Fork me on GitHub

source: git/display/Delphes3DGeometry.cc@ 37deb3b

ImprovedOutputFile Timing dual_readout llp
Last change on this file since 37deb3b was 110821a, checked in by Christophe Delaere <christophe.delaere@…>, 10 years ago

Display the full geometry next to the eventdisplay

Next step would be to display it directly in the eve window.

  • Property mode set to 100644
File size: 19.0 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include "display/Delphes3DGeometry.h"
20#include <set>
21#include <map>
22#include <utility>
23#include <vector>
24#include <algorithm>
25#include <sstream>
26#include <cassert>
27#include "TGeoManager.h"
28#include "TGeoVolume.h"
29#include "TGeoMedium.h"
30#include "TGeoNode.h"
31#include "TGeoCompositeShape.h"
32#include "TGeoMatrix.h"
33#include "TGeoTube.h"
34#include "TGeoCone.h"
35#include "TGeoArb8.h"
36#include "external/ExRootAnalysis/ExRootConfReader.h"
37#include "classes/DelphesClasses.h"
38#include "TF2.h"
39#include "TH1F.h"
40#include "TMath.h"
41
42using namespace std;
43
44Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp) {
45
46 //--- the geometry manager
47 geom_ = geom==NULL? gGeoManager : geom;
48 //gGeoManager->DefaultColors();
49
50 //--- define some materials
51 TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
52 TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); // placeholder
53 if(transp) {
54 matVacuum->SetTransparency(85);
55 matAl->SetTransparency(85);
56 }
57
58 //--- define some media
59 TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
60 TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl);
61 vacuum_ = Vacuum;
62 tkmed_ = Vacuum; // placeholder
63 calomed_ = Al; // placeholder
64 mudetmed_ = Al; // placeholder
65
66 // custom parameters
67 contingency_ = 10.;
68 calo_barrel_thickness_ = 50.;
69 calo_endcap_thickness_ = 75.;
70 muonSystem_thickn_ = 10.;
71
72 // read these parameters from the Delphes Card (with default values)
73 etaAxis_ = NULL;
74 phiAxis_ = NULL;
75 tk_radius_ = 120.;
76 tk_length_ = 150.;
77 tk_etamax_ = 3.0;
78 tk_Bz_ = 1.;
79 muonSystem_radius_ = 200.;
80}
81
82void Delphes3DGeometry::readFile(const char *configFile,
83 const char* ParticlePropagator, const char* TrackingEfficiency,
84 const char* MuonEfficiency, const char* Calorimeters) {
85
86 ExRootConfReader *confReader = new ExRootConfReader;
87 confReader->ReadFile(configFile);
88
89 tk_radius_ = confReader->GetDouble(Form("%s::Radius",ParticlePropagator), 1.0)*100.; // tk_radius
90 tk_length_ = confReader->GetDouble(Form("%s::HalfLength",ParticlePropagator), 3.0)*100.; // tk_length
91 tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz
92
93 {
94 TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",TrackingEfficiency),"abs(eta)<3.0");
95 tkEffFormula.ReplaceAll("pt","x");
96 tkEffFormula.ReplaceAll("eta","y");
97 tkEffFormula.ReplaceAll("phi","0.");
98 TF2* tkEffFunction = new TF2("tkEff",tkEffFormula,0,1000,-10,10);
99 TH1F etaHisto("eta","eta",100,5.,-5.);
100 Double_t pt,eta;
101 for(int i=0;i<1000;++i) {
102 tkEffFunction->GetRandom2(pt,eta);
103 etaHisto.Fill(eta);
104 }
105 Int_t bin = -1;
106 bin = etaHisto.FindFirstBinAbove(0.5);
107 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
108 bin = etaHisto.FindLastBinAbove(0.5);
109 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
110 tk_etamax_ = TMath::Max(fabs(etamin),fabs(etamax)); // tk_etamax
111 delete tkEffFunction;
112 }
113
114 {
115 muondets_.push_back("muons");
116 TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",MuonEfficiency),"abs(eta)<2.0");
117 muonEffFormula.ReplaceAll("pt","x");
118 muonEffFormula.ReplaceAll("eta","y");
119 muonEffFormula.ReplaceAll("phi","0.");
120 TF2* muEffFunction = new TF2("muEff",muonEffFormula,0,1000,-10,10);
121 TH1F etaHisto("eta2","eta2",100,5.,-5.);
122 Double_t pt,eta;
123 for(int i=0;i<1000;++i) {
124 muEffFunction->GetRandom2(pt,eta);
125 etaHisto.Fill(eta);
126 }
127 Int_t bin = -1;
128 bin = etaHisto.FindFirstBinAbove(0.5);
129 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
130 bin = etaHisto.FindLastBinAbove(0.5);
131 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
132 muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin),fabs(etamax)); // muonSystem_etamax
133 delete muEffFunction;
134 }
135
136 std::string s(Calorimeters);
137 std::replace( s.begin(), s.end(), ',', ' ' );
138 std::istringstream stream( s );
139 std::string word;
140 while (stream >> word) calorimeters_.push_back(word);
141
142 caloBinning_.clear(); // calo binning
143 for(std::vector<std::string>::const_iterator calo=calorimeters_.begin();calo!=calorimeters_.end(); ++calo) {
144 set< pair<Double_t, Int_t> > caloBinning;
145 ExRootConfParam paramEtaBins, paramPhiBins;
146 ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins",calo->c_str()));
147 Int_t size = param.GetSize();
148 for(int i = 0; i < size/2; ++i) {
149 paramEtaBins = param[i*2];
150 paramPhiBins = param[i*2+1];
151 assert(paramEtaBins.GetSize()==1);
152 caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(),paramPhiBins.GetSize()-1));
153 }
154 caloBinning_[*calo] = caloBinning;
155 }
156
157 set< pair<Double_t, Int_t> > caloBinning = caloBinning_[*calorimeters_.begin()];
158 Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo
159 unsigned int ii = 0;
160 for(set< pair<Double_t, Int_t> >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) {
161 etaBins[ii++] = itEtaSet->first;
162 }
163 etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins);
164 phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT
165
166 muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_+calo_barrel_thickness_)*calorimeters_.size() + muonSystem_thickn_;
167 muonSystem_length_ = tk_length_ + contingency_ + (contingency_+calo_endcap_thickness_)*calorimeters_.size() + muonSystem_thickn_;
168
169 delete confReader;
170
171}
172
173TGeoVolume* Delphes3DGeometry::getDetector(bool withTowers) {
174 // compute the envelope
175 Double_t system_radius = tk_radius_+calo_barrel_thickness_+3*contingency_;
176 Double_t system_length = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size()+contingency_;
177 // the detector volume
178 TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length);
179 // build the detector
180 std::pair<Double_t, Double_t> limits = addTracker(top);
181 Double_t radius = limits.first;
182 Double_t length = limits.second;
183 for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) {
184 limits = addCalorimeter(top,calo->c_str(),radius,length,caloBinning_[*calo]);
185 if (withTowers) {
186 addCaloTowers(top,calo->c_str(),radius,length,caloBinning_[*calo]);
187 }
188 radius = limits.first;
189 length = limits.second;
190 }
191 for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) {
192 limits = addMuonDets(top, muon->c_str(), radius, length);
193 radius = limits.first;
194 length = limits.second;
195 }
196 // return the result
197 return top;
198}
199
200std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top) {
201 // tracker: a cylinder with two cones substracted
202 new TGeoCone("forwardTkAcceptance",(tk_length_/2.+0.05),0.,tk_radius_,(tk_length_)*2.*exp(-tk_etamax_)/(1-exp(-2.*tk_etamax_)),tk_radius_);
203 TGeoTranslation *tr1 = new TGeoTranslation("tkacc1",0., 0., tk_length_/2.);
204 tr1->RegisterYourself();
205 TGeoRotation *negz = new TGeoRotation("tknegz",0,180,0);
206 negz->RegisterYourself();
207 TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2",0.,0.,-tk_length_/2.,negz);
208 tr2->RegisterYourself();
209 TGeoCompositeShape* tracker_cs = new TGeoCompositeShape("tracker_cs","forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2");
210 TGeoVolume *tracker = new TGeoVolume("tracker",tracker_cs,tkmed_);
211 tracker->SetLineColor(kYellow);
212 top->AddNode(tracker,1);
213 return std::make_pair(tk_radius_,tk_length_);
214}
215
216std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char* name,
217 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) {
218 // parameters derived from the inputs
219 Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first),fabs(caloBinning.rbegin()->first));
220 Double_t calo_barrel_innerRadius = innerBarrelRadius+contingency_;
221 Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_;
222 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength));
223 Double_t calo_endcap_innerRadius1 = innerBarrelLength*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax));
224 Double_t calo_endcap_innerRadius2 = (innerBarrelLength+calo_endcap_thickness_)*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax));
225 Double_t calo_endcap_outerRadius1 = innerBarrelRadius;
226 Double_t calo_endcap_outerRadius2 = innerBarrelRadius+calo_barrel_thickness_;
227 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_);
228 Double_t calo_endcap_diskThickness = TMath::Max(0.,calo_endcap_thickness_-calo_endcap_coneThickness);
229
230 // calorimeters: tube truncated in eta + cones
231 new TGeoTube(Form("%s_barrel_cylinder",name),calo_barrel_innerRadius,calo_barrel_innerRadius+calo_barrel_thickness_,calo_barrel_length);
232 new TGeoCone(Form("%s_endcap_cone",name),calo_endcap_coneThickness/2.,calo_endcap_innerRadius1,calo_endcap_outerRadius1,calo_endcap_innerRadius2,calo_endcap_outerRadius2);
233 new TGeoTube(Form("%s_endcap_disk",name),calo_endcap_innerRadius2,tk_radius_+calo_barrel_thickness_,calo_endcap_diskThickness/2.);
234 TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1",name),0., 0., (calo_endcap_coneThickness+calo_endcap_diskThickness)/2.);
235 tr1->RegisterYourself();
236 TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs",name),Form("%s_endcap_cone+%s_endcap_disk:%s_tr1",name,name,name));
237 TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.);
238 trc1->RegisterYourself();
239 TGeoRotation *negz = new TGeoRotation(Form("%s_negz",name),0,180,0);
240 TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.),negz);
241 trc2->RegisterYourself();
242 TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.+contingency_);
243 trc1c->RegisterYourself();
244 TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.)-contingency_,negz);
245 trc2c->RegisterYourself();
246 TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap",name),calo_endcap_cs,calomed_);
247 TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs",name),
248 Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position",name,name,name,name,name));
249 TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel",name),calo_barrel_cs,calomed_);
250 calo_endcap->SetLineColor(kViolet);
251 calo_endcap->SetFillColor(kViolet);
252 calo_barrel->SetLineColor(kRed);
253 top->AddNode(calo_endcap,1,trc1c);
254 top->AddNode(calo_endcap,2,trc2c);
255 top->AddNode(calo_barrel,1);
256 return std::make_pair(calo_barrel_innerRadius+calo_barrel_thickness_,innerBarrelLength+calo_endcap_thickness_+contingency_);
257}
258
259std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength) {
260 // muon system: tube + disks
261 Double_t muonSystem_radius = innerBarrelRadius + contingency_;
262 Double_t muonSystem_length = innerBarrelLength + contingency_;
263 Double_t muonSystem_rmin = muonSystem_length*2.*exp(-muonSystem_etamax_[name])/(1-exp(-2.*muonSystem_etamax_[name]));
264 TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel",name),mudetmed_,muonSystem_radius,muonSystem_radius+muonSystem_thickn_,muonSystem_length);
265 muon_barrel->SetLineColor(kBlue);
266 top->AddNode(muon_barrel,1);
267 TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap",name),mudetmed_,muonSystem_rmin,muonSystem_radius+muonSystem_thickn_,muonSystem_thickn_/2.);
268 muon_endcap->SetLineColor(kBlue);
269 TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position",name),0.,0.,muonSystem_length);
270 trm1->RegisterYourself();
271 TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position",name),0.,0.,-muonSystem_length);
272 trm1->RegisterYourself();
273 top->AddNode(muon_endcap,1,trm1);
274 top->AddNode(muon_endcap,2,trm2);
275 return std::make_pair(muonSystem_radius,muonSystem_length);
276}
277
278void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char* name,
279 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) {
280
281 TGeoVolume* calo_endcap = top->GetNode(Form("%s_endcap_1",name))->GetVolume();
282 TGeoVolume* calo_barrel = top->GetNode(Form("%s_barrel_1",name))->GetVolume();
283 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength));
284 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_);
285
286 // calo towers in the barrel
287 Double_t vertices[16] = {0.,0.,0.,0.,0.,0.,0.,0.}; // summit of the pyramid
288 Double_t R = tk_radius_ + contingency_+(contingency_+calo_barrel_thickness_)*calorimeters_.size(); // radius of the muons system = height of the pyramid
289 Int_t nEtaBins = caloBinning.size();
290 // this rotation is to make the tower point "up"
291 TGeoRotation* initTowerRot = new TGeoRotation(Form("%s_initTowerRot",name),0.,90.,0.);
292 TGeoCombiTrans* initTower = new TGeoCombiTrans(Form("%s_initTower",name),0.,-R/2.,0.,initTowerRot);
293 initTower->RegisterYourself();
294 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
295 // phi bins represented by rotations around z
296 Double_t *y = new Double_t[nEtaBins];
297 Double_t *dx = new Double_t[nEtaBins];
298 Int_t *nphi = new Int_t[nEtaBins];
299 Int_t etaslice = 0;
300 std::map<std::pair<int,int>, TGeoRotation*> phirotations;
301 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) {
302 if(abs(bin->first)>calo_endcap_etamin) continue; // only in the barrel
303 nphi[etaslice] = bin->second;
304 y[etaslice] = 0.5*R*(1-exp(-2*bin->first))/exp(-bin->first);
305 Double_t phiRotationAngle = 360./nphi[etaslice];
306 dx[etaslice] = R*tan(TMath::Pi()*phiRotationAngle/360.);
307 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
308 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.);
309 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
310 }
311 ++etaslice;
312 }
313 nEtaBins = etaslice;
314 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
315 vertices[8] = -dx[i]; vertices[9] = y[i];
316 vertices[10] = -dx[i]; vertices[11] = y[i+1];
317 vertices[12] = dx[i]; vertices[13] = y[i+1];
318 vertices[14] = dx[i]; vertices[15] = y[i];
319 new TGeoArb8(Form("%s_tower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0
320 // intersection between the tower and the calo_barrel
321 TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs",name,i),Form("%s_tower%d:%s_initTower*%s_barrel_cs",name,i,name,name));
322 TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d",name,i),finaltower_cs,calomed_);
323 finaltower->SetLineColor(kRed);
324 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
325 calo_barrel->AddNode(finaltower,j,phirotations[make_pair(i,j)]);
326 }
327 }
328 delete[] y;
329 delete[] dx;
330 delete[] nphi;
331 //the towers in the forward region
332 R = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size(); // Z of the muons system = height of the pyramid
333 nEtaBins = caloBinning.size();
334 // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place)
335 TGeoTranslation* towerdz = new TGeoTranslation(Form("%s_towerdz",name),0.,0.,R/2.-(innerBarrelLength+calo_endcap_coneThickness/2.));
336 towerdz->RegisterYourself();
337 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
338 Double_t *r = new Double_t[nEtaBins];
339 nphi = new Int_t[nEtaBins];
340 etaslice = 0;
341 phirotations.clear();
342 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) {
343 if(bin->first<calo_endcap_etamin) continue; // only in the + endcap
344 r[etaslice] = R*2*exp(-bin->first)/(1-exp(-2*bin->first));
345 nphi[etaslice] = bin->second;
346 Double_t phiRotationAngle = 360./nphi[etaslice];
347 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
348 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.);
349 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
350 }
351 ++etaslice;
352 }
353 nEtaBins = etaslice;
354 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
355 vertices[8] = -r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[9] = r[i+1]*cos(TMath::Pi()/nphi[i]);
356 vertices[10] = -r[i]*sin(TMath::Pi()/nphi[i]); vertices[11] = r[i]*cos(TMath::Pi()/nphi[i]);
357 vertices[12] = r[i]*sin(TMath::Pi()/nphi[i]); vertices[13] = r[i]*cos(TMath::Pi()/nphi[i]);
358 vertices[14] = r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[15] = r[i+1]*cos(TMath::Pi()/nphi[i]);
359 new TGeoArb8(Form("%sfwdtower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0
360 // intersection between the tower and the calo_endcap
361 TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs",name,i),Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs",name,i,name,name));
362 TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d",name,i),finalfwdtower_cs,calomed_);
363 finalfwdtower->SetLineColor(kViolet);
364 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
365 calo_endcap->AddNode(finalfwdtower,j,phirotations[make_pair(i,j)]);
366 }
367 }
368 delete[] r;
369 delete[] nphi;
370}
371
Note: See TracBrowser for help on using the repository browser.