[5b822e5] | 1 | #ifndef _H_TransportMatrices_
|
---|
| 2 | #define _H_TransportMatrices_
|
---|
| 3 |
|
---|
| 4 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
---|
| 5 | * *
|
---|
| 6 | * --<--<-- A fast simulator --<--<-- *
|
---|
| 7 | * / --<--<-- of particle --<--<-- *
|
---|
| 8 | * ----HECTOR----< *
|
---|
| 9 | * \ -->-->-- transport through -->-->-- *
|
---|
| 10 | * -->-->-- generic beamlines -->-->-- *
|
---|
| 11 | * *
|
---|
| 12 | * JINST 2:P09005 (2007) *
|
---|
| 13 | * X Rouby, J de Favereau, K Piotrzkowski (CP3) *
|
---|
| 14 | * http://www.fynu.ucl.ac.be/hector.html *
|
---|
| 15 | * *
|
---|
| 16 | * Center for Cosmology, Particle Physics and Phenomenology *
|
---|
| 17 | * Universite catholique de Louvain *
|
---|
| 18 | * Louvain-la-Neuve, Belgium *
|
---|
| 19 | * *
|
---|
| 20 | * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
---|
| 21 |
|
---|
| 22 | /** \file H_TransportMatrices.h
|
---|
| 23 | * \brief Contains the matrices defining the propagation of the beam.
|
---|
| 24 | *
|
---|
| 25 | * The matrices should have the following units :
|
---|
| 26 | * \f$
|
---|
| 27 | * \mathbf{M} =
|
---|
| 28 | * \left(
|
---|
| 29 | * \begin{array}{cccccc}
|
---|
| 30 | * 1 & 1/m & 1 & 1/m & GeV/m & 1 \\
|
---|
| 31 | * m & 1 & m & 1 & GeV & 1 \\
|
---|
| 32 | * 1 & 1/m & 1 & 1/m & GeV/m & 1\\
|
---|
| 33 | * m & 1 & m & 1 & GeV & 1 \\
|
---|
| 34 | * m/GeV & 1/GeV & m/GeV & 1/GeV & 1 & 1\\
|
---|
| 35 | * 1 & 1 & 1 & 1 & 1 & 1 \\
|
---|
| 36 | * \end{array}
|
---|
| 37 | * \right)
|
---|
| 38 | * \f$
|
---|
| 39 | *
|
---|
| 40 | * Note : convention is transposed compared to ref : x0.M = x1
|
---|
| 41 | * instead of x1 = M.x0 so the matrices should be transposed.
|
---|
| 42 | */
|
---|
| 43 |
|
---|
| 44 | // ROOT #includes
|
---|
| 45 | #include "TMatrix.h"
|
---|
| 46 | using namespace std;
|
---|
| 47 |
|
---|
| 48 | /// transport matrix dimension
|
---|
| 49 | #define MDIM 6
|
---|
| 50 |
|
---|
| 51 | /// \f$ \omega(k,l) = l \sqrt{|k|} \f$ is needed for the quadrupole matrices
|
---|
| 52 | extern double omega(const double , const double );
|
---|
| 53 |
|
---|
| 54 | /// \f$ r(k) \f$ is needed for the dipole matrices
|
---|
| 55 | extern double radius(const double );
|
---|
| 56 |
|
---|
| 57 | /// Prints the matrix
|
---|
| 58 | extern void printMatrix(TMatrix);
|
---|
| 59 |
|
---|
| 60 | /// \brief Returns the matrix for a vertically focussing quadrupole (H_VerticalQuadrupole)
|
---|
| 61 |
|
---|
| 62 | /*! \f$
|
---|
| 63 | \mathbf{M} =
|
---|
| 64 | \left(
|
---|
| 65 | \begin{array}{cccccc}
|
---|
| 66 | \cosh(\omega) & \sqrt{k}\sinh(\omega) & 0 & 0 & 0 & 0\\
|
---|
| 67 | (1/\sqrt{k})sinh(\omega) & \cosh(\omega) & 0 & 0 & 0 &0\\
|
---|
| 68 | 0 & 0 & \cos(\omega) & -\sqrt{k}sin(\omega) & 0 &0\\
|
---|
| 69 | 0 & 0 & (1/\sqrt{k})*sin(\omega) & \cos(\omega) & 0 &0\\
|
---|
| 70 | 0 & 0 & 0 & 0 & 1 &0\\
|
---|
| 71 | 0 & 0 & 0 & 0 & 0 &1 \\
|
---|
| 72 | \end{array}
|
---|
| 73 | \right)
|
---|
| 74 | \f$
|
---|
| 75 |
|
---|
| 76 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ \omega(k,l) = l \sqrt{|k|} \f$
|
---|
| 77 | */
|
---|
| 78 |
|
---|
| 79 | extern TMatrix vquadmat(const float , const float , const float , const float , const float);
|
---|
| 80 |
|
---|
| 81 | /// \brief Returns the matrix for a horizontally focussing quadrupole (H_HorizontalQuadrupole)
|
---|
| 82 |
|
---|
| 83 | /*! \f$
|
---|
| 84 | \mathbf{M} =
|
---|
| 85 | \left(
|
---|
| 86 | \begin{array}{cccccc}
|
---|
| 87 | \cos(\omega) & -\sqrt{k}\sin(\omega) & 0 & 0 & 0 & 0\\
|
---|
| 88 | (1/\sqrt{k})sin(\omega) & \cos(\omega) & 0 & 0 & 0 & 0\\
|
---|
| 89 | 0 & 0 & \cosh(\omega) & \sqrt{k}sinh(\omega) & 0 & 0\\
|
---|
| 90 | 0 & 0 & (1/\sqrt{k})sinh(\omega) & \cosh(\omega) & 0 & 0\\
|
---|
| 91 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 92 | 0 & 0 & 0 & 0 & 0 & 1 \\
|
---|
| 93 | \end{array}
|
---|
| 94 | \right)
|
---|
| 95 | \f$
|
---|
| 96 |
|
---|
| 97 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ \omega(k,l) = l \sqrt{|k|} \f$
|
---|
| 98 | */
|
---|
| 99 | extern TMatrix hquadmat(const float , const float , const float , const float , const float);
|
---|
| 100 |
|
---|
| 101 | /// \brief Returns the matrix for a rectangle dipole (H_RectangularDipole)
|
---|
| 102 |
|
---|
| 103 | /*! \f$
|
---|
| 104 | \mathbf{M} =
|
---|
| 105 | \left(
|
---|
| 106 | \begin{array}{cccccc}
|
---|
| 107 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 108 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 109 | 0 & 0 & 1 & 0 & 0 &0\\
|
---|
| 110 | 0 & 0 & l & 1 & 0 &0\\
|
---|
| 111 | 2r \sin^2(l/2r)/BE & \sin(l/r)/BE & 0 & 0 & 1 &0\\
|
---|
| 112 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 113 | \end{array}
|
---|
| 114 | \right)
|
---|
| 115 | \f$
|
---|
| 116 |
|
---|
| 117 | assuming \f$ 1/r = k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ BE = 7000 GeV \f$.
|
---|
| 118 |
|
---|
| 119 | Attention : numerical sensitivity with \f$ r*(1-\cos(l/r))/BE\f$. \\
|
---|
| 120 | Using \f$ 2\sin^2(x/2) = 1-\cos(x)\f$ instead (see the variable called "simp")
|
---|
| 121 | */
|
---|
| 122 | extern TMatrix rdipmat(const float, const float , const float , const float , const float);
|
---|
| 123 |
|
---|
| 124 | /// \brief Returns the matrix for a sector dipole (H_SectorDipole)
|
---|
| 125 |
|
---|
| 126 | /*! The matrix is different if the bending is on or off.
|
---|
| 127 |
|
---|
| 128 | \f$
|
---|
| 129 | \mathbf{M_{bending-off}} =
|
---|
| 130 | \left(
|
---|
| 131 | \begin{array}{cccccc}
|
---|
| 132 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 133 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 134 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 135 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 136 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 137 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 138 | \end{array}
|
---|
| 139 | \right)
|
---|
| 140 | \f$
|
---|
| 141 |
|
---|
| 142 | \f$
|
---|
| 143 | \mathbf{M_{bending-on}} =
|
---|
| 144 | \left(
|
---|
| 145 | \begin{array}{cccccc}
|
---|
| 146 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 147 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 148 | 0 & 0 & 1 & 0 & 0 &0\\
|
---|
| 149 | 0 & 0 & l & 1 & 0 &0\\
|
---|
| 150 | 2r \sin^2(l/2r)/BE & \sin(l/r)/BE & 0 & 0 & 1 & 0\\
|
---|
| 151 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 152 | \end{array}
|
---|
| 153 | \right)
|
---|
| 154 | \f$
|
---|
| 155 |
|
---|
| 156 | assuming \f$ 1/r = k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
| 157 |
|
---|
| 158 | */
|
---|
| 159 | extern TMatrix sdipmat(const float, const float , const float , const float , const float );
|
---|
| 160 |
|
---|
| 161 | /// \brief Returns the matrix for a drift (H_Drift)
|
---|
| 162 |
|
---|
| 163 | /*! \f$
|
---|
| 164 | \mathbf{M} =
|
---|
| 165 | \left(
|
---|
| 166 | \begin{array}{cccccc}
|
---|
| 167 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
| 168 | l & 1 & 0 & 0 & 0 & 0\\
|
---|
| 169 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 170 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 171 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 172 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 173 | \end{array}
|
---|
| 174 | \right)
|
---|
| 175 | \f$
|
---|
| 176 | */
|
---|
| 177 | extern TMatrix driftmat(const float );
|
---|
| 178 |
|
---|
| 179 | /// \brief Returns the matrix for a horizontal kicker (H_HorizontalKicker)
|
---|
| 180 | /*! \f$
|
---|
| 181 | \mathbf{M} =
|
---|
| 182 | \left(
|
---|
| 183 | \begin{array}{cccccc}
|
---|
| 184 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
| 185 | l & 1 & 0 & 0 & 0 & 0 \\
|
---|
| 186 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 187 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 188 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 189 | l \tan(k) /2 & k & 0 & 0 & 0 & 1\\
|
---|
| 190 | \end{array}
|
---|
| 191 | \right)
|
---|
| 192 | \f$
|
---|
| 193 |
|
---|
| 194 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
| 195 | */
|
---|
| 196 | extern TMatrix hkickmat(const float, const float , const float , const float, const float);
|
---|
| 197 |
|
---|
| 198 | /// \brief Returns the matrix for a vertical kicker (H_VerticalKicker)
|
---|
| 199 | /*! \f$
|
---|
| 200 | \mathbf{M} =
|
---|
| 201 | \left(
|
---|
| 202 | \begin{array}{cccccc}
|
---|
| 203 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
| 204 | l & 1 & 0 & 0 & 0 & 0 \\
|
---|
| 205 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 206 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 207 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 208 | 0 & 0 & l \tan(k) /2 & k & 0 & 1\\
|
---|
| 209 | \end{array}
|
---|
| 210 | \right)
|
---|
| 211 | \f$
|
---|
| 212 |
|
---|
| 213 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
| 214 | */
|
---|
| 215 | extern TMatrix vkickmat(const float, const float , const float , const float , const float);
|
---|
| 216 |
|
---|
| 217 |
|
---|
| 218 |
|
---|
| 219 | #endif
|
---|