1 | /*
|
---|
2 | * Delphes: a framework for fast simulation of a generic collider experiment
|
---|
3 | * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 | #include <algorithm>
|
---|
20 | #include <cassert>
|
---|
21 | #include <map>
|
---|
22 | #include <set>
|
---|
23 | #include <sstream>
|
---|
24 | #include <utility>
|
---|
25 | #include <vector>
|
---|
26 |
|
---|
27 | #include "TAxis.h"
|
---|
28 | #include "TF2.h"
|
---|
29 | #include "TFormula.h"
|
---|
30 | #include "TGeoArb8.h"
|
---|
31 | #include "TGeoCompositeShape.h"
|
---|
32 | #include "TGeoCone.h"
|
---|
33 | #include "TGeoManager.h"
|
---|
34 | #include "TGeoMatrix.h"
|
---|
35 | #include "TGeoMedium.h"
|
---|
36 | #include "TGeoNode.h"
|
---|
37 | #include "TGeoTube.h"
|
---|
38 | #include "TGeoVolume.h"
|
---|
39 | #include "TH1F.h"
|
---|
40 | #include "TMath.h"
|
---|
41 | #include "TString.h"
|
---|
42 |
|
---|
43 | #include "display/Delphes3DGeometry.h"
|
---|
44 |
|
---|
45 | #include "classes/DelphesClasses.h"
|
---|
46 | #include "external/ExRootAnalysis/ExRootConfReader.h"
|
---|
47 |
|
---|
48 | using namespace std;
|
---|
49 |
|
---|
50 | Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp)
|
---|
51 | {
|
---|
52 |
|
---|
53 | //--- the geometry manager
|
---|
54 | geom_ = geom == NULL ? gGeoManager : geom;
|
---|
55 | //gGeoManager->DefaultColors();
|
---|
56 |
|
---|
57 | //--- define some materials
|
---|
58 | TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0, 0, 0);
|
---|
59 | TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98, 13, 2.7); // placeholder
|
---|
60 | if(transp)
|
---|
61 | {
|
---|
62 | matVacuum->SetTransparency(85);
|
---|
63 | matAl->SetTransparency(85);
|
---|
64 | }
|
---|
65 |
|
---|
66 | //--- define some media
|
---|
67 | TGeoMedium *Vacuum = new TGeoMedium("Vacuum", 1, matVacuum);
|
---|
68 | TGeoMedium *Al = new TGeoMedium("Root Material", 2, matAl);
|
---|
69 | vacuum_ = Vacuum;
|
---|
70 | tkmed_ = Vacuum; // placeholder
|
---|
71 | calomed_ = Al; // placeholder
|
---|
72 | mudetmed_ = Al; // placeholder
|
---|
73 |
|
---|
74 | // custom parameters
|
---|
75 | contingency_ = 10.;
|
---|
76 | calo_barrel_thickness_ = 50.;
|
---|
77 | calo_endcap_thickness_ = 75.;
|
---|
78 | muonSystem_thickn_ = 10.;
|
---|
79 |
|
---|
80 | // read these parameters from the Delphes Card (with default values)
|
---|
81 | etaAxis_ = NULL;
|
---|
82 | phiAxis_ = NULL;
|
---|
83 | tk_radius_ = 120.;
|
---|
84 | tk_length_ = 150.;
|
---|
85 | tk_etamax_ = 3.0;
|
---|
86 | tk_Bz_ = 1.;
|
---|
87 | muonSystem_radius_ = 200.;
|
---|
88 | }
|
---|
89 |
|
---|
90 | void Delphes3DGeometry::readFile(const char *configFile,
|
---|
91 | const char *ParticlePropagator, const char *TrackingEfficiency,
|
---|
92 | const char *MuonEfficiency, const char *Calorimeters)
|
---|
93 | {
|
---|
94 |
|
---|
95 | ExRootConfReader *confReader = new ExRootConfReader;
|
---|
96 | confReader->ReadFile(configFile);
|
---|
97 |
|
---|
98 | tk_radius_ = confReader->GetDouble(Form("%s::Radius", ParticlePropagator), 1.0) * 100.; // tk_radius
|
---|
99 | tk_length_ = confReader->GetDouble(Form("%s::HalfLength", ParticlePropagator), 3.0) * 100.; // tk_length
|
---|
100 | tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz
|
---|
101 |
|
---|
102 | TString buffer;
|
---|
103 | const char *it;
|
---|
104 |
|
---|
105 | {
|
---|
106 | TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", TrackingEfficiency), "abs(eta)<3.0");
|
---|
107 | tkEffFormula.ReplaceAll("pt", "x");
|
---|
108 | tkEffFormula.ReplaceAll("eta", "y");
|
---|
109 | tkEffFormula.ReplaceAll("phi", "0.");
|
---|
110 |
|
---|
111 | buffer.Clear();
|
---|
112 | for(it = tkEffFormula.Data(); *it; ++it)
|
---|
113 | {
|
---|
114 | if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue;
|
---|
115 | buffer.Append(*it);
|
---|
116 | }
|
---|
117 |
|
---|
118 | TF2 *tkEffFunction = new TF2("tkEff", buffer, 0, 1000, -10, 10);
|
---|
119 | TH1F etaHisto("eta", "eta", 100, 5., -5.);
|
---|
120 | Double_t pt, eta;
|
---|
121 | for(int i = 0; i < 1000; ++i)
|
---|
122 | {
|
---|
123 | tkEffFunction->GetRandom2(pt, eta);
|
---|
124 | etaHisto.Fill(eta);
|
---|
125 | }
|
---|
126 | Int_t bin = -1;
|
---|
127 | bin = etaHisto.FindFirstBinAbove(0.5);
|
---|
128 | Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.;
|
---|
129 | bin = etaHisto.FindLastBinAbove(0.5);
|
---|
130 | Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.;
|
---|
131 | tk_etamax_ = TMath::Max(fabs(etamin), fabs(etamax)); // tk_etamax
|
---|
132 | delete tkEffFunction;
|
---|
133 | }
|
---|
134 |
|
---|
135 | {
|
---|
136 | muondets_.push_back("muons");
|
---|
137 | TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", MuonEfficiency), "abs(eta)<2.0");
|
---|
138 | muonEffFormula.ReplaceAll("pt", "x");
|
---|
139 | muonEffFormula.ReplaceAll("eta", "y");
|
---|
140 | muonEffFormula.ReplaceAll("phi", "0.");
|
---|
141 |
|
---|
142 | buffer.Clear();
|
---|
143 | for(it = muonEffFormula.Data(); *it; ++it)
|
---|
144 | {
|
---|
145 | if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue;
|
---|
146 | buffer.Append(*it);
|
---|
147 | }
|
---|
148 |
|
---|
149 | TF2 *muEffFunction = new TF2("muEff", buffer, 0, 1000, -10, 10);
|
---|
150 | TH1F etaHisto("eta2", "eta2", 100, 5., -5.);
|
---|
151 | Double_t pt, eta;
|
---|
152 | for(int i = 0; i < 1000; ++i)
|
---|
153 | {
|
---|
154 | muEffFunction->GetRandom2(pt, eta);
|
---|
155 | etaHisto.Fill(eta);
|
---|
156 | }
|
---|
157 | Int_t bin = -1;
|
---|
158 | bin = etaHisto.FindFirstBinAbove(0.5);
|
---|
159 | Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.;
|
---|
160 | bin = etaHisto.FindLastBinAbove(0.5);
|
---|
161 | Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.;
|
---|
162 | muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin), fabs(etamax)); // muonSystem_etamax
|
---|
163 | delete muEffFunction;
|
---|
164 | }
|
---|
165 |
|
---|
166 | std::string s(Calorimeters);
|
---|
167 | std::replace(s.begin(), s.end(), ',', ' ');
|
---|
168 | std::istringstream stream(s);
|
---|
169 | std::string word;
|
---|
170 | while(stream >> word) calorimeters_.push_back(word);
|
---|
171 |
|
---|
172 | caloBinning_.clear(); // calo binning
|
---|
173 | for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo)
|
---|
174 | {
|
---|
175 | set<pair<Double_t, Int_t>> caloBinning;
|
---|
176 | ExRootConfParam paramEtaBins, paramPhiBins;
|
---|
177 | ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins", calo->c_str()));
|
---|
178 | Int_t size = param.GetSize();
|
---|
179 | for(int i = 0; i < size / 2; ++i)
|
---|
180 | {
|
---|
181 | paramEtaBins = param[i * 2];
|
---|
182 | paramPhiBins = param[i * 2 + 1];
|
---|
183 | assert(paramEtaBins.GetSize() == 1);
|
---|
184 | caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(), paramPhiBins.GetSize() - 1));
|
---|
185 | }
|
---|
186 | caloBinning_[*calo] = caloBinning;
|
---|
187 | }
|
---|
188 |
|
---|
189 | set<pair<Double_t, Int_t>> caloBinning = caloBinning_[*calorimeters_.begin()];
|
---|
190 | Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo
|
---|
191 | unsigned int ii = 0;
|
---|
192 | for(set<pair<Double_t, Int_t>>::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet)
|
---|
193 | {
|
---|
194 | etaBins[ii++] = itEtaSet->first;
|
---|
195 | }
|
---|
196 | etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins);
|
---|
197 | phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT
|
---|
198 |
|
---|
199 | muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size() + muonSystem_thickn_;
|
---|
200 | muonSystem_length_ = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + muonSystem_thickn_;
|
---|
201 |
|
---|
202 | delete confReader;
|
---|
203 | }
|
---|
204 |
|
---|
205 | TGeoVolume *Delphes3DGeometry::getDetector(bool withTowers)
|
---|
206 | {
|
---|
207 | // compute the envelope
|
---|
208 | Double_t system_radius = tk_radius_ + calo_barrel_thickness_ + 3 * contingency_;
|
---|
209 | Double_t system_length = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + contingency_;
|
---|
210 | // the detector volume
|
---|
211 | TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length);
|
---|
212 | // build the detector
|
---|
213 | std::pair<Double_t, Double_t> limits = addTracker(top);
|
---|
214 | Double_t radius = limits.first;
|
---|
215 | Double_t length = limits.second;
|
---|
216 | for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo)
|
---|
217 | {
|
---|
218 | limits = addCalorimeter(top, calo->c_str(), radius, length, caloBinning_[*calo]);
|
---|
219 | if(withTowers)
|
---|
220 | {
|
---|
221 | addCaloTowers(top, calo->c_str(), radius, length, caloBinning_[*calo]);
|
---|
222 | }
|
---|
223 | radius = limits.first;
|
---|
224 | length = limits.second;
|
---|
225 | }
|
---|
226 | for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon)
|
---|
227 | {
|
---|
228 | limits = addMuonDets(top, muon->c_str(), radius, length);
|
---|
229 | radius = limits.first;
|
---|
230 | length = limits.second;
|
---|
231 | }
|
---|
232 | // return the result
|
---|
233 | return top;
|
---|
234 | }
|
---|
235 |
|
---|
236 | std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top)
|
---|
237 | {
|
---|
238 | // tracker: a cylinder with two cones substracted
|
---|
239 | new TGeoCone("forwardTkAcceptance", (tk_length_ / 2. + 0.05), 0., tk_radius_, (tk_length_)*2. * exp(-tk_etamax_) / (1 - exp(-2. * tk_etamax_)), tk_radius_);
|
---|
240 | TGeoTranslation *tr1 = new TGeoTranslation("tkacc1", 0., 0., tk_length_ / 2.);
|
---|
241 | tr1->RegisterYourself();
|
---|
242 | TGeoRotation *negz = new TGeoRotation("tknegz", 0, 180, 0);
|
---|
243 | negz->RegisterYourself();
|
---|
244 | TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2", 0., 0., -tk_length_ / 2., negz);
|
---|
245 | tr2->RegisterYourself();
|
---|
246 | TGeoCompositeShape *tracker_cs = new TGeoCompositeShape("tracker_cs", "forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2");
|
---|
247 | TGeoVolume *tracker = new TGeoVolume("tracker", tracker_cs, tkmed_);
|
---|
248 | tracker->SetLineColor(kYellow);
|
---|
249 | top->AddNode(tracker, 1);
|
---|
250 | return std::make_pair(tk_radius_, tk_length_);
|
---|
251 | }
|
---|
252 |
|
---|
253 | std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char *name,
|
---|
254 | Double_t innerBarrelRadius, Double_t innerBarrelLength, set<pair<Double_t, Int_t>> &caloBinning)
|
---|
255 | {
|
---|
256 | // parameters derived from the inputs
|
---|
257 | Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first), fabs(caloBinning.rbegin()->first));
|
---|
258 | Double_t calo_barrel_innerRadius = innerBarrelRadius + contingency_;
|
---|
259 | Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_;
|
---|
260 | Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength));
|
---|
261 | Double_t calo_endcap_innerRadius1 = innerBarrelLength * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax));
|
---|
262 | Double_t calo_endcap_innerRadius2 = (innerBarrelLength + calo_endcap_thickness_) * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax));
|
---|
263 | Double_t calo_endcap_outerRadius1 = innerBarrelRadius;
|
---|
264 | Double_t calo_endcap_outerRadius2 = innerBarrelRadius + calo_barrel_thickness_;
|
---|
265 | Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_);
|
---|
266 | Double_t calo_endcap_diskThickness = TMath::Max(0., calo_endcap_thickness_ - calo_endcap_coneThickness);
|
---|
267 |
|
---|
268 | // calorimeters: tube truncated in eta + cones
|
---|
269 | new TGeoTube(Form("%s_barrel_cylinder", name), calo_barrel_innerRadius, calo_barrel_innerRadius + calo_barrel_thickness_, calo_barrel_length);
|
---|
270 | new TGeoCone(Form("%s_endcap_cone", name), calo_endcap_coneThickness / 2., calo_endcap_innerRadius1, calo_endcap_outerRadius1, calo_endcap_innerRadius2, calo_endcap_outerRadius2);
|
---|
271 | new TGeoTube(Form("%s_endcap_disk", name), calo_endcap_innerRadius2, tk_radius_ + calo_barrel_thickness_, calo_endcap_diskThickness / 2.);
|
---|
272 | TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1", name), 0., 0., (calo_endcap_coneThickness + calo_endcap_diskThickness) / 2.);
|
---|
273 | tr1->RegisterYourself();
|
---|
274 | TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs", name), Form("%s_endcap_cone+%s_endcap_disk:%s_tr1", name, name, name));
|
---|
275 | TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2.);
|
---|
276 | trc1->RegisterYourself();
|
---|
277 | TGeoRotation *negz = new TGeoRotation(Form("%s_negz", name), 0, 180, 0);
|
---|
278 | TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.), negz);
|
---|
279 | trc2->RegisterYourself();
|
---|
280 | TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2. + contingency_);
|
---|
281 | trc1c->RegisterYourself();
|
---|
282 | TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.) - contingency_, negz);
|
---|
283 | trc2c->RegisterYourself();
|
---|
284 | TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap", name), calo_endcap_cs, calomed_);
|
---|
285 | TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs", name),
|
---|
286 | Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position", name, name, name, name, name));
|
---|
287 | TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel", name), calo_barrel_cs, calomed_);
|
---|
288 | calo_endcap->SetLineColor(kViolet);
|
---|
289 | calo_endcap->SetFillColor(kViolet);
|
---|
290 | calo_barrel->SetLineColor(kRed);
|
---|
291 | top->AddNode(calo_endcap, 1, trc1c);
|
---|
292 | top->AddNode(calo_endcap, 2, trc2c);
|
---|
293 | top->AddNode(calo_barrel, 1);
|
---|
294 | return std::make_pair(calo_barrel_innerRadius + calo_barrel_thickness_, innerBarrelLength + calo_endcap_thickness_ + contingency_);
|
---|
295 | }
|
---|
296 |
|
---|
297 | std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char *name, Double_t innerBarrelRadius, Double_t innerBarrelLength)
|
---|
298 | {
|
---|
299 | // muon system: tube + disks
|
---|
300 | Double_t muonSystem_radius = innerBarrelRadius + contingency_;
|
---|
301 | Double_t muonSystem_length = innerBarrelLength + contingency_;
|
---|
302 | Double_t muonSystem_rmin = muonSystem_length * 2. * exp(-muonSystem_etamax_[name]) / (1 - exp(-2. * muonSystem_etamax_[name]));
|
---|
303 | TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel", name), mudetmed_, muonSystem_radius, muonSystem_radius + muonSystem_thickn_, muonSystem_length);
|
---|
304 | muon_barrel->SetLineColor(kBlue);
|
---|
305 | top->AddNode(muon_barrel, 1);
|
---|
306 | TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap", name), mudetmed_, muonSystem_rmin, muonSystem_radius + muonSystem_thickn_, muonSystem_thickn_ / 2.);
|
---|
307 | muon_endcap->SetLineColor(kBlue);
|
---|
308 | TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position", name), 0., 0., muonSystem_length);
|
---|
309 | trm1->RegisterYourself();
|
---|
310 | TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position", name), 0., 0., -muonSystem_length);
|
---|
311 | trm1->RegisterYourself();
|
---|
312 | top->AddNode(muon_endcap, 1, trm1);
|
---|
313 | top->AddNode(muon_endcap, 2, trm2);
|
---|
314 | return std::make_pair(muonSystem_radius, muonSystem_length);
|
---|
315 | }
|
---|
316 |
|
---|
317 | void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char *name,
|
---|
318 | Double_t innerBarrelRadius, Double_t innerBarrelLength, set<pair<Double_t, Int_t>> &caloBinning)
|
---|
319 | {
|
---|
320 |
|
---|
321 | TGeoVolume *calo_endcap = top->GetNode(Form("%s_endcap_1", name))->GetVolume();
|
---|
322 | TGeoVolume *calo_barrel = top->GetNode(Form("%s_barrel_1", name))->GetVolume();
|
---|
323 | Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength));
|
---|
324 | Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_);
|
---|
325 |
|
---|
326 | // calo towers in the barrel
|
---|
327 | Double_t vertices[16] = {0., 0., 0., 0., 0., 0., 0., 0.}; // summit of the pyramid
|
---|
328 | Double_t R = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size(); // radius of the muons system = height of the pyramid
|
---|
329 | Int_t nEtaBins = caloBinning.size();
|
---|
330 | // this rotation is to make the tower point "up"
|
---|
331 | TGeoRotation *initTowerRot = new TGeoRotation(Form("%s_initTowerRot", name), 0., 90., 0.);
|
---|
332 | TGeoCombiTrans *initTower = new TGeoCombiTrans(Form("%s_initTower", name), 0., -R / 2., 0., initTowerRot);
|
---|
333 | initTower->RegisterYourself();
|
---|
334 | // eta bins... we build one pyramid per eta slice and then translate it nphi times.
|
---|
335 | // phi bins represented by rotations around z
|
---|
336 | Double_t *y = new Double_t[nEtaBins];
|
---|
337 | Double_t *dx = new Double_t[nEtaBins];
|
---|
338 | Int_t *nphi = new Int_t[nEtaBins];
|
---|
339 | Int_t etaslice = 0;
|
---|
340 | std::map<std::pair<int, int>, TGeoRotation *> phirotations;
|
---|
341 | for(set<pair<Double_t, Int_t>>::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin)
|
---|
342 | {
|
---|
343 | if(abs(bin->first) > calo_endcap_etamin) continue; // only in the barrel
|
---|
344 | nphi[etaslice] = bin->second;
|
---|
345 | y[etaslice] = 0.5 * R * (1 - exp(-2 * bin->first)) / exp(-bin->first);
|
---|
346 | Double_t phiRotationAngle = 360. / nphi[etaslice];
|
---|
347 | dx[etaslice] = R * tan(TMath::Pi() * phiRotationAngle / 360.);
|
---|
348 | for(int phislice = 0; phislice < nphi[etaslice]; ++phislice)
|
---|
349 | {
|
---|
350 | phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.);
|
---|
351 | phirotations[make_pair(etaslice, phislice)]->RegisterYourself();
|
---|
352 | }
|
---|
353 | ++etaslice;
|
---|
354 | }
|
---|
355 | nEtaBins = etaslice;
|
---|
356 | for(int i = 0; i < nEtaBins - 1; ++i)
|
---|
357 | { // loop on the eta slices
|
---|
358 | vertices[8] = -dx[i];
|
---|
359 | vertices[9] = y[i];
|
---|
360 | vertices[10] = -dx[i];
|
---|
361 | vertices[11] = y[i + 1];
|
---|
362 | vertices[12] = dx[i];
|
---|
363 | vertices[13] = y[i + 1];
|
---|
364 | vertices[14] = dx[i];
|
---|
365 | vertices[15] = y[i];
|
---|
366 | new TGeoArb8(Form("%s_tower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0
|
---|
367 | // intersection between the tower and the calo_barrel
|
---|
368 | TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs", name, i), Form("%s_tower%d:%s_initTower*%s_barrel_cs", name, i, name, name));
|
---|
369 | TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d", name, i), finaltower_cs, calomed_);
|
---|
370 | finaltower->SetLineColor(kRed);
|
---|
371 | for(int j = 0; j < nphi[i]; ++j)
|
---|
372 | { // loop on the phi slices
|
---|
373 | calo_barrel->AddNode(finaltower, j, phirotations[make_pair(i, j)]);
|
---|
374 | }
|
---|
375 | }
|
---|
376 | delete[] y;
|
---|
377 | delete[] dx;
|
---|
378 | delete[] nphi;
|
---|
379 | //the towers in the forward region
|
---|
380 | R = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size(); // Z of the muons system = height of the pyramid
|
---|
381 | nEtaBins = caloBinning.size();
|
---|
382 | // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place)
|
---|
383 | TGeoTranslation *towerdz = new TGeoTranslation(Form("%s_towerdz", name), 0., 0., R / 2. - (innerBarrelLength + calo_endcap_coneThickness / 2.));
|
---|
384 | towerdz->RegisterYourself();
|
---|
385 | // eta bins... we build one pyramid per eta slice and then translate it nphi times.
|
---|
386 | Double_t *r = new Double_t[nEtaBins];
|
---|
387 | nphi = new Int_t[nEtaBins];
|
---|
388 | etaslice = 0;
|
---|
389 | phirotations.clear();
|
---|
390 | for(set<pair<Double_t, Int_t>>::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin)
|
---|
391 | {
|
---|
392 | if(bin->first < calo_endcap_etamin) continue; // only in the + endcap
|
---|
393 | r[etaslice] = R * 2 * exp(-bin->first) / (1 - exp(-2 * bin->first));
|
---|
394 | nphi[etaslice] = bin->second;
|
---|
395 | Double_t phiRotationAngle = 360. / nphi[etaslice];
|
---|
396 | for(int phislice = 0; phislice < nphi[etaslice]; ++phislice)
|
---|
397 | {
|
---|
398 | phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.);
|
---|
399 | phirotations[make_pair(etaslice, phislice)]->RegisterYourself();
|
---|
400 | }
|
---|
401 | ++etaslice;
|
---|
402 | }
|
---|
403 | nEtaBins = etaslice;
|
---|
404 | for(int i = 0; i < nEtaBins - 1; ++i)
|
---|
405 | { // loop on the eta slices
|
---|
406 | vertices[8] = -r[i + 1] * sin(TMath::Pi() / nphi[i]);
|
---|
407 | vertices[9] = r[i + 1] * cos(TMath::Pi() / nphi[i]);
|
---|
408 | vertices[10] = -r[i] * sin(TMath::Pi() / nphi[i]);
|
---|
409 | vertices[11] = r[i] * cos(TMath::Pi() / nphi[i]);
|
---|
410 | vertices[12] = r[i] * sin(TMath::Pi() / nphi[i]);
|
---|
411 | vertices[13] = r[i] * cos(TMath::Pi() / nphi[i]);
|
---|
412 | vertices[14] = r[i + 1] * sin(TMath::Pi() / nphi[i]);
|
---|
413 | vertices[15] = r[i + 1] * cos(TMath::Pi() / nphi[i]);
|
---|
414 | new TGeoArb8(Form("%sfwdtower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0
|
---|
415 | // intersection between the tower and the calo_endcap
|
---|
416 | TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs", name, i), Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs", name, i, name, name));
|
---|
417 | TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d", name, i), finalfwdtower_cs, calomed_);
|
---|
418 | finalfwdtower->SetLineColor(kViolet);
|
---|
419 | for(int j = 0; j < nphi[i]; ++j)
|
---|
420 | { // loop on the phi slices
|
---|
421 | calo_endcap->AddNode(finalfwdtower, j, phirotations[make_pair(i, j)]);
|
---|
422 | }
|
---|
423 | }
|
---|
424 | delete[] r;
|
---|
425 | delete[] nphi;
|
---|
426 | }
|
---|