Fork me on GitHub

source: git/examples/geometry.C@ bf6ed57

ImprovedOutputFile Timing dual_readout llp
Last change on this file since bf6ed57 was bf6ed57, checked in by Christophe Delaere <christophe.delaere@…>, 10 years ago

First example displaying the geometry in 3D

The geometry.C example script reads the acceptance from the Delphes
configuration and generates from there a 3D representation of the
detector in ROOT (using the geometry package).

This initial version makes few assumptions: the detector must be
symmetric and have a single calorimeter. The module names are fixed.
Therefore, the script works with CMS and ATLAS geometries but not with
the prototype FCC geometry.

  • Property mode set to 100644
File size: 14.6 KB
Line 
1#include <set>
2#include <map>
3#include <utility>
4#include <vector>
5#include "TGeoManager.h"
6#include "TGeoVolume.h"
7#include "TGeoMedium.h"
8#include "TGeoNode.h"
9#include "TGeoCompositeShape.h"
10#include "TGeoMatrix.h"
11#include "TGeoTube.h"
12#include "TGeoCone.h"
13#include "TGeoArb8.h"
14//#include "../external/ExRootAnalysis/ExRootConfReader.h"
15#include "TF2.h"
16#include "TH1F.h"
17#include "TMath.h"
18#include "TSystem.h"
19
20using namespace std;
21
22// TODO: asymmetric detector
23// TODO: generalize for FCC-like config: >1 calorimeter & flexibility in module names
24class Delphes3DGeometry {
25 public:
26 Delphes3DGeometry(TGeoManager *geom = NULL);
27 ~Delphes3DGeometry() {}
28
29 void readFile(const char* filename);
30
31 void setContingency(Double_t contingency) { contingency_ = contingency; }
32 void setCaloBarrelThickness(Double_t thickness) { calo_barrel_thickness_ = thickness; }
33 void setCaloEndcapThickness(Double_t thickness) { calo_endcap_thickness_ = thickness; }
34 void setMuonSystemThickness(Double_t thickness) { muonSystem_thickn_ = thickness; }
35
36 TGeoVolume* getDetector(bool withTowers = true);
37
38 private:
39 void addTracker(TGeoVolume *top);
40 void addCalorimeters(TGeoVolume *top);
41 void addMuonDets(TGeoVolume *top);
42 void addCaloTowers(TGeoVolume *top);
43
44 private:
45
46 TGeoManager *geom_;
47
48 TGeoMedium *vacuum_;
49 TGeoMedium *tkmed_;
50 TGeoMedium *calomed_;
51 TGeoMedium *mudetmed_;
52
53 Double_t contingency_;
54 Double_t calo_barrel_thickness_;
55 Double_t calo_endcap_thickness_;
56 Double_t muonSystem_thickn_;
57 Double_t tk_radius_;
58 Double_t tk_length_;
59 Double_t calo_endcap_etamax_;
60 Double_t muonSystem_etamax_;
61 Double_t calo_barrel_innerRadius_;
62 Double_t calo_endcap_etamin_;
63 Double_t calo_endcap_innerRadius1_;
64 Double_t calo_endcap_innerRadius2_;
65 Double_t calo_endcap_outerRadius1_;
66 Double_t calo_endcap_outerRadius2_;
67 Double_t calo_endcap_coneThickness_;
68 Double_t calo_endcap_diskThickness_;
69
70 set< pair<Double_t, Int_t> > caloBinning_;
71
72};
73
74Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom) {
75
76 //--- the geometry manager
77 geom_ = geom==NULL? gGeoManager : geom;
78
79 //--- define some materials
80 TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
81 TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); // placeholder
82
83 //--- define some media
84 TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
85 TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl);
86 vacuum_ = Vacuum;
87 tkmed_ = Vacuum; // placeholder
88 calomed_ = Al; // placeholder
89 mudetmed_ = Al; // placeholder
90
91 // custom parameters
92 contingency_ = 10.;
93 calo_barrel_thickness_ = 50.;
94 calo_endcap_thickness_ = 75.;
95 muonSystem_thickn_ = contingency_;
96
97 // read these parameters from the Delphes Card (with default values)
98 tk_radius_ = 120.;
99 tk_length_ = 150.;
100 calo_endcap_etamax_ = 2.6;
101 muonSystem_etamax_ = 2.4;
102}
103
104void Delphes3DGeometry::readFile(const char *configFile) {
105
106 ExRootConfReader *confReader = new ExRootConfReader;
107 confReader->ReadFile(configFile);
108
109 tk_radius_ = confReader->GetDouble("ParticlePropagator::Radius", 1.0)*100; // tk_radius
110 tk_length_ = confReader->GetDouble("ParticlePropagator::HalfLength", 3.0)*100; // tk_length
111
112 TString muonEffFormula = confReader->GetString("MuonEfficiency::EfficiencyFormula","abs(eta)<2.0");
113 muonEffFormula.ReplaceAll("pt","x");
114 muonEffFormula.ReplaceAll("eta","y");
115 muonEffFormula.ReplaceAll("phi","0.");
116 TF2* muEffFunction = new TF2("muEff",muonEffFormula,0,1000,-10,10);
117 TH1F etaHisto("eta","eta",100,5.,-5.);
118 Double_t pt,eta;
119 for(int i=0;i<1000;++i) {
120 muEffFunction->GetRandom2(pt,eta);
121 etaHisto.Fill(eta);
122 }
123 Int_t bin = -1;
124 bin = etaHisto.FindFirstBinAbove(0.5);
125 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
126 bin = etaHisto.FindLastBinAbove(0.5);
127 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
128 muonSystem_etamax_ = TMath::Max(fabs(etamin),fabs(etamax)); // muonSystem_etamax
129 delete muEffFunction;
130
131 caloBinning_.clear(); // calo binning
132 ExRootConfParam paramEtaBins, paramPhiBins;
133 ExRootConfParam param = confReader->GetParam("Calorimeter::EtaPhiBins");
134 Int_t size = param.GetSize();
135 for(int i = 0; i < size/2; ++i) {
136 paramEtaBins = param[i*2];
137 paramPhiBins = param[i*2+1];
138 assert(paramEtaBins.GetSize()==1);
139 caloBinning_.insert(std::make_pair(paramEtaBins[0].GetDouble(),paramPhiBins.GetSize()-1));
140 }
141
142 calo_endcap_etamax_ = TMath::Max(fabs(caloBinning_.begin()->first),fabs(caloBinning_.rbegin()->first)); // calo_endcap_etamax_
143
144 delete confReader;
145
146 calo_barrel_innerRadius_ = tk_radius_+contingency_;
147 calo_endcap_etamin_ = -log(tk_radius_/(2*tk_length_));
148 calo_endcap_innerRadius1_ = tk_length_*2.*exp(-calo_endcap_etamax_)/(1-exp(-2.*calo_endcap_etamax_));
149 calo_endcap_innerRadius2_ = (tk_length_+calo_endcap_thickness_)*2.*exp(-calo_endcap_etamax_)/(1-exp(-2.*calo_endcap_etamax_));
150 calo_endcap_outerRadius1_ = tk_radius_;
151 calo_endcap_outerRadius2_ = tk_radius_+calo_barrel_thickness_;
152 calo_endcap_coneThickness_ = calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin_)) / (2.*exp(-calo_endcap_etamin_));
153 calo_endcap_diskThickness_ = TMath::Max(0.,calo_endcap_thickness_-calo_endcap_coneThickness_);
154}
155
156TGeoVolume* Delphes3DGeometry::getDetector(bool withTowers) {
157 TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, 1500, 1500, 2300); // determine the size from what we know about the detector TODO
158 addTracker(top);
159 addCalorimeters(top);
160 addMuonDets(top);
161 if (withTowers) {
162 addCaloTowers(top);
163 }
164 return top;
165}
166
167void Delphes3DGeometry::addTracker(TGeoVolume *top) {
168 // tracker: a cylinder
169 TGeoVolume *tracker = geom_->MakeTube("tracker", tkmed_, 0., tk_radius_, tk_length_);
170 tracker->SetLineColor(kYellow);
171 top->AddNode(tracker,1);
172}
173
174void Delphes3DGeometry::addCalorimeters(TGeoVolume *top) {
175 // calorimeters: tube truncated in eta + cones
176
177 /*TGeoTube *calo_barrel_cylinder =*/ new TGeoTube("calo_barrel_cylinder",calo_barrel_innerRadius_,tk_radius_+calo_barrel_thickness_+contingency_,tk_length_+calo_barrel_thickness_);
178 /*TGeoCone *calo_endcap_cone =*/ new TGeoCone("calo_endcap_cone",calo_endcap_coneThickness_/2.,calo_endcap_innerRadius1_,calo_endcap_outerRadius1_,calo_endcap_innerRadius2_,calo_endcap_outerRadius2_);
179 /*TGeoTube *calo_endcap_disk =*/ new TGeoTube("calo_endcap_disk",calo_endcap_innerRadius2_,tk_radius_+calo_barrel_thickness_,calo_endcap_diskThickness_/2.);
180 TGeoTranslation *tr1 = new TGeoTranslation("tr1",0., 0., (calo_endcap_coneThickness_+calo_endcap_diskThickness_)/2.);
181 tr1->RegisterYourself();
182 TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape("calo_endcap_cs","calo_endcap_cone+calo_endcap_disk:tr1");
183 TGeoTranslation *trc1 = new TGeoTranslation("calo_endcap1_position",0.,0., tk_length_+calo_endcap_coneThickness_/2.);
184 trc1->RegisterYourself();
185 TGeoRotation *negz = new TGeoRotation("negz",0,180,0);
186 TGeoCombiTrans *trc2 = new TGeoCombiTrans("calo_endcap2_position",0.,0.,-(tk_length_+calo_endcap_coneThickness_/2.),negz);
187 trc2->RegisterYourself();
188 TGeoTranslation *trc1c = new TGeoTranslation("calo_endcap1_position_cont",0.,0., tk_length_+calo_endcap_coneThickness_/2.+contingency_);
189 trc1c->RegisterYourself();
190 TGeoCombiTrans *trc2c = new TGeoCombiTrans("calo_endcap2_position_cont",0.,0.,-(tk_length_+calo_endcap_coneThickness_/2.)-contingency_,negz);
191 trc2c->RegisterYourself();
192 TGeoVolume *calo_endcap = new TGeoVolume("calo_endcap",calo_endcap_cs,calomed_);
193 TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape("calo_barrel_cs","calo_barrel_cylinder-calo_endcap_cs:calo_endcap1_position-calo_endcap_cs:calo_endcap2_position");
194 TGeoVolume *calo_barrel = new TGeoVolume("calo_barrel",calo_barrel_cs,calomed_);
195 calo_endcap->SetLineColor(kViolet);
196 calo_endcap->SetFillColor(kViolet);
197 calo_barrel->SetLineColor(kRed);
198 top->AddNode(calo_endcap,1,trc1c);
199 top->AddNode(calo_endcap,2,trc2c);
200 top->AddNode(calo_barrel,1);
201}
202
203void Delphes3DGeometry::addMuonDets(TGeoVolume *top) {
204
205 // muon system: tube + disks
206 Double_t muonSystem_radius = tk_radius_+calo_barrel_thickness_+2*contingency_;
207 Double_t muonSystem_length = tk_length_+TMath::Max(calo_endcap_coneThickness_,calo_endcap_thickness_)+2*contingency_;
208 Double_t muonSystem_rmin = muonSystem_length*2.*exp(-muonSystem_etamax_)/(1-exp(-2.*muonSystem_etamax_));
209 TGeoVolume *muon_barrel = geom_->MakeTube("muon_barrel",mudetmed_,muonSystem_radius,muonSystem_radius+muonSystem_thickn_,muonSystem_length);
210 muon_barrel->SetLineColor(kBlue);
211 top->AddNode(muon_barrel,1);
212 TGeoVolume *muon_endcap = geom_->MakeTube("muon_endcap",mudetmed_,muonSystem_rmin,muonSystem_radius+muonSystem_thickn_,muonSystem_thickn_/2.);
213 muon_endcap->SetLineColor(kBlue);
214 TGeoTranslation *trm1 = new TGeoTranslation("muonEndcap1_position",0.,0.,muonSystem_length);
215 trm1->RegisterYourself();
216 TGeoTranslation *trm2 = new TGeoTranslation("muonEndcap2_position",0.,0.,-muonSystem_length);
217 trm1->RegisterYourself();
218 top->AddNode(muon_endcap,1,trm1);
219 top->AddNode(muon_endcap,1,trm2);
220}
221
222void Delphes3DGeometry::addCaloTowers(TGeoVolume *top) {
223
224 TGeoVolume* calo_endcap = top->GetNode("calo_endcap_1")->GetVolume();
225 TGeoVolume* calo_barrel = top->GetNode("calo_barrel_1")->GetVolume();
226
227 // calo towers in the barrel
228 Double_t vertices[16] = {0.,0.,0.,0.,0.,0.,0.,0.}; // summit of the pyramid
229 Double_t R = tk_radius_+calo_barrel_thickness_+2*contingency_; // radius of the muons system = height of the pyramid
230 Int_t nEtaBins = caloBinning_.size();
231 // this rotation is to make the tower point "up"
232 TGeoRotation* initTowerRot = new TGeoRotation("initTowerRot",0.,90.,0.);
233 TGeoCombiTrans* initTower = new TGeoCombiTrans("initTower",0.,-R/2.,0.,initTowerRot);
234 initTower->RegisterYourself();
235 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
236 // phi bins represented by rotations around z
237 Double_t *y = new Double_t[nEtaBins];
238 Double_t *dx = new Double_t[nEtaBins];
239 Int_t *nphi = new Int_t[nEtaBins];
240 Int_t etaslice = 0;
241 std::map<std::pair<int,int>, TGeoRotation*> phirotations;
242 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning_.begin(); bin!=caloBinning_.end();++bin) {
243 if(abs(bin->first)>calo_endcap_etamin_) continue; // only in the barrel
244 nphi[etaslice] = bin->second;
245 y[etaslice] = 0.5*R*(1-exp(-2*bin->first))/exp(-bin->first);
246 Double_t phiRotationAngle = 360./nphi[etaslice];
247 dx[etaslice] = R*tan(TMath::Pi()*phiRotationAngle/360.);
248 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
249 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("phi%d_%d",etaslice,phislice),phiRotationAngle*phislice,0.,0.);
250 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
251 }
252 ++etaslice;
253 }
254 nEtaBins = ++etaslice;
255 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
256 vertices[8] = -dx[i]; vertices[9] = y[i];
257 vertices[10] = -dx[i]; vertices[11] = y[i+1];
258 vertices[12] = dx[i]; vertices[13] = y[i+1];
259 vertices[14] = dx[i]; vertices[15] = y[i];
260 /*TGeoArb8 *tower =*/ new TGeoArb8(Form("tower%d",i),R/2., vertices); // tower in the proper eta slice, at phi=0
261 // intersection between the tower and the calo_barrel
262 TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("ftower%d_cs",i),Form("tower%d:initTower*calo_barrel_cs",i));
263 TGeoVolume *finaltower = new TGeoVolume(Form("ftower%d",i),finaltower_cs,calomed_);
264 finaltower->SetLineColor(kRed);
265 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
266 calo_barrel->AddNode(finaltower,j,phirotations[make_pair(i,j)]);
267 }
268 }
269 delete[] y;
270 delete[] dx;
271 delete[] nphi;
272 //the towers in the forward region
273 R = tk_length_+calo_endcap_thickness_+3*contingency_; // Z of the muons system = height of the pyramid
274 nEtaBins = caloBinning_.size();
275 // translation to bring the origin of the tower to (0,0,0)
276 TGeoTranslation* towerdz = new TGeoTranslation("towerdz",0.,0.,R/2.-(tk_length_+calo_endcap_coneThickness_/2.));
277 towerdz->RegisterYourself();
278 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
279 Double_t *r = new Double_t[nEtaBins];
280 nphi = new Int_t[nEtaBins];
281 etaslice = 0;
282 phirotations.clear();
283 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning_.begin(); bin!=caloBinning_.end();++bin) {
284 if(bin->first<calo_endcap_etamin_) continue; // only in the + endcap
285 r[etaslice] = R*2*exp(-bin->first)/(1-exp(-2*bin->first));
286 nphi[etaslice] = bin->second;
287 Double_t phiRotationAngle = 360./nphi[etaslice];
288 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
289 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("forward_phi%d_%d",etaslice,phislice),phiRotationAngle*phislice,0.,0.);
290 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
291 }
292 ++etaslice;
293 }
294 nEtaBins = etaslice;
295 for(int i=0;i<nEtaBins;++i) { // loop on the eta slices
296 vertices[8] = -r[i+1]*sin(TMath::Pi()/20.); vertices[9] = r[i+1]*cos(TMath::Pi()/20.);
297 vertices[10] = -r[i]*sin(TMath::Pi()/20.); vertices[11] = r[i]*cos(TMath::Pi()/20.);
298 vertices[12] = r[i]*sin(TMath::Pi()/20.); vertices[13] = r[i]*cos(TMath::Pi()/20.);
299 vertices[14] = r[i+1]*sin(TMath::Pi()/20.); vertices[15] = r[i+1]*cos(TMath::Pi()/20.);
300 /*TGeoArb8 *fwdtower =*/ new TGeoArb8(Form("fwdtower%d",i),R/2., vertices); // tower in the proper eta slice, at phi=0
301 // intersection between the tower and the calo_endcap
302 TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("ffwdtower%d_cs",i),Form("fwdtower%d:towerdz*calo_endcap_cs",i));
303 TGeoVolume *finalfwdtower = new TGeoVolume(Form("ffwdtower%d",i),finalfwdtower_cs,calomed_);
304 finalfwdtower->SetLineColor(kViolet);
305 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
306 calo_endcap->AddNode(finalfwdtower,j,phirotations[make_pair(i,j)]);
307 }
308 }
309 delete[] r;
310 delete[] nphi;
311}
312
313void geometry(const char* filename = "delphes_card_CMS.tcl")
314{
315 gSystem->Load("libGeom");
316 gSystem->Load("../libDelphes");
317 TGeoManager *geom = new TGeoManager("delphes", "Delphes geometry");
318
319 // make the top container volume -> designed to contain a "big" detector (ATLAS)
320 TGeoVolume *top = geom->MakeBox("TOP", 0, 1500, 1500, 2300);
321 geom->SetTopVolume(top);
322
323 // build the detector
324 Delphes3DGeometry det3D;
325 det3D.readFile(filename);
326 top->AddNode(det3D.getDetector(true),1);
327
328 // draw it
329 geom->CloseGeometry();
330 top->Draw();
331}
332
Note: See TracBrowser for help on using the repository browser.