201 | 0 & 0 & l \tan(k) /2 & k & 0 & 1\\
|
---|
202 | \end{array}
|
---|
203 | \right)
|
---|
204 | \f$
|
---|
205 |
|
---|
206 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
207 | */
|
---|
208 | extern TMatrix vkickmat(const float, const float , const float , const float , const float);
|
---|
209 |
|
---|
210 |
|
---|
211 |
|
---|
212 | #endif
|
---|