1 | /*
|
---|
2 | ---- Hector the simulator ----
|
---|
3 | A fast simulator of particles through generic beamlines.
|
---|
4 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
5 |
|
---|
6 | http://www.fynu.ucl.ac.be/hector.html
|
---|
7 |
|
---|
8 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
9 | Université Catholique de Louvain (UCL)
|
---|
10 | */
|
---|
11 |
|
---|
12 | /// \file H_RecRPObject.cc
|
---|
13 | /// \brief Classes aiming at reconstruction particle properties
|
---|
14 |
|
---|
15 | // C++ #includes
|
---|
16 | #include <iostream>
|
---|
17 | #include <iomanip>
|
---|
18 |
|
---|
19 | // ROOT #includes
|
---|
20 | //#include "TGraph.h"
|
---|
21 | //#include "TF1.h"
|
---|
22 | //#include "TCanvas.h"
|
---|
23 |
|
---|
24 | // local #includes
|
---|
25 | #include "H_RecRPObject.h"
|
---|
26 | #include "H_RomanPot.h"
|
---|
27 | #include "H_BeamParticle.h"
|
---|
28 | using namespace std;
|
---|
29 |
|
---|
30 | H_RecRPObject::H_RecRPObject() {
|
---|
31 | x1 = 0.;
|
---|
32 | x2 = 0.;
|
---|
33 | y1 = 0.;
|
---|
34 | y2 = 0.;
|
---|
35 | s1 = 0.;
|
---|
36 | s2 = 0.;
|
---|
37 | corr1_TM = 0;
|
---|
38 | corr2_TM = 0;
|
---|
39 | corr1_AM = 0;
|
---|
40 | corr2_AM = 0;
|
---|
41 | thx = NOT_YET_COMPUTED;
|
---|
42 | thy = NOT_YET_COMPUTED;
|
---|
43 | x0 = NOT_YET_COMPUTED;
|
---|
44 | y0 = NOT_YET_COMPUTED;
|
---|
45 | energy = NOT_YET_COMPUTED;
|
---|
46 | virtuality = NOT_YET_COMPUTED;
|
---|
47 | matrp1 = new TMatrix(MDIM,MDIM);
|
---|
48 | matrp2 = new TMatrix(MDIM,MDIM);
|
---|
49 | thebeam = new H_AbstractBeamLine();
|
---|
50 | }
|
---|
51 |
|
---|
52 | H_RecRPObject::H_RecRPObject(const float S1, const float S2, const H_AbstractBeamLine& beamline) {
|
---|
53 | x1 = 0;
|
---|
54 | x2 = 0;
|
---|
55 | y1 = 0;
|
---|
56 | y2 = 0;
|
---|
57 | s1 = S1;
|
---|
58 | s2 = S2;
|
---|
59 | thx = NOT_YET_COMPUTED;
|
---|
60 | thy = NOT_YET_COMPUTED;
|
---|
61 | x0 = NOT_YET_COMPUTED;
|
---|
62 | y0 = NOT_YET_COMPUTED;
|
---|
63 | energy = NOT_YET_COMPUTED;
|
---|
64 | virtuality = NOT_YET_COMPUTED;
|
---|
65 | // matrp1 = new TMatrix(MDIM,MDIM);
|
---|
66 | // matrp2 = new TMatrix(MDIM,MDIM);
|
---|
67 | thebeam = new H_AbstractBeamLine(beamline);
|
---|
68 | H_RomanPot * rp1 = new H_RomanPot("rp1",s1,0);
|
---|
69 | thebeam->add(rp1);
|
---|
70 | H_RomanPot * rp2 = new H_RomanPot("rp2",s2,0);
|
---|
71 | thebeam->add(rp2);
|
---|
72 | matrp1 = new TMatrix(*(thebeam->getPartialMatrix("rp1",0.,MP,QP)));
|
---|
73 | matrp2 = new TMatrix(*(thebeam->getPartialMatrix("rp2",0.,MP,QP)));
|
---|
74 |
|
---|
75 | corr1_TM = getECorrectionFactor(0,TM);
|
---|
76 | corr2_TM = getECorrectionFactor(1,TM);
|
---|
77 | corr1_AM = getECorrectionFactor(0,AM);
|
---|
78 | corr2_AM = getECorrectionFactor(1,AM);
|
---|
79 | // cout << corr1_TM << " " << corr2_TM << endl;
|
---|
80 | // cout << corr1_AM << " " << corr2_AM << endl;
|
---|
81 | }
|
---|
82 |
|
---|
83 | H_RecRPObject::H_RecRPObject(const H_RecRPObject& r) {
|
---|
84 | x1 = r.x1;
|
---|
85 | x2 = r.x2;
|
---|
86 | y1 = r.y1;
|
---|
87 | y2 = r.y2;
|
---|
88 | s1 = r.s1;
|
---|
89 | s2 = r.s2;
|
---|
90 | x0 = r.x0;
|
---|
91 | y0 = r.y0;
|
---|
92 | thx = r.thx;
|
---|
93 | thy = r.thy;
|
---|
94 | energy = r.energy;
|
---|
95 | virtuality = r.virtuality;
|
---|
96 | matrp1 = new TMatrix(*(r.matrp1));
|
---|
97 | matrp2 = new TMatrix(*(r.matrp2));
|
---|
98 | corr1_TM = r.corr1_TM;
|
---|
99 | corr2_TM = r.corr2_TM;
|
---|
100 | corr1_AM = r.corr1_AM;
|
---|
101 | corr2_AM = r.corr2_AM;
|
---|
102 | thebeam = new H_AbstractBeamLine(*(r.thebeam));
|
---|
103 | }
|
---|
104 |
|
---|
105 | H_RecRPObject& H_RecRPObject::operator=(const H_RecRPObject& r) {
|
---|
106 | if(this==&r) return *this;
|
---|
107 | x1 = r.x1;
|
---|
108 | x2 = r.x2;
|
---|
109 | y1 = r.y1;
|
---|
110 | y2 = r.y2;
|
---|
111 | s1 = r.s1;
|
---|
112 | s2 = r.s2;
|
---|
113 | x0 = r.x0;
|
---|
114 | y0 = r.y0;
|
---|
115 | thx = r.thx;
|
---|
116 | thy = r.thy;
|
---|
117 | energy = r.energy;
|
---|
118 | virtuality = r.virtuality;
|
---|
119 | matrp1 = new TMatrix(*(r.matrp1));
|
---|
120 | matrp2 = new TMatrix(*(r.matrp2));
|
---|
121 | corr1_TM = r.corr1_TM;
|
---|
122 | corr2_TM = r.corr2_TM;
|
---|
123 | corr1_AM = r.corr1_AM;
|
---|
124 | corr2_AM = r.corr2_AM;
|
---|
125 | thebeam = new H_AbstractBeamLine(*(r.thebeam));
|
---|
126 | return *this;
|
---|
127 | }
|
---|
128 |
|
---|
129 | float H_RecRPObject::getECorrectionFactor(const unsigned int facn, const unsigned int method) {
|
---|
130 | /*
|
---|
131 | * commented out because CMSSW does not want any TGraph/TCanvas/TFit
|
---|
132 | *
|
---|
133 | * to be fixed !
|
---|
134 | * X.R. 07/05/2009
|
---|
135 | *
|
---|
136 | float beta1 = ((thebeam->getPartialMatrix("rp1",0,MP,QP))->GetMatrixArray())[1*MDIM];
|
---|
137 | float beta2 = ((thebeam->getPartialMatrix("rp2",0,MP,QP))->GetMatrixArray())[1*MDIM];
|
---|
138 | float disp1 = ((thebeam->getPartialMatrix("rp1",0,MP,QP))->GetMatrixArray())[4*MDIM]*URAD;
|
---|
139 | float disp2 = ((thebeam->getPartialMatrix("rp2",0,MP,QP))->GetMatrixArray())[4*MDIM]*URAD;
|
---|
140 | const int n = 20; //using 20 points to get a good quadratic fit
|
---|
141 | float ee[n], rece[n];
|
---|
142 |
|
---|
143 | for(int i = 0; i < n; i++) {
|
---|
144 | ee[i] = 10 + i*200./((float)n-1);
|
---|
145 | H_BeamParticle p1;
|
---|
146 | p1.emitGamma(ee[i],0.);
|
---|
147 | p1.computePath(thebeam,1);
|
---|
148 | p1.propagate(s1);
|
---|
149 | float x1 = p1.getX();
|
---|
150 | p1.propagate(s2);
|
---|
151 | float x2 = p1.getX();
|
---|
152 | switch (method) {
|
---|
153 | case TM: { rece[i] = -x1/disp1; }; break;
|
---|
154 | case AM: { rece[i] = -(beta2*x1-beta1*x2)/(beta2*disp1-beta1*disp2); }; break;
|
---|
155 | case PM: { rece[i] = -x1/disp1; cout<<"this method has not been implemented, using trivial reconstruction"<<endl; } break;
|
---|
156 | default: { rece[i] = -(beta2*x1-beta1*x2)/(beta2*disp1-beta1*disp2); }; break;
|
---|
157 | }
|
---|
158 | ee[i] = ee[i] - rece[i];
|
---|
159 | }
|
---|
160 | char mytitle[50];
|
---|
161 | sprintf(mytitle,"c_%d",method);
|
---|
162 | // TCanvas*c = new TCanvas();
|
---|
163 | // c->SetTitle(mytitle);
|
---|
164 | TGraph* g1 = new TGraph(n,rece,ee);
|
---|
165 | TF1* fit1 = new TF1("fit1","[0]*x + [1]*x*x",0,100);
|
---|
166 | g1->Fit("fit1","Q");
|
---|
167 | float xfact = fit1->GetParameter(facn);
|
---|
168 | // g1->Draw("APL");
|
---|
169 | delete g1;
|
---|
170 | delete fit1;
|
---|
171 |
|
---|
172 | return xfact;
|
---|
173 | */
|
---|
174 | return 1.;
|
---|
175 | }
|
---|
176 |
|
---|
177 |
|
---|
178 | void H_RecRPObject::setPositions(const float X1, const float Y1, const float X2, const float Y2) {
|
---|
179 | thx = NOT_YET_COMPUTED;
|
---|
180 | thy = NOT_YET_COMPUTED;
|
---|
181 | x0 = NOT_YET_COMPUTED;
|
---|
182 | y0 = NOT_YET_COMPUTED;
|
---|
183 | energy = NOT_YET_COMPUTED;
|
---|
184 | virtuality = NOT_YET_COMPUTED;
|
---|
185 | x1 = X1;
|
---|
186 | x2 = X2;
|
---|
187 | y1 = Y1;
|
---|
188 | y2 = Y2;
|
---|
189 |
|
---|
190 | return;
|
---|
191 | }
|
---|
192 |
|
---|
193 | void H_RecRPObject::printProperties() const {
|
---|
194 | cout << "Roman pot variables :" << endl;
|
---|
195 | cout << "\t pot 1 : (x,y,s) = (" << x1 << " , " << y1 << " , " << s1 << " )" << endl;
|
---|
196 | cout << "\t pot 2 : (x,y,s) = (" << x2 << " , " << y2 << " , " << s2 << " )" << endl;
|
---|
197 | cout << endl << "Reconstructed variables :" << endl;
|
---|
198 | cout << "\t IP : (x,y) = (" << x0 << " , " << y0 << ") and (theta_x, theta_y) = (" << thx << " , " << thy << " )" << endl;
|
---|
199 | if (energy==NOT_YET_COMPUTED) cout << "\t Energy not yet computed" << endl;
|
---|
200 | else cout << "\t Energy = " << energy << " GeV" << endl;
|
---|
201 | if (virtuality==NOT_YET_COMPUTED) cout << "\t Virtuality not yet computed" << endl;
|
---|
202 | else cout << "\t Virtuality = " << virtuality << " GeV^2" << endl;
|
---|
203 | cout << endl;
|
---|
204 | }
|
---|
205 |
|
---|
206 | float H_RecRPObject::getE() {
|
---|
207 | if(energy==NOT_YET_COMPUTED) {
|
---|
208 | cout<<"Please first compute energy using your favourite method"<<endl;
|
---|
209 | return NOT_YET_COMPUTED;
|
---|
210 | }
|
---|
211 | return energy;
|
---|
212 | }
|
---|
213 |
|
---|
214 | float H_RecRPObject::getE(const unsigned int method) {
|
---|
215 | switch (method) {
|
---|
216 | case TM: {energy = computeE_TM();} break;
|
---|
217 | case AM: {energy = computeE_AM();} break;
|
---|
218 | case PM: {energy = computeE_PM();} break;
|
---|
219 | default: {energy = computeE_AM();} break;
|
---|
220 | };
|
---|
221 | return energy;
|
---|
222 | }
|
---|
223 |
|
---|
224 | float H_RecRPObject::computeX0() {
|
---|
225 | if(energy==NOT_YET_COMPUTED) {
|
---|
226 | cout<<"Please first compute energy using your favourite method"<<endl;
|
---|
227 | return NOT_YET_COMPUTED;
|
---|
228 | }
|
---|
229 | float alpha1 = (matrp1->GetMatrixArray())[0];
|
---|
230 | float alpha2 = (matrp2->GetMatrixArray())[0];
|
---|
231 | float disp1 = (matrp1->GetMatrixArray())[4*MDIM]*URAD;
|
---|
232 | float disp2 = (matrp2->GetMatrixArray())[4*MDIM]*URAD;
|
---|
233 | x0 = (disp2*x1-disp1*x2)/(disp2*alpha1-disp1*alpha2);
|
---|
234 | return x0;
|
---|
235 | }
|
---|
236 |
|
---|
237 | float H_RecRPObject::computeY0() {
|
---|
238 | if(energy==NOT_YET_COMPUTED) {
|
---|
239 | cout<<"Please first compute energy using your favourite method"<<endl;
|
---|
240 | return NOT_YET_COMPUTED;
|
---|
241 | }
|
---|
242 | float gamma1 = (matrp1->GetMatrixArray())[2*MDIM+2];
|
---|
243 | float gamma2 = (matrp2->GetMatrixArray())[2*MDIM+2];
|
---|
244 | float delta1 = (matrp1->GetMatrixArray())[3*MDIM+2];
|
---|
245 | float delta2 = (matrp2->GetMatrixArray())[3*MDIM+2];
|
---|
246 | y0 = (delta2*y1-delta1*y2)/(delta2*gamma1-delta1*gamma2);
|
---|
247 | return y0;
|
---|
248 | }
|
---|
249 |
|
---|
250 | float H_RecRPObject::computeTX() {
|
---|
251 | if(energy==NOT_YET_COMPUTED) {
|
---|
252 | cout<<"Please first compute energy using your favourite method"<<endl;
|
---|
253 | return NOT_YET_COMPUTED;
|
---|
254 | }
|
---|
255 | float beta1 = (matrp1->GetMatrixArray())[1*MDIM];
|
---|
256 | float beta2 = (matrp2->GetMatrixArray())[1*MDIM];
|
---|
257 | float disp1 = (matrp1->GetMatrixArray())[4*MDIM]*URAD;
|
---|
258 | float disp2 = (matrp2->GetMatrixArray())[4*MDIM]*URAD;
|
---|
259 | // computes thx (murad)
|
---|
260 | thx = (x1*disp2-x2*disp1)/(beta1*disp2-beta2*disp1);
|
---|
261 | return thx;
|
---|
262 | }
|
---|
263 |
|
---|
264 | float H_RecRPObject::computeTY() {
|
---|
265 | if(energy==NOT_YET_COMPUTED) {
|
---|
266 | cout<<"Please first compute energy using your favourite method"<<endl;
|
---|
267 | return NOT_YET_COMPUTED;
|
---|
268 | }
|
---|
269 | float gamma1 = (matrp1->GetMatrixArray())[2*MDIM+2];
|
---|
270 | float gamma2 = (matrp2->GetMatrixArray())[2*MDIM+2];
|
---|
271 | float delta1 = (matrp1->GetMatrixArray())[3*MDIM+2];
|
---|
272 | float delta2 = (matrp2->GetMatrixArray())[3*MDIM+2];
|
---|
273 | // computes thy (murad)
|
---|
274 | thy = (y1*gamma2-y2*gamma1)/(delta1*gamma2-delta2*gamma1);
|
---|
275 | return thy;
|
---|
276 | }
|
---|
277 |
|
---|
278 | float H_RecRPObject::computeE_TM() {
|
---|
279 | // computes the emitted particle energy, from the trivial method
|
---|
280 | float disp = ((thebeam->getPartialMatrix("rp1",0,MP,QP))->GetMatrixArray())[4*MDIM]*URAD;
|
---|
281 | energy = -x1/disp;
|
---|
282 | // corrects for nonlinear effects
|
---|
283 | energy = (1+corr1_TM)*energy + corr2_TM*energy*energy;
|
---|
284 | // sets the rp matrices at obtained energy
|
---|
285 | delete matrp1;
|
---|
286 | delete matrp2;
|
---|
287 | matrp1 = new TMatrix(*(thebeam->getPartialMatrix("rp1",energy,MP,QP)));
|
---|
288 | matrp2 = new TMatrix(*(thebeam->getPartialMatrix("rp2",energy,MP,QP)));
|
---|
289 | // returns ...
|
---|
290 | return energy;
|
---|
291 | }
|
---|
292 |
|
---|
293 | float H_RecRPObject::computeE_AM() {
|
---|
294 | // computes the emitted particle energy, from the angle compensation method, iterative way
|
---|
295 | const int N = 10;
|
---|
296 | delete matrp1;
|
---|
297 | delete matrp2;
|
---|
298 | matrp1 = new TMatrix(*(thebeam->getPartialMatrix("rp1",0,MP,QP)));
|
---|
299 | float disp = (matrp1->GetMatrixArray())[4*MDIM]*URAD;
|
---|
300 | delete matrp1;
|
---|
301 | energy = -x1/disp;
|
---|
302 | matrp1 = new TMatrix(*(thebeam->getPartialMatrix("rp1",energy,MP,QP)));
|
---|
303 | matrp2 = new TMatrix(*(thebeam->getPartialMatrix("rp2",energy,MP,QP)));
|
---|
304 | float beta1 = (matrp1->GetMatrixArray())[1*MDIM];
|
---|
305 | float beta2 = (matrp2->GetMatrixArray())[1*MDIM];
|
---|
306 | float disp1 = (matrp1->GetMatrixArray())[4*MDIM]*URAD;
|
---|
307 | float disp2 = (matrp2->GetMatrixArray())[4*MDIM]*URAD;
|
---|
308 | for(int i = 0; i < N; i++) {
|
---|
309 | energy = -(beta2*x1-beta1*x2)/(beta2*disp1-beta1*disp2);
|
---|
310 | delete matrp1;
|
---|
311 | delete matrp2;
|
---|
312 | matrp1 = new TMatrix(*(thebeam->getPartialMatrix("rp1",energy,MP,QP)));
|
---|
313 | matrp2 = new TMatrix(*(thebeam->getPartialMatrix("rp2",energy,MP,QP)));
|
---|
314 | beta1 = (matrp1->GetMatrixArray())[1*MDIM];
|
---|
315 | beta2 = (matrp2->GetMatrixArray())[1*MDIM];
|
---|
316 | disp1 = (matrp1->GetMatrixArray())[4*MDIM]*URAD;
|
---|
317 | disp2 = (matrp2->GetMatrixArray())[4*MDIM]*URAD;
|
---|
318 | }
|
---|
319 | // returns ...
|
---|
320 | return energy;
|
---|
321 | }
|
---|
322 |
|
---|
323 | float H_RecRPObject::computeE_PM() {
|
---|
324 | cout<<"Not yet implemented, nothing done"<<endl;
|
---|
325 | energy = NOT_YET_COMPUTED;
|
---|
326 | return energy;
|
---|
327 | }
|
---|
328 |
|
---|
329 | float H_RecRPObject::computeQ2() {
|
---|
330 | // computes the emitted particle virtuality
|
---|
331 | // energy should be teconstructed first
|
---|
332 | if(energy==NOT_YET_COMPUTED) {
|
---|
333 | cout<<"Please first compute energy using your favourite method"<<endl;
|
---|
334 | return NOT_YET_COMPUTED;
|
---|
335 | }
|
---|
336 | // getting parameters for reconstructed particle energy
|
---|
337 | float beta1 = (matrp1->GetMatrixArray())[1*MDIM];
|
---|
338 | float beta2 = (matrp2->GetMatrixArray())[1*MDIM];
|
---|
339 | float gamma1 = (matrp1->GetMatrixArray())[2*MDIM+2];
|
---|
340 | float gamma2 = (matrp2->GetMatrixArray())[2*MDIM+2];
|
---|
341 | float delta1 = (matrp1->GetMatrixArray())[3*MDIM+2];
|
---|
342 | float delta2 = (matrp2->GetMatrixArray())[3*MDIM+2];
|
---|
343 | float disp1 = (matrp1->GetMatrixArray())[4*MDIM]*URAD;
|
---|
344 | float disp2 = (matrp2->GetMatrixArray())[4*MDIM]*URAD;
|
---|
345 | // angles reconstruction
|
---|
346 | float rec_thx = (x1*disp2-x2*disp1)/(beta1*disp2-beta2*disp1)/URAD;
|
---|
347 | float rec_thy = (y1*gamma2-y2*gamma1)/(delta1*gamma2-delta2*gamma1)/URAD;
|
---|
348 | // Q² reconstruction
|
---|
349 | virtuality = BE*(BE-energy)*(rec_thx*rec_thx+rec_thy*rec_thy);
|
---|
350 | // returns ...
|
---|
351 | return virtuality;
|
---|
352 | }
|
---|
353 |
|
---|