Fork me on GitHub

source: git/display/Delphes3DGeometry.cc @ 341014c

ImprovedOutputFileTimingllp
Last change on this file since 341014c was 341014c, checked in by Pavel Demin <pavel-demin@…>, 18 months ago

apply .clang-format to all .h, .cc and .cpp files

  • Property mode set to 100644
File size: 19.5 KB
Line 
1/*
2 *  Delphes: a framework for fast simulation of a generic collider experiment
3 *  Copyright (C) 2012-2014  Universite catholique de Louvain (UCL), Belgium
4 *
5 *  This program is free software: you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation, either version 3 of the License, or
8 *  (at your option) any later version.
9 *
10 *  This program is distributed in the hope that it will be useful,
11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 *  GNU General Public License for more details.
14 *
15 *  You should have received a copy of the GNU General Public License
16 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <algorithm>
20#include <cassert>
21#include <map>
22#include <set>
23#include <sstream>
24#include <utility>
25#include <vector>
26
27#include "TAxis.h"
28#include "TF2.h"
29#include "TFormula.h"
30#include "TGeoArb8.h"
31#include "TGeoCompositeShape.h"
32#include "TGeoCone.h"
33#include "TGeoManager.h"
34#include "TGeoMatrix.h"
35#include "TGeoMedium.h"
36#include "TGeoNode.h"
37#include "TGeoTube.h"
38#include "TGeoVolume.h"
39#include "TH1F.h"
40#include "TMath.h"
41#include "TString.h"
42
43#include "display/Delphes3DGeometry.h"
44
45#include "classes/DelphesClasses.h"
46#include "external/ExRootAnalysis/ExRootConfReader.h"
47
48using namespace std;
49
50Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp)
51{
52
53  //--- the geometry manager
54  geom_ = geom == NULL ? gGeoManager : geom;
55  //gGeoManager->DefaultColors();
56
57  //--- define some materials
58  TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0, 0, 0);
59  TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98, 13, 2.7); // placeholder
60  if(transp)
61  {
62    matVacuum->SetTransparency(85);
63    matAl->SetTransparency(85);
64  }
65
66  //--- define some media
67  TGeoMedium *Vacuum = new TGeoMedium("Vacuum", 1, matVacuum);
68  TGeoMedium *Al = new TGeoMedium("Root Material", 2, matAl);
69  vacuum_ = Vacuum;
70  tkmed_ = Vacuum; // placeholder
71  calomed_ = Al; // placeholder
72  mudetmed_ = Al; // placeholder
73
74  // custom parameters
75  contingency_ = 10.;
76  calo_barrel_thickness_ = 50.;
77  calo_endcap_thickness_ = 75.;
78  muonSystem_thickn_ = 10.;
79
80  // read these parameters from the Delphes Card (with default values)
81  etaAxis_ = NULL;
82  phiAxis_ = NULL;
83  tk_radius_ = 120.;
84  tk_length_ = 150.;
85  tk_etamax_ = 3.0;
86  tk_Bz_ = 1.;
87  muonSystem_radius_ = 200.;
88}
89
90void Delphes3DGeometry::readFile(const char *configFile,
91  const char *ParticlePropagator, const char *TrackingEfficiency,
92  const char *MuonEfficiency, const char *Calorimeters)
93{
94
95  ExRootConfReader *confReader = new ExRootConfReader;
96  confReader->ReadFile(configFile);
97
98  tk_radius_ = confReader->GetDouble(Form("%s::Radius", ParticlePropagator), 1.0) * 100.; // tk_radius
99  tk_length_ = confReader->GetDouble(Form("%s::HalfLength", ParticlePropagator), 3.0) * 100.; // tk_length
100  tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz
101
102  TString buffer;
103  const char *it;
104
105  {
106    TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", TrackingEfficiency), "abs(eta)<3.0");
107    tkEffFormula.ReplaceAll("pt", "x");
108    tkEffFormula.ReplaceAll("eta", "y");
109    tkEffFormula.ReplaceAll("phi", "0.");
110
111    buffer.Clear();
112    for(it = tkEffFormula.Data(); *it; ++it)
113    {
114      if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue;
115      buffer.Append(*it);
116    }
117
118    TF2 *tkEffFunction = new TF2("tkEff", buffer, 0, 1000, -10, 10);
119    TH1F etaHisto("eta", "eta", 100, 5., -5.);
120    Double_t pt, eta;
121    for(int i = 0; i < 1000; ++i)
122    {
123      tkEffFunction->GetRandom2(pt, eta);
124      etaHisto.Fill(eta);
125    }
126    Int_t bin = -1;
127    bin = etaHisto.FindFirstBinAbove(0.5);
128    Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.;
129    bin = etaHisto.FindLastBinAbove(0.5);
130    Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.;
131    tk_etamax_ = TMath::Max(fabs(etamin), fabs(etamax)); // tk_etamax
132    delete tkEffFunction;
133  }
134
135  {
136    muondets_.push_back("muons");
137    TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", MuonEfficiency), "abs(eta)<2.0");
138    muonEffFormula.ReplaceAll("pt", "x");
139    muonEffFormula.ReplaceAll("eta", "y");
140    muonEffFormula.ReplaceAll("phi", "0.");
141
142    buffer.Clear();
143    for(it = muonEffFormula.Data(); *it; ++it)
144    {
145      if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue;
146      buffer.Append(*it);
147    }
148
149    TF2 *muEffFunction = new TF2("muEff", buffer, 0, 1000, -10, 10);
150    TH1F etaHisto("eta2", "eta2", 100, 5., -5.);
151    Double_t pt, eta;
152    for(int i = 0; i < 1000; ++i)
153    {
154      muEffFunction->GetRandom2(pt, eta);
155      etaHisto.Fill(eta);
156    }
157    Int_t bin = -1;
158    bin = etaHisto.FindFirstBinAbove(0.5);
159    Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.;
160    bin = etaHisto.FindLastBinAbove(0.5);
161    Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.;
162    muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin), fabs(etamax)); // muonSystem_etamax
163    delete muEffFunction;
164  }
165
166  std::string s(Calorimeters);
167  std::replace(s.begin(), s.end(), ',', ' ');
168  std::istringstream stream(s);
169  std::string word;
170  while(stream >> word) calorimeters_.push_back(word);
171
172  caloBinning_.clear(); // calo binning
173  for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo)
174  {
175    set<pair<Double_t, Int_t>> caloBinning;
176    ExRootConfParam paramEtaBins, paramPhiBins;
177    ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins", calo->c_str()));
178    Int_t size = param.GetSize();
179    for(int i = 0; i < size / 2; ++i)
180    {
181      paramEtaBins = param[i * 2];
182      paramPhiBins = param[i * 2 + 1];
183      assert(paramEtaBins.GetSize() == 1);
184      caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(), paramPhiBins.GetSize() - 1));
185    }
186    caloBinning_[*calo] = caloBinning;
187  }
188
189  set<pair<Double_t, Int_t>> caloBinning = caloBinning_[*calorimeters_.begin()];
190  Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo
191  unsigned int ii = 0;
192  for(set<pair<Double_t, Int_t>>::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet)
193  {
194    etaBins[ii++] = itEtaSet->first;
195  }
196  etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins);
197  phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT
198
199  muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size() + muonSystem_thickn_;
200  muonSystem_length_ = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + muonSystem_thickn_;
201
202  delete confReader;
203}
204
205TGeoVolume *Delphes3DGeometry::getDetector(bool withTowers)
206{
207  // compute the envelope
208  Double_t system_radius = tk_radius_ + calo_barrel_thickness_ + 3 * contingency_;
209  Double_t system_length = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + contingency_;
210  // the detector volume
211  TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length);
212  // build the detector
213  std::pair<Double_t, Double_t> limits = addTracker(top);
214  Double_t radius = limits.first;
215  Double_t length = limits.second;
216  for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo)
217  {
218    limits = addCalorimeter(top, calo->c_str(), radius, length, caloBinning_[*calo]);
219    if(withTowers)
220    {
221      addCaloTowers(top, calo->c_str(), radius, length, caloBinning_[*calo]);
222    }
223    radius = limits.first;
224    length = limits.second;
225  }
226  for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon)
227  {
228    limits = addMuonDets(top, muon->c_str(), radius, length);
229    radius = limits.first;
230    length = limits.second;
231  }
232  // return the result
233  return top;
234}
235
236std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top)
237{
238  // tracker: a cylinder with two cones substracted
239  new TGeoCone("forwardTkAcceptance", (tk_length_ / 2. + 0.05), 0., tk_radius_, (tk_length_)*2. * exp(-tk_etamax_) / (1 - exp(-2. * tk_etamax_)), tk_radius_);
240  TGeoTranslation *tr1 = new TGeoTranslation("tkacc1", 0., 0., tk_length_ / 2.);
241  tr1->RegisterYourself();
242  TGeoRotation *negz = new TGeoRotation("tknegz", 0, 180, 0);
243  negz->RegisterYourself();
244  TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2", 0., 0., -tk_length_ / 2., negz);
245  tr2->RegisterYourself();
246  TGeoCompositeShape *tracker_cs = new TGeoCompositeShape("tracker_cs", "forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2");
247  TGeoVolume *tracker = new TGeoVolume("tracker", tracker_cs, tkmed_);
248  tracker->SetLineColor(kYellow);
249  top->AddNode(tracker, 1);
250  return std::make_pair(tk_radius_, tk_length_);
251}
252
253std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char *name,
254  Double_t innerBarrelRadius, Double_t innerBarrelLength, set<pair<Double_t, Int_t>> &caloBinning)
255{
256  // parameters derived from the inputs
257  Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first), fabs(caloBinning.rbegin()->first));
258  Double_t calo_barrel_innerRadius = innerBarrelRadius + contingency_;
259  Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_;
260  Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength));
261  Double_t calo_endcap_innerRadius1 = innerBarrelLength * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax));
262  Double_t calo_endcap_innerRadius2 = (innerBarrelLength + calo_endcap_thickness_) * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax));
263  Double_t calo_endcap_outerRadius1 = innerBarrelRadius;
264  Double_t calo_endcap_outerRadius2 = innerBarrelRadius + calo_barrel_thickness_;
265  Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_);
266  Double_t calo_endcap_diskThickness = TMath::Max(0., calo_endcap_thickness_ - calo_endcap_coneThickness);
267
268  // calorimeters: tube truncated in eta + cones
269  new TGeoTube(Form("%s_barrel_cylinder", name), calo_barrel_innerRadius, calo_barrel_innerRadius + calo_barrel_thickness_, calo_barrel_length);
270  new TGeoCone(Form("%s_endcap_cone", name), calo_endcap_coneThickness / 2., calo_endcap_innerRadius1, calo_endcap_outerRadius1, calo_endcap_innerRadius2, calo_endcap_outerRadius2);
271  new TGeoTube(Form("%s_endcap_disk", name), calo_endcap_innerRadius2, tk_radius_ + calo_barrel_thickness_, calo_endcap_diskThickness / 2.);
272  TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1", name), 0., 0., (calo_endcap_coneThickness + calo_endcap_diskThickness) / 2.);
273  tr1->RegisterYourself();
274  TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs", name), Form("%s_endcap_cone+%s_endcap_disk:%s_tr1", name, name, name));
275  TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2.);
276  trc1->RegisterYourself();
277  TGeoRotation *negz = new TGeoRotation(Form("%s_negz", name), 0, 180, 0);
278  TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.), negz);
279  trc2->RegisterYourself();
280  TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2. + contingency_);
281  trc1c->RegisterYourself();
282  TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.) - contingency_, negz);
283  trc2c->RegisterYourself();
284  TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap", name), calo_endcap_cs, calomed_);
285  TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs", name),
286    Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position", name, name, name, name, name));
287  TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel", name), calo_barrel_cs, calomed_);
288  calo_endcap->SetLineColor(kViolet);
289  calo_endcap->SetFillColor(kViolet);
290  calo_barrel->SetLineColor(kRed);
291  top->AddNode(calo_endcap, 1, trc1c);
292  top->AddNode(calo_endcap, 2, trc2c);
293  top->AddNode(calo_barrel, 1);
294  return std::make_pair(calo_barrel_innerRadius + calo_barrel_thickness_, innerBarrelLength + calo_endcap_thickness_ + contingency_);
295}
296
297std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char *name, Double_t innerBarrelRadius, Double_t innerBarrelLength)
298{
299  // muon system: tube + disks
300  Double_t muonSystem_radius = innerBarrelRadius + contingency_;
301  Double_t muonSystem_length = innerBarrelLength + contingency_;
302  Double_t muonSystem_rmin = muonSystem_length * 2. * exp(-muonSystem_etamax_[name]) / (1 - exp(-2. * muonSystem_etamax_[name]));
303  TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel", name), mudetmed_, muonSystem_radius, muonSystem_radius + muonSystem_thickn_, muonSystem_length);
304  muon_barrel->SetLineColor(kBlue);
305  top->AddNode(muon_barrel, 1);
306  TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap", name), mudetmed_, muonSystem_rmin, muonSystem_radius + muonSystem_thickn_, muonSystem_thickn_ / 2.);
307  muon_endcap->SetLineColor(kBlue);
308  TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position", name), 0., 0., muonSystem_length);
309  trm1->RegisterYourself();
310  TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position", name), 0., 0., -muonSystem_length);
311  trm1->RegisterYourself();
312  top->AddNode(muon_endcap, 1, trm1);
313  top->AddNode(muon_endcap, 2, trm2);
314  return std::make_pair(muonSystem_radius, muonSystem_length);
315}
316
317void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char *name,
318  Double_t innerBarrelRadius, Double_t innerBarrelLength, set<pair<Double_t, Int_t>> &caloBinning)
319{
320
321  TGeoVolume *calo_endcap = top->GetNode(Form("%s_endcap_1", name))->GetVolume();
322  TGeoVolume *calo_barrel = top->GetNode(Form("%s_barrel_1", name))->GetVolume();
323  Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength));
324  Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_);
325
326  // calo towers in the barrel
327  Double_t vertices[16] = {0., 0., 0., 0., 0., 0., 0., 0.}; // summit of the pyramid
328  Double_t R = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size(); // radius of the muons system = height of the pyramid
329  Int_t nEtaBins = caloBinning.size();
330  // this rotation is to make the tower point "up"
331  TGeoRotation *initTowerRot = new TGeoRotation(Form("%s_initTowerRot", name), 0., 90., 0.);
332  TGeoCombiTrans *initTower = new TGeoCombiTrans(Form("%s_initTower", name), 0., -R / 2., 0., initTowerRot);
333  initTower->RegisterYourself();
334  // eta bins... we build one pyramid per eta slice and then translate it nphi times.
335  // phi bins represented by rotations around z
336  Double_t *y = new Double_t[nEtaBins];
337  Double_t *dx = new Double_t[nEtaBins];
338  Int_t *nphi = new Int_t[nEtaBins];
339  Int_t etaslice = 0;
340  std::map<std::pair<int, int>, TGeoRotation *> phirotations;
341  for(set<pair<Double_t, Int_t>>::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin)
342  {
343    if(abs(bin->first) > calo_endcap_etamin) continue; // only in the barrel
344    nphi[etaslice] = bin->second;
345    y[etaslice] = 0.5 * R * (1 - exp(-2 * bin->first)) / exp(-bin->first);
346    Double_t phiRotationAngle = 360. / nphi[etaslice];
347    dx[etaslice] = R * tan(TMath::Pi() * phiRotationAngle / 360.);
348    for(int phislice = 0; phislice < nphi[etaslice]; ++phislice)
349    {
350      phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.);
351      phirotations[make_pair(etaslice, phislice)]->RegisterYourself();
352    }
353    ++etaslice;
354  }
355  nEtaBins = etaslice;
356  for(int i = 0; i < nEtaBins - 1; ++i)
357  { // loop on the eta slices
358    vertices[8] = -dx[i];
359    vertices[9] = y[i];
360    vertices[10] = -dx[i];
361    vertices[11] = y[i + 1];
362    vertices[12] = dx[i];
363    vertices[13] = y[i + 1];
364    vertices[14] = dx[i];
365    vertices[15] = y[i];
366    new TGeoArb8(Form("%s_tower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0
367    // intersection between the tower and the calo_barrel
368    TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs", name, i), Form("%s_tower%d:%s_initTower*%s_barrel_cs", name, i, name, name));
369    TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d", name, i), finaltower_cs, calomed_);
370    finaltower->SetLineColor(kRed);
371    for(int j = 0; j < nphi[i]; ++j)
372    { // loop on the phi slices
373      calo_barrel->AddNode(finaltower, j, phirotations[make_pair(i, j)]);
374    }
375  }
376  delete[] y;
377  delete[] dx;
378  delete[] nphi;
379  //the towers in the forward region
380  R = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size(); // Z of the muons system = height of the pyramid
381  nEtaBins = caloBinning.size();
382  // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place)
383  TGeoTranslation *towerdz = new TGeoTranslation(Form("%s_towerdz", name), 0., 0., R / 2. - (innerBarrelLength + calo_endcap_coneThickness / 2.));
384  towerdz->RegisterYourself();
385  // eta bins... we build one pyramid per eta slice and then translate it nphi times.
386  Double_t *r = new Double_t[nEtaBins];
387  nphi = new Int_t[nEtaBins];
388  etaslice = 0;
389  phirotations.clear();
390  for(set<pair<Double_t, Int_t>>::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin)
391  {
392    if(bin->first < calo_endcap_etamin) continue; // only in the + endcap
393    r[etaslice] = R * 2 * exp(-bin->first) / (1 - exp(-2 * bin->first));
394    nphi[etaslice] = bin->second;
395    Double_t phiRotationAngle = 360. / nphi[etaslice];
396    for(int phislice = 0; phislice < nphi[etaslice]; ++phislice)
397    {
398      phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.);
399      phirotations[make_pair(etaslice, phislice)]->RegisterYourself();
400    }
401    ++etaslice;
402  }
403  nEtaBins = etaslice;
404  for(int i = 0; i < nEtaBins - 1; ++i)
405  { // loop on the eta slices
406    vertices[8] = -r[i + 1] * sin(TMath::Pi() / nphi[i]);
407    vertices[9] = r[i + 1] * cos(TMath::Pi() / nphi[i]);
408    vertices[10] = -r[i] * sin(TMath::Pi() / nphi[i]);
409    vertices[11] = r[i] * cos(TMath::Pi() / nphi[i]);
410    vertices[12] = r[i] * sin(TMath::Pi() / nphi[i]);
411    vertices[13] = r[i] * cos(TMath::Pi() / nphi[i]);
412    vertices[14] = r[i + 1] * sin(TMath::Pi() / nphi[i]);
413    vertices[15] = r[i + 1] * cos(TMath::Pi() / nphi[i]);
414    new TGeoArb8(Form("%sfwdtower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0
415    // intersection between the tower and the calo_endcap
416    TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs", name, i), Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs", name, i, name, name));
417    TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d", name, i), finalfwdtower_cs, calomed_);
418    finalfwdtower->SetLineColor(kViolet);
419    for(int j = 0; j < nphi[i]; ++j)
420    { // loop on the phi slices
421      calo_endcap->AddNode(finalfwdtower, j, phirotations[make_pair(i, j)]);
422    }
423  }
424  delete[] r;
425  delete[] nphi;
426}
Note: See TracBrowser for help on using the repository browser.