Fork me on GitHub

source: git/display/Delphes3DGeometry.cc@ 5e6db08

ImprovedOutputFile Timing dual_readout llp
Last change on this file since 5e6db08 was 369744d, checked in by Christophe Delaere <christophe.delaere@…>, 10 years ago

Legal notice

  • Property mode set to 100644
File size: 19.0 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include "display/Delphes3DGeometry.h"
20#include <set>
21#include <map>
22#include <utility>
23#include <vector>
24#include <algorithm>
25#include <sstream>
26#include <cassert>
27#include "TGeoManager.h"
28#include "TGeoVolume.h"
29#include "TGeoMedium.h"
30#include "TGeoNode.h"
31#include "TGeoCompositeShape.h"
32#include "TGeoMatrix.h"
33#include "TGeoTube.h"
34#include "TGeoCone.h"
35#include "TGeoArb8.h"
36#include "external/ExRootAnalysis/ExRootConfReader.h"
37#include "classes/DelphesClasses.h"
38#include "TF2.h"
39#include "TH1F.h"
40#include "TMath.h"
41
42using namespace std;
43
44Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom) {
45
46 //--- the geometry manager
47 geom_ = geom==NULL? gGeoManager : geom;
48 //gGeoManager->DefaultColors();
49
50 //--- define some materials
51 TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
52 TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); // placeholder
53 matVacuum->SetTransparency(85);
54 matAl->SetTransparency(85);
55
56 //--- define some media
57 TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
58 TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl);
59 vacuum_ = Vacuum;
60 tkmed_ = Vacuum; // placeholder
61 calomed_ = Al; // placeholder
62 mudetmed_ = Al; // placeholder
63
64 // custom parameters
65 contingency_ = 10.;
66 calo_barrel_thickness_ = 50.;
67 calo_endcap_thickness_ = 75.;
68 muonSystem_thickn_ = 10.;
69
70 // read these parameters from the Delphes Card (with default values)
71 etaAxis_ = NULL;
72 phiAxis_ = NULL;
73 tk_radius_ = 120.;
74 tk_length_ = 150.;
75 tk_etamax_ = 3.0;
76 tk_Bz_ = 1.;
77 muonSystem_radius_ = 200.;
78}
79
80void Delphes3DGeometry::readFile(const char *configFile,
81 const char* ParticlePropagator, const char* TrackingEfficiency,
82 const char* MuonEfficiency, const char* Calorimeters) {
83
84 ExRootConfReader *confReader = new ExRootConfReader;
85 confReader->ReadFile(configFile);
86
87 tk_radius_ = confReader->GetDouble(Form("%s::Radius",ParticlePropagator), 1.0)*100.; // tk_radius
88 tk_length_ = confReader->GetDouble(Form("%s::HalfLength",ParticlePropagator), 3.0)*100.; // tk_length
89 tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz
90
91 {
92 TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",TrackingEfficiency),"abs(eta)<3.0");
93 tkEffFormula.ReplaceAll("pt","x");
94 tkEffFormula.ReplaceAll("eta","y");
95 tkEffFormula.ReplaceAll("phi","0.");
96 TF2* tkEffFunction = new TF2("tkEff",tkEffFormula,0,1000,-10,10);
97 TH1F etaHisto("eta","eta",100,5.,-5.);
98 Double_t pt,eta;
99 for(int i=0;i<1000;++i) {
100 tkEffFunction->GetRandom2(pt,eta);
101 etaHisto.Fill(eta);
102 }
103 Int_t bin = -1;
104 bin = etaHisto.FindFirstBinAbove(0.5);
105 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
106 bin = etaHisto.FindLastBinAbove(0.5);
107 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
108 tk_etamax_ = TMath::Max(fabs(etamin),fabs(etamax)); // tk_etamax
109 delete tkEffFunction;
110 }
111
112 {
113 muondets_.push_back("muons");
114 TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",MuonEfficiency),"abs(eta)<2.0");
115 muonEffFormula.ReplaceAll("pt","x");
116 muonEffFormula.ReplaceAll("eta","y");
117 muonEffFormula.ReplaceAll("phi","0.");
118 TF2* muEffFunction = new TF2("muEff",muonEffFormula,0,1000,-10,10);
119 TH1F etaHisto("eta2","eta2",100,5.,-5.);
120 Double_t pt,eta;
121 for(int i=0;i<1000;++i) {
122 muEffFunction->GetRandom2(pt,eta);
123 etaHisto.Fill(eta);
124 }
125 Int_t bin = -1;
126 bin = etaHisto.FindFirstBinAbove(0.5);
127 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
128 bin = etaHisto.FindLastBinAbove(0.5);
129 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
130 muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin),fabs(etamax)); // muonSystem_etamax
131 delete muEffFunction;
132 }
133
134 std::string s(Calorimeters);
135 std::replace( s.begin(), s.end(), ',', ' ' );
136 std::istringstream stream( s );
137 std::string word;
138 while (stream >> word) calorimeters_.push_back(word);
139
140 caloBinning_.clear(); // calo binning
141 for(std::vector<std::string>::const_iterator calo=calorimeters_.begin();calo!=calorimeters_.end(); ++calo) {
142 set< pair<Double_t, Int_t> > caloBinning;
143 ExRootConfParam paramEtaBins, paramPhiBins;
144 ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins",calo->c_str()));
145 Int_t size = param.GetSize();
146 for(int i = 0; i < size/2; ++i) {
147 paramEtaBins = param[i*2];
148 paramPhiBins = param[i*2+1];
149 assert(paramEtaBins.GetSize()==1);
150 caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(),paramPhiBins.GetSize()-1));
151 }
152 caloBinning_[*calo] = caloBinning;
153 }
154
155 set< pair<Double_t, Int_t> > caloBinning = caloBinning_[*calorimeters_.begin()];
156 Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo
157 unsigned int ii = 0;
158 for(set< pair<Double_t, Int_t> >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) {
159 etaBins[ii++] = itEtaSet->first;
160 }
161 etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins);
162 phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT
163
164 muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_+calo_barrel_thickness_)*calorimeters_.size() + muonSystem_thickn_;
165 muonSystem_length_ = tk_length_ + contingency_ + (contingency_+calo_endcap_thickness_)*calorimeters_.size() + muonSystem_thickn_;
166
167 delete confReader;
168
169}
170
171TGeoVolume* Delphes3DGeometry::getDetector(bool withTowers) {
172 // compute the envelope
173 Double_t system_radius = tk_radius_+calo_barrel_thickness_+3*contingency_;
174 Double_t system_length = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size()+contingency_;
175 // the detector volume
176 TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length);
177 // build the detector
178 std::pair<Double_t, Double_t> limits = addTracker(top);
179 Double_t radius = limits.first;
180 Double_t length = limits.second;
181 for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) {
182 limits = addCalorimeter(top,calo->c_str(),radius,length,caloBinning_[*calo]);
183 if (withTowers) {
184 addCaloTowers(top,calo->c_str(),radius,length,caloBinning_[*calo]);
185 }
186 radius = limits.first;
187 length = limits.second;
188 }
189 for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) {
190 limits = addMuonDets(top, muon->c_str(), radius, length);
191 radius = limits.first;
192 length = limits.second;
193 }
194 // return the result
195 return top;
196}
197
198std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top) {
199 // tracker: a cylinder with two cones substracted
200 new TGeoCone("forwardTkAcceptance",(tk_length_/2.+0.05),0.,tk_radius_,(tk_length_)*2.*exp(-tk_etamax_)/(1-exp(-2.*tk_etamax_)),tk_radius_);
201 TGeoTranslation *tr1 = new TGeoTranslation("tkacc1",0., 0., tk_length_/2.);
202 tr1->RegisterYourself();
203 TGeoRotation *negz = new TGeoRotation("tknegz",0,180,0);
204 negz->RegisterYourself();
205 TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2",0.,0.,-tk_length_/2.,negz);
206 tr2->RegisterYourself();
207 TGeoCompositeShape* tracker_cs = new TGeoCompositeShape("tracker_cs","forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2");
208 TGeoVolume *tracker = new TGeoVolume("tracker",tracker_cs,tkmed_);
209 tracker->SetLineColor(kYellow);
210 top->AddNode(tracker,1);
211 return std::make_pair(tk_radius_,tk_length_);
212}
213
214std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char* name,
215 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) {
216 // parameters derived from the inputs
217 Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first),fabs(caloBinning.rbegin()->first));
218 Double_t calo_barrel_innerRadius = innerBarrelRadius+contingency_;
219 Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_;
220 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength));
221 Double_t calo_endcap_innerRadius1 = innerBarrelLength*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax));
222 Double_t calo_endcap_innerRadius2 = (innerBarrelLength+calo_endcap_thickness_)*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax));
223 Double_t calo_endcap_outerRadius1 = innerBarrelRadius;
224 Double_t calo_endcap_outerRadius2 = innerBarrelRadius+calo_barrel_thickness_;
225 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_);
226 Double_t calo_endcap_diskThickness = TMath::Max(0.,calo_endcap_thickness_-calo_endcap_coneThickness);
227
228 // calorimeters: tube truncated in eta + cones
229 new TGeoTube(Form("%s_barrel_cylinder",name),calo_barrel_innerRadius,calo_barrel_innerRadius+calo_barrel_thickness_,calo_barrel_length);
230 new TGeoCone(Form("%s_endcap_cone",name),calo_endcap_coneThickness/2.,calo_endcap_innerRadius1,calo_endcap_outerRadius1,calo_endcap_innerRadius2,calo_endcap_outerRadius2);
231 new TGeoTube(Form("%s_endcap_disk",name),calo_endcap_innerRadius2,tk_radius_+calo_barrel_thickness_,calo_endcap_diskThickness/2.);
232 TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1",name),0., 0., (calo_endcap_coneThickness+calo_endcap_diskThickness)/2.);
233 tr1->RegisterYourself();
234 TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs",name),Form("%s_endcap_cone+%s_endcap_disk:%s_tr1",name,name,name));
235 TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.);
236 trc1->RegisterYourself();
237 TGeoRotation *negz = new TGeoRotation(Form("%s_negz",name),0,180,0);
238 TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.),negz);
239 trc2->RegisterYourself();
240 TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.+contingency_);
241 trc1c->RegisterYourself();
242 TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.)-contingency_,negz);
243 trc2c->RegisterYourself();
244 TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap",name),calo_endcap_cs,calomed_);
245 TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs",name),
246 Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position",name,name,name,name,name));
247 TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel",name),calo_barrel_cs,calomed_);
248 calo_endcap->SetLineColor(kViolet);
249 calo_endcap->SetFillColor(kViolet);
250 calo_barrel->SetLineColor(kRed);
251 top->AddNode(calo_endcap,1,trc1c);
252 top->AddNode(calo_endcap,2,trc2c);
253 top->AddNode(calo_barrel,1);
254 return std::make_pair(calo_barrel_innerRadius+calo_barrel_thickness_,innerBarrelLength+calo_endcap_thickness_+contingency_);
255}
256
257std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength) {
258 // muon system: tube + disks
259 Double_t muonSystem_radius = innerBarrelRadius + contingency_;
260 Double_t muonSystem_length = innerBarrelLength + contingency_;
261 Double_t muonSystem_rmin = muonSystem_length*2.*exp(-muonSystem_etamax_[name])/(1-exp(-2.*muonSystem_etamax_[name]));
262 TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel",name),mudetmed_,muonSystem_radius,muonSystem_radius+muonSystem_thickn_,muonSystem_length);
263 muon_barrel->SetLineColor(kBlue);
264 top->AddNode(muon_barrel,1);
265 TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap",name),mudetmed_,muonSystem_rmin,muonSystem_radius+muonSystem_thickn_,muonSystem_thickn_/2.);
266 muon_endcap->SetLineColor(kBlue);
267 TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position",name),0.,0.,muonSystem_length);
268 trm1->RegisterYourself();
269 TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position",name),0.,0.,-muonSystem_length);
270 trm1->RegisterYourself();
271 top->AddNode(muon_endcap,1,trm1);
272 top->AddNode(muon_endcap,2,trm2);
273 return std::make_pair(muonSystem_radius,muonSystem_length);
274}
275
276void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char* name,
277 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) {
278
279 TGeoVolume* calo_endcap = top->GetNode(Form("%s_endcap_1",name))->GetVolume();
280 TGeoVolume* calo_barrel = top->GetNode(Form("%s_barrel_1",name))->GetVolume();
281 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength));
282 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_);
283
284 // calo towers in the barrel
285 Double_t vertices[16] = {0.,0.,0.,0.,0.,0.,0.,0.}; // summit of the pyramid
286 Double_t R = tk_radius_ + contingency_+(contingency_+calo_barrel_thickness_)*calorimeters_.size(); // radius of the muons system = height of the pyramid
287 Int_t nEtaBins = caloBinning.size();
288 // this rotation is to make the tower point "up"
289 TGeoRotation* initTowerRot = new TGeoRotation(Form("%s_initTowerRot",name),0.,90.,0.);
290 TGeoCombiTrans* initTower = new TGeoCombiTrans(Form("%s_initTower",name),0.,-R/2.,0.,initTowerRot);
291 initTower->RegisterYourself();
292 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
293 // phi bins represented by rotations around z
294 Double_t *y = new Double_t[nEtaBins];
295 Double_t *dx = new Double_t[nEtaBins];
296 Int_t *nphi = new Int_t[nEtaBins];
297 Int_t etaslice = 0;
298 std::map<std::pair<int,int>, TGeoRotation*> phirotations;
299 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) {
300 if(abs(bin->first)>calo_endcap_etamin) continue; // only in the barrel
301 nphi[etaslice] = bin->second;
302 y[etaslice] = 0.5*R*(1-exp(-2*bin->first))/exp(-bin->first);
303 Double_t phiRotationAngle = 360./nphi[etaslice];
304 dx[etaslice] = R*tan(TMath::Pi()*phiRotationAngle/360.);
305 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
306 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.);
307 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
308 }
309 ++etaslice;
310 }
311 nEtaBins = etaslice;
312 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
313 vertices[8] = -dx[i]; vertices[9] = y[i];
314 vertices[10] = -dx[i]; vertices[11] = y[i+1];
315 vertices[12] = dx[i]; vertices[13] = y[i+1];
316 vertices[14] = dx[i]; vertices[15] = y[i];
317 new TGeoArb8(Form("%s_tower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0
318 // intersection between the tower and the calo_barrel
319 TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs",name,i),Form("%s_tower%d:%s_initTower*%s_barrel_cs",name,i,name,name));
320 TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d",name,i),finaltower_cs,calomed_);
321 finaltower->SetLineColor(kRed);
322 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
323 calo_barrel->AddNode(finaltower,j,phirotations[make_pair(i,j)]);
324 }
325 }
326 delete[] y;
327 delete[] dx;
328 delete[] nphi;
329 //the towers in the forward region
330 R = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size(); // Z of the muons system = height of the pyramid
331 nEtaBins = caloBinning.size();
332 // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place)
333 TGeoTranslation* towerdz = new TGeoTranslation(Form("%s_towerdz",name),0.,0.,R/2.-(innerBarrelLength+calo_endcap_coneThickness/2.));
334 towerdz->RegisterYourself();
335 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
336 Double_t *r = new Double_t[nEtaBins];
337 nphi = new Int_t[nEtaBins];
338 etaslice = 0;
339 phirotations.clear();
340 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) {
341 if(bin->first<calo_endcap_etamin) continue; // only in the + endcap
342 r[etaslice] = R*2*exp(-bin->first)/(1-exp(-2*bin->first));
343 nphi[etaslice] = bin->second;
344 Double_t phiRotationAngle = 360./nphi[etaslice];
345 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
346 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.);
347 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
348 }
349 ++etaslice;
350 }
351 nEtaBins = etaslice;
352 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
353 vertices[8] = -r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[9] = r[i+1]*cos(TMath::Pi()/nphi[i]);
354 vertices[10] = -r[i]*sin(TMath::Pi()/nphi[i]); vertices[11] = r[i]*cos(TMath::Pi()/nphi[i]);
355 vertices[12] = r[i]*sin(TMath::Pi()/nphi[i]); vertices[13] = r[i]*cos(TMath::Pi()/nphi[i]);
356 vertices[14] = r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[15] = r[i+1]*cos(TMath::Pi()/nphi[i]);
357 new TGeoArb8(Form("%sfwdtower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0
358 // intersection between the tower and the calo_endcap
359 TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs",name,i),Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs",name,i,name,name));
360 TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d",name,i),finalfwdtower_cs,calomed_);
361 finalfwdtower->SetLineColor(kViolet);
362 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
363 calo_endcap->AddNode(finalfwdtower,j,phirotations[make_pair(i,j)]);
364 }
365 }
366 delete[] r;
367 delete[] nphi;
368}
369
Note: See TracBrowser for help on using the repository browser.