[5b822e5] | 1 | #ifndef _H_TransportMatrices_
|
---|
| 2 | #define _H_TransportMatrices_
|
---|
| 3 |
|
---|
[3c40083] | 4 | /*
|
---|
| 5 | ---- Hector the simulator ----
|
---|
| 6 | A fast simulator of particles through generic beamlines.
|
---|
| 7 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
| 8 |
|
---|
| 9 | http://www.fynu.ucl.ac.be/hector.html
|
---|
| 10 |
|
---|
| 11 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
| 12 | Université Catholique de Louvain (UCL)
|
---|
| 13 | */
|
---|
[5b822e5] | 14 |
|
---|
| 15 | /** \file H_TransportMatrices.h
|
---|
| 16 | * \brief Contains the matrices defining the propagation of the beam.
|
---|
| 17 | *
|
---|
| 18 | * The matrices should have the following units :
|
---|
| 19 | * \f$
|
---|
| 20 | * \mathbf{M} =
|
---|
| 21 | * \left(
|
---|
| 22 | * \begin{array}{cccccc}
|
---|
| 23 | * 1 & 1/m & 1 & 1/m & GeV/m & 1 \\
|
---|
| 24 | * m & 1 & m & 1 & GeV & 1 \\
|
---|
| 25 | * 1 & 1/m & 1 & 1/m & GeV/m & 1\\
|
---|
| 26 | * m & 1 & m & 1 & GeV & 1 \\
|
---|
| 27 | * m/GeV & 1/GeV & m/GeV & 1/GeV & 1 & 1\\
|
---|
| 28 | * 1 & 1 & 1 & 1 & 1 & 1 \\
|
---|
| 29 | * \end{array}
|
---|
| 30 | * \right)
|
---|
| 31 | * \f$
|
---|
| 32 | *
|
---|
| 33 | * Note : convention is transposed compared to ref : x0.M = x1
|
---|
| 34 | * instead of x1 = M.x0 so the matrices should be transposed.
|
---|
| 35 | */
|
---|
| 36 |
|
---|
| 37 | // ROOT #includes
|
---|
| 38 | #include "TMatrix.h"
|
---|
| 39 | using namespace std;
|
---|
| 40 |
|
---|
| 41 | /// transport matrix dimension
|
---|
| 42 | #define MDIM 6
|
---|
| 43 |
|
---|
| 44 | /// \f$ \omega(k,l) = l \sqrt{|k|} \f$ is needed for the quadrupole matrices
|
---|
| 45 | extern double omega(const double , const double );
|
---|
| 46 |
|
---|
| 47 | /// \f$ r(k) \f$ is needed for the dipole matrices
|
---|
| 48 | extern double radius(const double );
|
---|
| 49 |
|
---|
| 50 | /// Prints the matrix
|
---|
[3c40083] | 51 | extern void printMatrix(TMatrix * );
|
---|
[5b822e5] | 52 |
|
---|
| 53 | /// \brief Returns the matrix for a vertically focussing quadrupole (H_VerticalQuadrupole)
|
---|
| 54 |
|
---|
| 55 | /*! \f$
|
---|
| 56 | \mathbf{M} =
|
---|
| 57 | \left(
|
---|
| 58 | \begin{array}{cccccc}
|
---|
| 59 | \cosh(\omega) & \sqrt{k}\sinh(\omega) & 0 & 0 & 0 & 0\\
|
---|
| 60 | (1/\sqrt{k})sinh(\omega) & \cosh(\omega) & 0 & 0 & 0 &0\\
|
---|
| 61 | 0 & 0 & \cos(\omega) & -\sqrt{k}sin(\omega) & 0 &0\\
|
---|
| 62 | 0 & 0 & (1/\sqrt{k})*sin(\omega) & \cos(\omega) & 0 &0\\
|
---|
| 63 | 0 & 0 & 0 & 0 & 1 &0\\
|
---|
| 64 | 0 & 0 & 0 & 0 & 0 &1 \\
|
---|
| 65 | \end{array}
|
---|
| 66 | \right)
|
---|
| 67 | \f$
|
---|
| 68 |
|
---|
| 69 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ \omega(k,l) = l \sqrt{|k|} \f$
|
---|
| 70 | */
|
---|
| 71 |
|
---|
| 72 | extern TMatrix vquadmat(const float , const float , const float , const float , const float);
|
---|
| 73 |
|
---|
| 74 | /// \brief Returns the matrix for a horizontally focussing quadrupole (H_HorizontalQuadrupole)
|
---|
| 75 |
|
---|
| 76 | /*! \f$
|
---|
| 77 | \mathbf{M} =
|
---|
| 78 | \left(
|
---|
| 79 | \begin{array}{cccccc}
|
---|
| 80 | \cos(\omega) & -\sqrt{k}\sin(\omega) & 0 & 0 & 0 & 0\\
|
---|
| 81 | (1/\sqrt{k})sin(\omega) & \cos(\omega) & 0 & 0 & 0 & 0\\
|
---|
| 82 | 0 & 0 & \cosh(\omega) & \sqrt{k}sinh(\omega) & 0 & 0\\
|
---|
| 83 | 0 & 0 & (1/\sqrt{k})sinh(\omega) & \cosh(\omega) & 0 & 0\\
|
---|
| 84 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 85 | 0 & 0 & 0 & 0 & 0 & 1 \\
|
---|
| 86 | \end{array}
|
---|
| 87 | \right)
|
---|
| 88 | \f$
|
---|
| 89 |
|
---|
| 90 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ \omega(k,l) = l \sqrt{|k|} \f$
|
---|
| 91 | */
|
---|
| 92 | extern TMatrix hquadmat(const float , const float , const float , const float , const float);
|
---|
| 93 |
|
---|
| 94 | /// \brief Returns the matrix for a rectangle dipole (H_RectangularDipole)
|
---|
| 95 |
|
---|
| 96 | /*! \f$
|
---|
| 97 | \mathbf{M} =
|
---|
| 98 | \left(
|
---|
| 99 | \begin{array}{cccccc}
|
---|
| 100 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 101 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 102 | 0 & 0 & 1 & 0 & 0 &0\\
|
---|
| 103 | 0 & 0 & l & 1 & 0 &0\\
|
---|
| 104 | 2r \sin^2(l/2r)/BE & \sin(l/r)/BE & 0 & 0 & 1 &0\\
|
---|
| 105 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 106 | \end{array}
|
---|
| 107 | \right)
|
---|
| 108 | \f$
|
---|
| 109 |
|
---|
| 110 | assuming \f$ 1/r = k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$ and \f$ BE = 7000 GeV \f$.
|
---|
| 111 |
|
---|
| 112 | Attention : numerical sensitivity with \f$ r*(1-\cos(l/r))/BE\f$. \\
|
---|
| 113 | Using \f$ 2\sin^2(x/2) = 1-\cos(x)\f$ instead (see the variable called "simp")
|
---|
| 114 | */
|
---|
| 115 | extern TMatrix rdipmat(const float, const float , const float , const float , const float);
|
---|
| 116 |
|
---|
| 117 | /// \brief Returns the matrix for a sector dipole (H_SectorDipole)
|
---|
| 118 |
|
---|
| 119 | /*! The matrix is different if the bending is on or off.
|
---|
| 120 |
|
---|
| 121 | \f$
|
---|
| 122 | \mathbf{M_{bending-off}} =
|
---|
| 123 | \left(
|
---|
| 124 | \begin{array}{cccccc}
|
---|
| 125 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 126 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 127 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 128 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 129 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 130 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 131 | \end{array}
|
---|
| 132 | \right)
|
---|
| 133 | \f$
|
---|
| 134 |
|
---|
| 135 | \f$
|
---|
| 136 | \mathbf{M_{bending-on}} =
|
---|
| 137 | \left(
|
---|
| 138 | \begin{array}{cccccc}
|
---|
| 139 | \cos(l/r) & \frac{-1}{r} \sin(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 140 | r \sin(l/r) & \cos(l/r) & 0 & 0 & 0 & 0\\
|
---|
| 141 | 0 & 0 & 1 & 0 & 0 &0\\
|
---|
| 142 | 0 & 0 & l & 1 & 0 &0\\
|
---|
| 143 | 2r \sin^2(l/2r)/BE & \sin(l/r)/BE & 0 & 0 & 1 & 0\\
|
---|
| 144 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 145 | \end{array}
|
---|
| 146 | \right)
|
---|
| 147 | \f$
|
---|
| 148 |
|
---|
| 149 | assuming \f$ 1/r = k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
| 150 |
|
---|
| 151 | */
|
---|
| 152 | extern TMatrix sdipmat(const float, const float , const float , const float , const float );
|
---|
| 153 |
|
---|
| 154 | /// \brief Returns the matrix for a drift (H_Drift)
|
---|
| 155 |
|
---|
| 156 | /*! \f$
|
---|
| 157 | \mathbf{M} =
|
---|
| 158 | \left(
|
---|
| 159 | \begin{array}{cccccc}
|
---|
| 160 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
| 161 | l & 1 & 0 & 0 & 0 & 0\\
|
---|
| 162 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 163 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 164 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 165 | 0 & 0 & 0 & 0 & 0 & 1\\
|
---|
| 166 | \end{array}
|
---|
| 167 | \right)
|
---|
| 168 | \f$
|
---|
| 169 | */
|
---|
| 170 | extern TMatrix driftmat(const float );
|
---|
| 171 |
|
---|
| 172 | /// \brief Returns the matrix for a horizontal kicker (H_HorizontalKicker)
|
---|
| 173 | /*! \f$
|
---|
| 174 | \mathbf{M} =
|
---|
| 175 | \left(
|
---|
| 176 | \begin{array}{cccccc}
|
---|
| 177 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
| 178 | l & 1 & 0 & 0 & 0 & 0 \\
|
---|
| 179 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 180 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 181 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 182 | l \tan(k) /2 & k & 0 & 0 & 0 & 1\\
|
---|
| 183 | \end{array}
|
---|
| 184 | \right)
|
---|
| 185 | \f$
|
---|
| 186 |
|
---|
| 187 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
| 188 | */
|
---|
| 189 | extern TMatrix hkickmat(const float, const float , const float , const float, const float);
|
---|
| 190 |
|
---|
| 191 | /// \brief Returns the matrix for a vertical kicker (H_VerticalKicker)
|
---|
| 192 | /*! \f$
|
---|
| 193 | \mathbf{M} =
|
---|
| 194 | \left(
|
---|
| 195 | \begin{array}{cccccc}
|
---|
| 196 | 1 & 0 & 0 & 0 & 0 & 0\\
|
---|
| 197 | l & 1 & 0 & 0 & 0 & 0 \\
|
---|
| 198 | 0 & 0 & 1 & 0 & 0 & 0\\
|
---|
| 199 | 0 & 0 & l & 1 & 0 & 0\\
|
---|
| 200 | 0 & 0 & 0 & 0 & 1 & 0\\
|
---|
| 201 | 0 & 0 & l \tan(k) /2 & k & 0 & 1\\
|
---|
| 202 | \end{array}
|
---|
| 203 | \right)
|
---|
| 204 | \f$
|
---|
| 205 |
|
---|
| 206 | assuming \f$ k = k_{0} \times \frac{p_{0}}{p_{0} - dp} \times \frac{q_{particle}}{q_{proton}} \f$
|
---|
| 207 | */
|
---|
| 208 | extern TMatrix vkickmat(const float, const float , const float , const float , const float);
|
---|
| 209 |
|
---|
| 210 |
|
---|
| 211 |
|
---|
| 212 | #endif
|
---|