Fork me on GitHub

source: git/display/Delphes3DGeometry.cc@ 5eaa70a

ImprovedOutputFile Timing dual_readout llp
Last change on this file since 5eaa70a was f53a4d2, checked in by Pavel Demin <pavel.demin@…>, 9 years ago

adapt EventDisplay to ROOT 6.04

  • Property mode set to 100644
File size: 19.5 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <set>
20#include <map>
21#include <utility>
22#include <vector>
23#include <algorithm>
24#include <sstream>
25#include <cassert>
26
27#include "TAxis.h"
28#include "TGeoManager.h"
29#include "TGeoVolume.h"
30#include "TGeoMedium.h"
31#include "TGeoNode.h"
32#include "TGeoCompositeShape.h"
33#include "TGeoMatrix.h"
34#include "TGeoTube.h"
35#include "TGeoCone.h"
36#include "TGeoArb8.h"
37#include "TF2.h"
38#include "TFormula.h"
39#include "TH1F.h"
40#include "TMath.h"
41#include "TString.h"
42
43#include "display/Delphes3DGeometry.h"
44
45#include "classes/DelphesClasses.h"
46#include "external/ExRootAnalysis/ExRootConfReader.h"
47
48using namespace std;
49
50Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp) {
51
52 //--- the geometry manager
53 geom_ = geom==NULL? gGeoManager : geom;
54 //gGeoManager->DefaultColors();
55
56 //--- define some materials
57 TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
58 TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); // placeholder
59 if(transp) {
60 matVacuum->SetTransparency(85);
61 matAl->SetTransparency(85);
62 }
63
64 //--- define some media
65 TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
66 TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl);
67 vacuum_ = Vacuum;
68 tkmed_ = Vacuum; // placeholder
69 calomed_ = Al; // placeholder
70 mudetmed_ = Al; // placeholder
71
72 // custom parameters
73 contingency_ = 10.;
74 calo_barrel_thickness_ = 50.;
75 calo_endcap_thickness_ = 75.;
76 muonSystem_thickn_ = 10.;
77
78 // read these parameters from the Delphes Card (with default values)
79 etaAxis_ = NULL;
80 phiAxis_ = NULL;
81 tk_radius_ = 120.;
82 tk_length_ = 150.;
83 tk_etamax_ = 3.0;
84 tk_Bz_ = 1.;
85 muonSystem_radius_ = 200.;
86}
87
88void Delphes3DGeometry::readFile(const char *configFile,
89 const char* ParticlePropagator, const char* TrackingEfficiency,
90 const char* MuonEfficiency, const char* Calorimeters) {
91
92 ExRootConfReader *confReader = new ExRootConfReader;
93 confReader->ReadFile(configFile);
94
95 tk_radius_ = confReader->GetDouble(Form("%s::Radius",ParticlePropagator), 1.0)*100.; // tk_radius
96 tk_length_ = confReader->GetDouble(Form("%s::HalfLength",ParticlePropagator), 3.0)*100.; // tk_length
97 tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz
98
99 TString buffer;
100 const char *it;
101
102
103 {
104 TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",TrackingEfficiency),"abs(eta)<3.0");
105 tkEffFormula.ReplaceAll("pt","x");
106 tkEffFormula.ReplaceAll("eta","y");
107 tkEffFormula.ReplaceAll("phi","0.");
108
109 buffer.Clear();
110 for(it = tkEffFormula.Data(); *it; ++it)
111 {
112 if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\' ) continue;
113 buffer.Append(*it);
114 }
115
116 TF2* tkEffFunction = new TF2("tkEff",buffer,0,1000,-10,10);
117 TH1F etaHisto("eta","eta",100,5.,-5.);
118 Double_t pt,eta;
119 for(int i=0;i<1000;++i) {
120 tkEffFunction->GetRandom2(pt,eta);
121 etaHisto.Fill(eta);
122 }
123 Int_t bin = -1;
124 bin = etaHisto.FindFirstBinAbove(0.5);
125 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
126 bin = etaHisto.FindLastBinAbove(0.5);
127 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
128 tk_etamax_ = TMath::Max(fabs(etamin),fabs(etamax)); // tk_etamax
129 delete tkEffFunction;
130 }
131
132 {
133 muondets_.push_back("muons");
134 TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",MuonEfficiency),"abs(eta)<2.0");
135 muonEffFormula.ReplaceAll("pt","x");
136 muonEffFormula.ReplaceAll("eta","y");
137 muonEffFormula.ReplaceAll("phi","0.");
138
139 buffer.Clear();
140 for(it = muonEffFormula.Data(); *it; ++it)
141 {
142 if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\' ) continue;
143 buffer.Append(*it);
144 }
145
146 TF2* muEffFunction = new TF2("muEff",buffer,0,1000,-10,10);
147 TH1F etaHisto("eta2","eta2",100,5.,-5.);
148 Double_t pt,eta;
149 for(int i=0;i<1000;++i) {
150 muEffFunction->GetRandom2(pt,eta);
151 etaHisto.Fill(eta);
152 }
153 Int_t bin = -1;
154 bin = etaHisto.FindFirstBinAbove(0.5);
155 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.;
156 bin = etaHisto.FindLastBinAbove(0.5);
157 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.;
158 muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin),fabs(etamax)); // muonSystem_etamax
159 delete muEffFunction;
160 }
161
162 std::string s(Calorimeters);
163 std::replace( s.begin(), s.end(), ',', ' ' );
164 std::istringstream stream( s );
165 std::string word;
166 while (stream >> word) calorimeters_.push_back(word);
167
168 caloBinning_.clear(); // calo binning
169 for(std::vector<std::string>::const_iterator calo=calorimeters_.begin();calo!=calorimeters_.end(); ++calo) {
170 set< pair<Double_t, Int_t> > caloBinning;
171 ExRootConfParam paramEtaBins, paramPhiBins;
172 ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins",calo->c_str()));
173 Int_t size = param.GetSize();
174 for(int i = 0; i < size/2; ++i) {
175 paramEtaBins = param[i*2];
176 paramPhiBins = param[i*2+1];
177 assert(paramEtaBins.GetSize()==1);
178 caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(),paramPhiBins.GetSize()-1));
179 }
180 caloBinning_[*calo] = caloBinning;
181 }
182
183 set< pair<Double_t, Int_t> > caloBinning = caloBinning_[*calorimeters_.begin()];
184 Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo
185 unsigned int ii = 0;
186 for(set< pair<Double_t, Int_t> >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) {
187 etaBins[ii++] = itEtaSet->first;
188 }
189 etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins);
190 phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT
191
192 muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_+calo_barrel_thickness_)*calorimeters_.size() + muonSystem_thickn_;
193 muonSystem_length_ = tk_length_ + contingency_ + (contingency_+calo_endcap_thickness_)*calorimeters_.size() + muonSystem_thickn_;
194
195 delete confReader;
196
197}
198
199TGeoVolume* Delphes3DGeometry::getDetector(bool withTowers) {
200 // compute the envelope
201 Double_t system_radius = tk_radius_+calo_barrel_thickness_+3*contingency_;
202 Double_t system_length = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size()+contingency_;
203 // the detector volume
204 TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length);
205 // build the detector
206 std::pair<Double_t, Double_t> limits = addTracker(top);
207 Double_t radius = limits.first;
208 Double_t length = limits.second;
209 for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) {
210 limits = addCalorimeter(top,calo->c_str(),radius,length,caloBinning_[*calo]);
211 if (withTowers) {
212 addCaloTowers(top,calo->c_str(),radius,length,caloBinning_[*calo]);
213 }
214 radius = limits.first;
215 length = limits.second;
216 }
217 for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) {
218 limits = addMuonDets(top, muon->c_str(), radius, length);
219 radius = limits.first;
220 length = limits.second;
221 }
222 // return the result
223 return top;
224}
225
226std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top) {
227 // tracker: a cylinder with two cones substracted
228 new TGeoCone("forwardTkAcceptance",(tk_length_/2.+0.05),0.,tk_radius_,(tk_length_)*2.*exp(-tk_etamax_)/(1-exp(-2.*tk_etamax_)),tk_radius_);
229 TGeoTranslation *tr1 = new TGeoTranslation("tkacc1",0., 0., tk_length_/2.);
230 tr1->RegisterYourself();
231 TGeoRotation *negz = new TGeoRotation("tknegz",0,180,0);
232 negz->RegisterYourself();
233 TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2",0.,0.,-tk_length_/2.,negz);
234 tr2->RegisterYourself();
235 TGeoCompositeShape* tracker_cs = new TGeoCompositeShape("tracker_cs","forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2");
236 TGeoVolume *tracker = new TGeoVolume("tracker",tracker_cs,tkmed_);
237 tracker->SetLineColor(kYellow);
238 top->AddNode(tracker,1);
239 return std::make_pair(tk_radius_,tk_length_);
240}
241
242std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char* name,
243 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) {
244 // parameters derived from the inputs
245 Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first),fabs(caloBinning.rbegin()->first));
246 Double_t calo_barrel_innerRadius = innerBarrelRadius+contingency_;
247 Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_;
248 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength));
249 Double_t calo_endcap_innerRadius1 = innerBarrelLength*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax));
250 Double_t calo_endcap_innerRadius2 = (innerBarrelLength+calo_endcap_thickness_)*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax));
251 Double_t calo_endcap_outerRadius1 = innerBarrelRadius;
252 Double_t calo_endcap_outerRadius2 = innerBarrelRadius+calo_barrel_thickness_;
253 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_);
254 Double_t calo_endcap_diskThickness = TMath::Max(0.,calo_endcap_thickness_-calo_endcap_coneThickness);
255
256 // calorimeters: tube truncated in eta + cones
257 new TGeoTube(Form("%s_barrel_cylinder",name),calo_barrel_innerRadius,calo_barrel_innerRadius+calo_barrel_thickness_,calo_barrel_length);
258 new TGeoCone(Form("%s_endcap_cone",name),calo_endcap_coneThickness/2.,calo_endcap_innerRadius1,calo_endcap_outerRadius1,calo_endcap_innerRadius2,calo_endcap_outerRadius2);
259 new TGeoTube(Form("%s_endcap_disk",name),calo_endcap_innerRadius2,tk_radius_+calo_barrel_thickness_,calo_endcap_diskThickness/2.);
260 TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1",name),0., 0., (calo_endcap_coneThickness+calo_endcap_diskThickness)/2.);
261 tr1->RegisterYourself();
262 TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs",name),Form("%s_endcap_cone+%s_endcap_disk:%s_tr1",name,name,name));
263 TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.);
264 trc1->RegisterYourself();
265 TGeoRotation *negz = new TGeoRotation(Form("%s_negz",name),0,180,0);
266 TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.),negz);
267 trc2->RegisterYourself();
268 TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.+contingency_);
269 trc1c->RegisterYourself();
270 TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.)-contingency_,negz);
271 trc2c->RegisterYourself();
272 TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap",name),calo_endcap_cs,calomed_);
273 TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs",name),
274 Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position",name,name,name,name,name));
275 TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel",name),calo_barrel_cs,calomed_);
276 calo_endcap->SetLineColor(kViolet);
277 calo_endcap->SetFillColor(kViolet);
278 calo_barrel->SetLineColor(kRed);
279 top->AddNode(calo_endcap,1,trc1c);
280 top->AddNode(calo_endcap,2,trc2c);
281 top->AddNode(calo_barrel,1);
282 return std::make_pair(calo_barrel_innerRadius+calo_barrel_thickness_,innerBarrelLength+calo_endcap_thickness_+contingency_);
283}
284
285std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength) {
286 // muon system: tube + disks
287 Double_t muonSystem_radius = innerBarrelRadius + contingency_;
288 Double_t muonSystem_length = innerBarrelLength + contingency_;
289 Double_t muonSystem_rmin = muonSystem_length*2.*exp(-muonSystem_etamax_[name])/(1-exp(-2.*muonSystem_etamax_[name]));
290 TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel",name),mudetmed_,muonSystem_radius,muonSystem_radius+muonSystem_thickn_,muonSystem_length);
291 muon_barrel->SetLineColor(kBlue);
292 top->AddNode(muon_barrel,1);
293 TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap",name),mudetmed_,muonSystem_rmin,muonSystem_radius+muonSystem_thickn_,muonSystem_thickn_/2.);
294 muon_endcap->SetLineColor(kBlue);
295 TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position",name),0.,0.,muonSystem_length);
296 trm1->RegisterYourself();
297 TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position",name),0.,0.,-muonSystem_length);
298 trm1->RegisterYourself();
299 top->AddNode(muon_endcap,1,trm1);
300 top->AddNode(muon_endcap,2,trm2);
301 return std::make_pair(muonSystem_radius,muonSystem_length);
302}
303
304void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char* name,
305 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) {
306
307 TGeoVolume* calo_endcap = top->GetNode(Form("%s_endcap_1",name))->GetVolume();
308 TGeoVolume* calo_barrel = top->GetNode(Form("%s_barrel_1",name))->GetVolume();
309 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength));
310 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_);
311
312 // calo towers in the barrel
313 Double_t vertices[16] = {0.,0.,0.,0.,0.,0.,0.,0.}; // summit of the pyramid
314 Double_t R = tk_radius_ + contingency_+(contingency_+calo_barrel_thickness_)*calorimeters_.size(); // radius of the muons system = height of the pyramid
315 Int_t nEtaBins = caloBinning.size();
316 // this rotation is to make the tower point "up"
317 TGeoRotation* initTowerRot = new TGeoRotation(Form("%s_initTowerRot",name),0.,90.,0.);
318 TGeoCombiTrans* initTower = new TGeoCombiTrans(Form("%s_initTower",name),0.,-R/2.,0.,initTowerRot);
319 initTower->RegisterYourself();
320 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
321 // phi bins represented by rotations around z
322 Double_t *y = new Double_t[nEtaBins];
323 Double_t *dx = new Double_t[nEtaBins];
324 Int_t *nphi = new Int_t[nEtaBins];
325 Int_t etaslice = 0;
326 std::map<std::pair<int,int>, TGeoRotation*> phirotations;
327 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) {
328 if(abs(bin->first)>calo_endcap_etamin) continue; // only in the barrel
329 nphi[etaslice] = bin->second;
330 y[etaslice] = 0.5*R*(1-exp(-2*bin->first))/exp(-bin->first);
331 Double_t phiRotationAngle = 360./nphi[etaslice];
332 dx[etaslice] = R*tan(TMath::Pi()*phiRotationAngle/360.);
333 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
334 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.);
335 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
336 }
337 ++etaslice;
338 }
339 nEtaBins = etaslice;
340 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
341 vertices[8] = -dx[i]; vertices[9] = y[i];
342 vertices[10] = -dx[i]; vertices[11] = y[i+1];
343 vertices[12] = dx[i]; vertices[13] = y[i+1];
344 vertices[14] = dx[i]; vertices[15] = y[i];
345 new TGeoArb8(Form("%s_tower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0
346 // intersection between the tower and the calo_barrel
347 TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs",name,i),Form("%s_tower%d:%s_initTower*%s_barrel_cs",name,i,name,name));
348 TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d",name,i),finaltower_cs,calomed_);
349 finaltower->SetLineColor(kRed);
350 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
351 calo_barrel->AddNode(finaltower,j,phirotations[make_pair(i,j)]);
352 }
353 }
354 delete[] y;
355 delete[] dx;
356 delete[] nphi;
357 //the towers in the forward region
358 R = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size(); // Z of the muons system = height of the pyramid
359 nEtaBins = caloBinning.size();
360 // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place)
361 TGeoTranslation* towerdz = new TGeoTranslation(Form("%s_towerdz",name),0.,0.,R/2.-(innerBarrelLength+calo_endcap_coneThickness/2.));
362 towerdz->RegisterYourself();
363 // eta bins... we build one pyramid per eta slice and then translate it nphi times.
364 Double_t *r = new Double_t[nEtaBins];
365 nphi = new Int_t[nEtaBins];
366 etaslice = 0;
367 phirotations.clear();
368 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) {
369 if(bin->first<calo_endcap_etamin) continue; // only in the + endcap
370 r[etaslice] = R*2*exp(-bin->first)/(1-exp(-2*bin->first));
371 nphi[etaslice] = bin->second;
372 Double_t phiRotationAngle = 360./nphi[etaslice];
373 for(int phislice=0;phislice<nphi[etaslice];++phislice) {
374 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.);
375 phirotations[make_pair(etaslice,phislice)]->RegisterYourself();
376 }
377 ++etaslice;
378 }
379 nEtaBins = etaslice;
380 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices
381 vertices[8] = -r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[9] = r[i+1]*cos(TMath::Pi()/nphi[i]);
382 vertices[10] = -r[i]*sin(TMath::Pi()/nphi[i]); vertices[11] = r[i]*cos(TMath::Pi()/nphi[i]);
383 vertices[12] = r[i]*sin(TMath::Pi()/nphi[i]); vertices[13] = r[i]*cos(TMath::Pi()/nphi[i]);
384 vertices[14] = r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[15] = r[i+1]*cos(TMath::Pi()/nphi[i]);
385 new TGeoArb8(Form("%sfwdtower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0
386 // intersection between the tower and the calo_endcap
387 TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs",name,i),Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs",name,i,name,name));
388 TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d",name,i),finalfwdtower_cs,calomed_);
389 finalfwdtower->SetLineColor(kViolet);
390 for(int j=0;j<nphi[i];++j) { // loop on the phi slices
391 calo_endcap->AddNode(finalfwdtower,j,phirotations[make_pair(i,j)]);
392 }
393 }
394 delete[] r;
395 delete[] nphi;
396}
397
Note: See TracBrowser for help on using the repository browser.