Contact
Name
Juan Cabrera

Position
Former member
Member from April 2012
Projects
Research directions:
Detector commissioning, operation and data processing
Research and development of new detectors

Experiments and collaborations:
CMS

Active projects
The CMS silicon strip tracker upgrade
Anna Benecke, Agni Bethani, Laurent Bruniaux, Jérôme de Favereau, Christophe Delaere, Pavel Demin, Paul Malek, Nicolas Szilasi

Development of the "phase II" upgrade for the CMS silicon strip stracker.

More precisely, we are involved in the development of the uTCA-based DAQ system and in the test/validation of the first prototype modules. We take active part to the various test-beam campaigns (CERN, DESY, ...)

This activity will potentially make use of the cyclotron of UCL, the probe stations and the SYCOC setup (SYstem de mesure de COllection de Charge) to test the response to laser light, radioactive sources and beams.

The final goal is to take a leading role in the construction of part of the CMS Phase-II tracker.

External collaborators: CRC and CMS collaboration.
World LHC Computing Grid: the Belgian Tier2 project
Giacomo Bruno, Jérôme de Favereau, Pavel Demin, Vincent Lemaitre, Andres Tanasijczuk

The World LHC Computing GRID (WLCG) is the worldwide distributed computing infrastructure controlled by software middleware that allows a seamless usage of shared storage and computing resources.

About 10 PBytes of data are produced every year by the experiments running at the LHC collider. This data must be processed (iterative and refined calibration and analysis) by a large scientific community that is widely distributed geographically.

Instead of concentrating all necessary computing resources in a single location, the LHC experiments have decided to set-up a network of computing centres distributed all over the world.

The overall WLCG computing resources needed by the CMS experiment alone in 2016 amount to about 1500 kHepSpec06 of computing power, 90 PB of disk storage and 150 PB of tape storage. Working in the context of the WLCG translates into seamless access to shared computing and storage resources. End users do not need to know where their applications run. The choice is made by the underlying WLCG software on the basis of availability of resources, demands of the user application (CPU, input and output data,..) and privileges owned by the user.

Back in 2005 UCL proposed the WLCG Belgian Tier2 project that would involve the 6 Belgian Universities involved in CMS. The Tier2 project consists of contributing to the WLCG by building two computing centres, one at UCL and one at the IIHE (ULB/VUB).

The UCL site of the WLCG Belgian Tier2 is deployed in a dedicated room close to the cyclotron control room of the IRMP Institute and is currently a fully functional component of the WLCG.

The UCL Belgian Tier2 project also aims to integrate, bring on the GRID, and share resources with other scientific computing projects. The projects currently integrated in the UCL computing cluster are the following: MadGraph/MadEvent, NA62 and Cosmology.

External collaborators: CISM (UCL), Pascal Vanlaer (Belgium, ULB), Lyon computing centre, CERN computing centre.
Publications in IRMP
All my publications on Inspire

Number of publications as IRMP member: 1

2020

CP3-20-33: Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector
CMS Tracker Collaboration

[Journal] [Full text]
Published in: JINST 13 (2018) 03, P03003, Report number: FERMILAB-PUB-18-385-CMS, CERN-CMS-NOTE-2017-010

O. Bondu5, S. Brochet5, A. Caudron5, S. De Visscher5, B. Francois5, A. Jafari5, J. Cabrera Jamoulle5, M. Komm5, G. Krintiras5, A. Magitteri5, A. Mertens5, D. Michotte5, M. Musich5,, L. Quertenmont5, M. Vidal Marono5,
Refereed paper. July 2.