source: trunk/FirmwareFX2/usbjtag.c@ 35

Last change on this file since 35 was 28, checked in by demin, 15 years ago

fix PINFLAGSAB configuration

File size: 16.0 KB
Line 
1/*-----------------------------------------------------------------------------
2 * Code that turns a Cypress FX2 USB Controller into an USB JTAG adapter
3 *-----------------------------------------------------------------------------
4 * Copyright (C) 2005..2007 Kolja Waschk, ixo.de
5 *-----------------------------------------------------------------------------
6 * Check hardware.h/.c if it matches your hardware configuration (e.g. pinout).
7 * Changes regarding USB identification should be made in product.inc!
8 *-----------------------------------------------------------------------------
9 * This code is part of usbjtag. usbjtag is free software; you can redistribute
10 * it and/or modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the License,
12 * or (at your option) any later version. usbjtag is distributed in the hope
13 * that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details. You should have received a
16 * copy of the GNU General Public License along with this program in the file
17 * COPYING; if not, write to the Free Software Foundation, Inc., 51 Franklin
18 * St, Fifth Floor, Boston, MA 02110-1301 USA
19 *-----------------------------------------------------------------------------
20 */
21
22#include "isr.h"
23#include "timer.h"
24#include "delay.h"
25#include "fx2regs.h"
26#include "fx2utils.h"
27#include "usb_common.h"
28#include "usb_descriptors.h"
29#include "usb_requests.h"
30
31#include "syncdelay.h"
32
33#include "eeprom.h"
34#include "hardware.h"
35
36#include "spi.h"
37
38//-----------------------------------------------------------------------------
39// Define USE_MOD256_OUTBUFFER:
40// Saves about 256 bytes in code size, improves speed a little.
41// A further optimization could be not to use an extra output buffer at
42// all, but to write directly into EP1INBUF. Not implemented yet. When
43// downloading large amounts of data _to_ the target, there is no output
44// and thus the output buffer isn't used at all and doesn't slow down things.
45
46#define USE_MOD256_OUTBUFFER 1
47
48//-----------------------------------------------------------------------------
49// Global data
50
51typedef bit BOOL;
52#define FALSE 0
53#define TRUE 1
54static BOOL Running;
55static BOOL WriteOnly;
56
57static BYTE ClockBytes;
58static WORD Pending;
59
60#ifdef USE_MOD256_OUTBUFFER
61 static BYTE FirstDataInOutBuffer;
62 static BYTE FirstFreeInOutBuffer;
63#else
64 static WORD FirstDataInOutBuffer;
65 static WORD FirstFreeInOutBuffer;
66#endif
67
68#ifdef USE_MOD256_OUTBUFFER
69 /* Size of output buffer must be exactly 256 */
70 #define OUTBUFFER_LEN 0x100
71 /* Output buffer must begin at some address with lower 8 bits all zero */
72 xdata at 0xE000 BYTE OutBuffer[OUTBUFFER_LEN];
73#else
74 #define OUTBUFFER_LEN 0x200
75 static xdata BYTE OutBuffer[OUTBUFFER_LEN];
76#endif
77
78//-----------------------------------------------------------------------------
79
80void usb_jtag_init(void) // Called once at startup
81{
82 WORD tmp;
83
84 Running = FALSE;
85 ClockBytes = 0;
86 Pending = 0;
87 WriteOnly = TRUE;
88 FirstDataInOutBuffer = 0;
89 FirstFreeInOutBuffer = 0;
90
91 ProgIO_Init();
92
93 ProgIO_Enable();
94
95 // Make Timer2 reload at 100 Hz to trigger Keepalive packets
96
97 tmp = 65536 - ( 48000000 / 12 / 100 );
98 RCAP2H = tmp >> 8;
99 RCAP2L = tmp & 0xFF;
100 CKCON = 0; // Default Clock
101 T2CON = 0x04; // Auto-reload mode using internal clock, no baud clock.
102
103 // Enable Autopointer
104
105 EXTACC = 1; // Enable
106 APTR1FZ = 1; // Don't freeze
107 APTR2FZ = 1; // Don't freeze
108
109 // define endpoint configuration
110
111 REVCTL = 3; SYNCDELAY; // Allow FW access to FIFO buffer
112 FIFORESET = 0x80; SYNCDELAY; // From now on, NAK all, reset all FIFOS
113 FIFORESET = 0x02; SYNCDELAY; // Reset FIFO 2
114 FIFORESET = 0x04; SYNCDELAY; // Reset FIFO 4
115 FIFORESET = 0x06; SYNCDELAY; // Reset FIFO 6
116 FIFORESET = 0x08; SYNCDELAY; // Reset FIFO 8
117 FIFORESET = 0x00; SYNCDELAY; // Restore normal behaviour
118
119 EP1OUTCFG = 0xA0; SYNCDELAY; // Endpoint 1 Type Bulk
120 EP1INCFG = 0xA0; SYNCDELAY; // Endpoint 1 Type Bulk
121
122 EP2FIFOCFG = 0x00; SYNCDELAY; // Endpoint 2
123 EP2CFG = 0xA2; SYNCDELAY; // Endpoint 2 Valid, Out, Type Bulk, Double buffered
124
125 EP4FIFOCFG = 0x00; SYNCDELAY; // Endpoint 4 not used
126 EP4CFG = 0xA0; SYNCDELAY; // Endpoint 4 not used
127
128 REVCTL = 0; SYNCDELAY; // Reset FW access to FIFO buffer, enable auto-arming when AUTOOUT is switched to 1
129
130 EP6CFG = 0xA2; SYNCDELAY; // Out endpoint, Bulk, Double buffering
131 EP6FIFOCFG = 0x00; SYNCDELAY; // Firmware has to see a rising edge on auto bit to enable auto arming
132 EP6FIFOCFG = bmAUTOOUT; SYNCDELAY; // Endpoint 6 used for user communicationn, auto commitment, 8 bits data bus
133
134 EP8CFG = 0xE0; SYNCDELAY; // In endpoint, Bulk
135 EP8FIFOCFG = 0x00; SYNCDELAY; // Firmware has to see a rising edge on auto bit to enable auto arming
136 EP8FIFOCFG = bmAUTOIN; SYNCDELAY; // Endpoint 8 used for user communication, auto commitment, 8 bits data bus
137
138 EP8AUTOINLENH = 0x00; SYNCDELAY; // Size in bytes of the IN data automatically commited (64 bytes here, but changed dynamically depending on the connection)
139 EP8AUTOINLENL = 0x40; SYNCDELAY; // Can use signal PKTEND if you want to commit a shorter packet
140
141 // Out endpoints do not come up armed
142 // Since the defaults are double buffered we must write dummy byte counts twice
143 EP2BCL = 0x80; SYNCDELAY; // Arm EP2OUT by writing byte count w/skip.=
144 EP4BCL = 0x80; SYNCDELAY;
145 EP2BCL = 0x80; SYNCDELAY; // Arm EP4OUT by writing byte count w/skip.=
146 EP4BCL = 0x80; SYNCDELAY;
147
148 PINFLAGSAB = 0xFA; SYNCDELAY; // 1111_1010 => FLAGA = EMPTY flag for EP6; FLAGB = FULL flag for EP8
149
150 // Put the system in high speed by default (REM: USB-Blaster is in full speed)
151 // This can be changed by vendor commands
152 CT1 &= ~0x02;
153}
154
155void OutputByte(BYTE d)
156{
157#ifdef USE_MOD256_OUTBUFFER
158 OutBuffer[FirstFreeInOutBuffer] = d;
159 FirstFreeInOutBuffer = ( FirstFreeInOutBuffer + 1 ) & 0xFF;
160#else
161 OutBuffer[FirstFreeInOutBuffer++] = d;
162 if(FirstFreeInOutBuffer >= OUTBUFFER_LEN) FirstFreeInOutBuffer = 0;
163#endif
164 Pending++;
165}
166
167//-----------------------------------------------------------------------------
168// usb_jtag_activity does most of the work. It now happens to behave just like
169// the combination of FT245BM and Altera-programmed EPM7064 CPLD in Altera's
170// USB-Blaster. The CPLD knows two major modes: Bit banging mode and Byte
171// shift mode. It starts in Bit banging mode. While bytes are received
172// from the host on EP2OUT, each byte B of them is processed as follows:
173//
174// Please note: nCE, nCS, LED pins and DATAOUT actually aren't supported here.
175// Support for these would be required for AS/PS mode and isn't too complicated,
176// but I haven't had the time yet.
177//
178// Bit banging mode:
179//
180// 1. Remember bit 6 (0x40) in B as the "Read bit".
181//
182// 2. If bit 7 (0x40) is set, switch to Byte shift mode for the coming
183// X bytes ( X := B & 0x3F ), and don't do anything else now.
184//
185// 3. Otherwise, set the JTAG signals as follows:
186// TCK/DCLK high if bit 0 was set (0x01), otherwise low
187// TMS/nCONFIG high if bit 1 was set (0x02), otherwise low
188// nCE high if bit 2 was set (0x04), otherwise low
189// nCS high if bit 3 was set (0x08), otherwise low
190// TDI/ASDI/DATA0 high if bit 4 was set (0x10), otherwise low
191// Output Enable/LED active if bit 5 was set (0x20), otherwise low
192//
193// 4. If "Read bit" (0x40) was set, record the state of TDO(CONF_DONE) and
194// DATAOUT(nSTATUS) pins and put it as a byte ((DATAOUT<<1)|TDO) in the
195// output FIFO _to_ the host (the code here reads TDO only and assumes
196// DATAOUT=1)
197//
198// Byte shift mode:
199//
200// 1. Load shift register with byte from host
201//
202// 2. Do 8 times (i.e. for each bit of the byte; implemented in shift.a51)
203// 2a) if nCS=1, set carry bit from TDO, else set carry bit from DATAOUT
204// 2b) Rotate shift register through carry bit
205// 2c) TDI := Carry bit
206// 2d) Raise TCK, then lower TCK.
207//
208// 3. If "Read bit" was set when switching into byte shift mode,
209// record the shift register content and put it into the FIFO
210// _to_ the host.
211//
212// Some more (minor) things to consider to emulate the FT245BM:
213//
214// a) The FT245BM seems to transmit just packets of no more than 64 bytes
215// (which perfectly matches the USB spec). Each packet starts with
216// two non-data bytes (I use 0x31,0x60 here). A USB sniffer on Windows
217// might show a number of packets to you as if it was a large transfer
218// because of the way that Windows understands it: it _is_ a large
219// transfer until terminated with an USB packet smaller than 64 byte.
220//
221// b) The Windows driver expects to get some data packets (with at least
222// the two leading bytes 0x31,0x60) immediately after "resetting" the
223// FT chip and then in regular intervals. Otherwise a blue screen may
224// appear... In the code below, I make sure that every 10ms there is
225// some packet.
226//
227// c) Vendor specific commands to configure the FT245 are mostly ignored
228// in my code. Only those for reading the EEPROM are processed. See
229// DR_GetStatus and DR_VendorCmd below for my implementation.
230//
231// All other TD_ and DR_ functions remain as provided with CY3681.
232//
233//-----------------------------------------------------------------------------
234
235void usb_jtag_activity(void) // Called repeatedly while the device is idle
236{
237 if(!Running) return;
238
239 ProgIO_Poll();
240
241 if(!(EP1INCS & bmEPBUSY))
242 {
243 if(Pending > 0)
244 {
245 BYTE o, n;
246
247 AUTOPTRH2 = MSB( EP1INBUF );
248 AUTOPTRL2 = LSB( EP1INBUF );
249
250 XAUTODAT2 = 0x31;
251 XAUTODAT2 = 0x60;
252
253 if(Pending > 0x3E) { n = 0x3E; Pending -= n; }
254 else { n = Pending; Pending = 0; };
255
256 o = n;
257
258#ifdef USE_MOD256_OUTBUFFER
259 APTR1H = MSB( OutBuffer );
260 APTR1L = FirstDataInOutBuffer;
261 while(n--)
262 {
263 XAUTODAT2 = XAUTODAT1;
264 APTR1H = MSB( OutBuffer ); // Stay within 256-Byte-Buffer
265 };
266 FirstDataInOutBuffer = APTR1L;
267#else
268 APTR1H = MSB( &(OutBuffer[FirstDataInOutBuffer]) );
269 APTR1L = LSB( &(OutBuffer[FirstDataInOutBuffer]) );
270 while(n--)
271 {
272 XAUTODAT2 = XAUTODAT1;
273
274 if(++FirstDataInOutBuffer >= OUTBUFFER_LEN)
275 {
276 FirstDataInOutBuffer = 0;
277 APTR1H = MSB( OutBuffer );
278 APTR1L = LSB( OutBuffer );
279 };
280 };
281#endif
282 SYNCDELAY;
283 EP1INBC = 2 + o;
284 TF2 = 1; // Make sure there will be a short transfer soon
285 }
286 else if(TF2)
287 {
288 EP1INBUF[0] = 0x31;
289 EP1INBUF[1] = 0x60;
290 SYNCDELAY;
291 EP1INBC = 2;
292 TF2 = 0;
293 };
294 };
295
296 if(!(EP2468STAT & bmEP2EMPTY) && (Pending < OUTBUFFER_LEN-0x3F))
297 {
298 WORD i, n = EP2BCL|EP2BCH<<8;
299
300 APTR1H = MSB( EP2FIFOBUF );
301 APTR1L = LSB( EP2FIFOBUF );
302
303 for(i=0;i<n;)
304 {
305 if(ClockBytes > 0)
306 {
307 WORD m;
308
309 m = n-i;
310 if(ClockBytes < m) m = ClockBytes;
311 ClockBytes -= m;
312 i += m;
313
314 /* Shift out 8 bits from d */
315
316 if(WriteOnly) /* Shift out 8 bits from d */
317 {
318 while(m--) ProgIO_ShiftOut(XAUTODAT1);
319 }
320 else /* Shift in 8 bits at the other end */
321 {
322 while(m--) OutputByte(ProgIO_ShiftInOut(XAUTODAT1));
323 }
324 }
325 else
326 {
327 BYTE d = XAUTODAT1;
328 WriteOnly = (d & bmBIT6) ? FALSE : TRUE;
329
330 if(d & bmBIT7)
331 {
332 /* Prepare byte transfer, do nothing else yet */
333
334 ClockBytes = d & 0x3F;
335 }
336 else
337 {
338 if(WriteOnly)
339 ProgIO_Set_State(d);
340 else
341 OutputByte(ProgIO_Set_Get_State(d));
342 };
343 i++;
344 };
345 };
346
347 SYNCDELAY;
348 EP2BCL = 0x80; // Re-arm endpoint 2
349 };
350}
351
352//-----------------------------------------------------------------------------
353// Handler for Vendor Requests (
354//-----------------------------------------------------------------------------
355
356unsigned char app_vendor_cmd(void)
357{
358 // because of fx2/usb_common.c, this code returns nonzero on success
359 // OUT requests. Pretend we handle them all...
360
361 if ((bRequestType & bmRT_DIR_MASK) == bmRT_DIR_OUT)
362 {
363 if(bRequest == RQ_GET_STATUS)
364 {
365 Running = 1;
366 }
367
368 if (bRequest == VEN_SPI_WR) // 0x99
369 {
370 // get EP0 data
371 EP0BCL = 0; // arm EP0 for OUT xfer. This sets the busy bit
372
373 while (EP0CS & bmEPBUSY) // wait for busy to clear
374 ;
375
376 // head_hi, head_l , format , address, *buf , len
377 return !spi_write (wValueH, wValueL, wIndexH, wIndexL, EP0BUF, EP0BCL);
378 }
379
380
381 return 1;
382 }
383
384 // IN requests.
385
386 // change USB speed
387 if (bRequest == 0x91)
388 {
389 if (wIndexL == 0) // high speed
390 {
391 CT1 &= ~0x02;
392 fx2_renumerate(); // renumerate
393 }
394 else // full speed
395 {
396 CT1 |= 0x02;
397 fx2_renumerate(); // renumerate
398 }
399 }
400
401 // change synchronous/asynchronous mode
402 if (bRequest == 0x92)
403 {
404 if(IFCONFIG & bmASYNC)
405 {
406 IFCONFIG &= ~bmASYNC;
407 }
408 else
409 {
410 IFCONFIG |= bmASYNC;
411 }
412 }
413
414 if (bRequest == 0x93) // change to synchronous mode
415 {
416 IFCONFIG &= ~bmASYNC;
417 }
418
419 if (bRequest == VEN_SPI_EN) // 0x96
420 {
421 SPI_OE |= bmSPI_OE; // PA.0,1,3,7 output enable
422 init_spi();
423 EP0BUF[0] = 0;
424 EP0BUF[1] = 0;
425 }
426
427 if (bRequest == VEN_SPI_DIS) // 0x97
428 {
429 SPI_OE &= ~bmSPI_OE; // PA.0,1,3,7 output disable
430 EP0BUF[0] = 0x42;
431 EP0BUF[1] = 0x43;
432 EP0BUF[2] = 0x42;
433 EP0BUF[3] = 0x43;
434 EP0BCH = 0;
435 EP0BCL = wLengthL;
436 return 1;
437 }
438
439 if (bRequest == VEN_SPI_RD) // 0x98
440 {
441 // header_H,header_L, format, address, *buf , len
442 if (spi_read (wValueH, wValueL, wIndexH, wIndexL, EP0BUF, wLengthL))
443 return 0;
444
445 EP0BCH = 0;
446 EP0BCL = wLengthL;
447 return 1;
448 }
449
450 if(bRequest == 0x90)
451 {
452 BYTE addr = (wIndexL<<1) & 0x7F;
453 EP0BUF[0] = eeprom[addr];
454 EP0BUF[1] = eeprom[addr+1];
455 }
456 else
457 {
458 // dummy data
459 EP0BUF[0] = 0x36;
460 EP0BUF[1] = 0x83;
461 }
462
463 EP0BCH = 0;
464 EP0BCL = (wLengthL<2) ? wLengthL : 2; // Arm endpoint with # bytes to transfer
465
466 return 1;
467}
468
469//-----------------------------------------------------------------------------
470
471static void main_loop(void)
472{
473 while(1)
474 {
475 if(usb_setup_packet_avail()) usb_handle_setup_packet();
476 usb_jtag_activity();
477 }
478}
479
480//-----------------------------------------------------------------------------
481
482void main(void)
483{
484 EA = 0; // disable all interrupts
485
486 usb_jtag_init();
487 eeprom_init();
488 setup_autovectors();
489 usb_install_handlers();
490
491
492 EA = 1; // enable interrupts
493
494 fx2_renumerate(); // simulates disconnect / reconnect
495
496 main_loop();
497}
498
499
500
501
Note: See TracBrowser for help on using the repository browser.