Maxime Lagrange

PhD student


Centre for Cosmology, Particle Physics and Phenomenology - CP3
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve


UCL member card
Research directions:
Detector commissioning, operation and data processing
Research and development of new detectors

Experiments and collaborations:

Active projects
Imaging with cosmic-ray muons
Marwa Al Moussawi, Samip Basnet, Luigi Cimmino, Eduardo Cortina Gil, Ishan Darshana, Antoine Deblaere, Pavel Demin, Andrea Giammanco, Raveendrababu Karnam, Maxime Lagrange, Hikaru Sato

The general goal of this project is to develop muon-based radiography or tomography (“muography”), an innovative multidisciplinary approach to study large-scale natural or man-made structures, establishing a strong synergy between particle physics and other disciplines, such as geology and archaeology.
Muography is an imaging technique that relies on the measurement of the absorption of muons produced by the interactions of cosmic rays with the atmosphere.
Applications span from geophysics (the study of the interior of mountains and the remote quasi-online monitoring of active volcanoes) to archaeology and mining.

We are using the local facilities at CP3 for the development of high-resolution portable detectors based on Resistive Plate Chambers.

We also participate to the MURAVES collaboration through simulations (including the coordination of the Monte Carlo group), data-analysis developments (an example of the latter is the implementation and in-situ calibration of time-of-flight capabilities), and development of a new database.

We are part of the H2020-RIA project SilentBorder, which aims at developing new muon scanners at border controls. Our role in this project is to develop a parametric simulation and a ML-based detector optimization procedure.

We are also part of the H2020-MSCA-RISE network INTENSE where we coordinate the Muography work package, which brings together particle physicists, geophysicists, archaeologists, civil engineers and private companies for the development and exploitation of this imaging method.

External collaborators: UGent; Kyushu University; INTENSE Research & Innovation Staff Exchange network (Japan, Switzerland, Italy, France, Hungary); SilentBorder network (Estonia, Germany, Finland, Turkey, Italy, UK); MURAVES Collaboration including INFN, INGV, universities of Florence and Federico II Naples, UGent.
Publications in CP3
All my publications on Inspire

Number of publications as CP3 member: 1 Download BibTeX


CP3-22-27: Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper
Tommaso Dorigo, Andrea Giammanco, Pietro Vischia (editors), Max Aehle, Mateusz Bawaj, Alexey Boldyrev, Pablo de Castro Manzano, Denis Derkach, Julien Donini, Auralee Edelen, Federica Fanzago, Nicolas R. Gauger, Christian Glaser, Atılım G. Baydin, Lukas Heinrich, Ralf Keidel, Jan Kieseler, Claudius Krause, Maxime Lagrange, Max Lamparth, Lukas Layer, Gernot Maier, Federico Nardi, Helge E. S. Pettersen, Alberto Ramos, Fedor Ratnikov, Dieter Röhrich, Roberto Ruiz de Austri, Pablo Martínez Ruiz del Árbol, Oleg Savchenko, Nathan Simpson, Giles C. Strong, Angela Taliercio, Mia Tosi, Andrey Ustyuzhanin, Haitham Zaraket

[Abstract] [PDF] [Local file]
109 pages, 32 figures. To be submitted to Reviews in Physics
Refereed paper. March 29.