1 | /*-----------------------------------------------------------------------------
|
---|
2 | * Code that turns a Cypress FX2 USB Controller into an USB JTAG adapter
|
---|
3 | *-----------------------------------------------------------------------------
|
---|
4 | * Copyright (C) 2005..2007 Kolja Waschk, ixo.de
|
---|
5 | *-----------------------------------------------------------------------------
|
---|
6 | * Check hardware.h/.c if it matches your hardware configuration (e.g. pinout).
|
---|
7 | * Changes regarding USB identification should be made in product.inc!
|
---|
8 | *-----------------------------------------------------------------------------
|
---|
9 | * This code is part of usbjtag. usbjtag is free software; you can redistribute
|
---|
10 | * it and/or modify it under the terms of the GNU General Public License as
|
---|
11 | * published by the Free Software Foundation; either version 2 of the License,
|
---|
12 | * or (at your option) any later version. usbjtag is distributed in the hope
|
---|
13 | * that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
14 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details. You should have received a
|
---|
16 | * copy of the GNU General Public License along with this program in the file
|
---|
17 | * COPYING; if not, write to the Free Software Foundation, Inc., 51 Franklin
|
---|
18 | * St, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
19 | *-----------------------------------------------------------------------------
|
---|
20 | */
|
---|
21 |
|
---|
22 | #include "isr.h"
|
---|
23 | #include "timer.h"
|
---|
24 | #include "delay.h"
|
---|
25 | #include "fx2regs.h"
|
---|
26 | #include "fx2utils.h"
|
---|
27 | #include "usb_common.h"
|
---|
28 | #include "usb_descriptors.h"
|
---|
29 | #include "usb_requests.h"
|
---|
30 |
|
---|
31 | #include "syncdelay.h"
|
---|
32 |
|
---|
33 | #include "eeprom.h"
|
---|
34 | #include "hardware.h"
|
---|
35 |
|
---|
36 | #include "spi.h"
|
---|
37 |
|
---|
38 | //-----------------------------------------------------------------------------
|
---|
39 | // Define USE_MOD256_OUTBUFFER:
|
---|
40 | // Saves about 256 bytes in code size, improves speed a little.
|
---|
41 | // A further optimization could be not to use an extra output buffer at
|
---|
42 | // all, but to write directly into EP1INBUF. Not implemented yet. When
|
---|
43 | // downloading large amounts of data _to_ the target, there is no output
|
---|
44 | // and thus the output buffer isn't used at all and doesn't slow down things.
|
---|
45 |
|
---|
46 | #define USE_MOD256_OUTBUFFER 1
|
---|
47 |
|
---|
48 | //-----------------------------------------------------------------------------
|
---|
49 | // Global data
|
---|
50 |
|
---|
51 | typedef bit BOOL;
|
---|
52 | #define FALSE 0
|
---|
53 | #define TRUE 1
|
---|
54 | static BOOL Running;
|
---|
55 | static BOOL WriteOnly;
|
---|
56 |
|
---|
57 | static BYTE ClockBytes;
|
---|
58 | static WORD Pending;
|
---|
59 |
|
---|
60 | #ifdef USE_MOD256_OUTBUFFER
|
---|
61 | static BYTE FirstDataInOutBuffer;
|
---|
62 | static BYTE FirstFreeInOutBuffer;
|
---|
63 | #else
|
---|
64 | static WORD FirstDataInOutBuffer;
|
---|
65 | static WORD FirstFreeInOutBuffer;
|
---|
66 | #endif
|
---|
67 |
|
---|
68 | #ifdef USE_MOD256_OUTBUFFER
|
---|
69 | /* Size of output buffer must be exactly 256 */
|
---|
70 | #define OUTBUFFER_LEN 0x100
|
---|
71 | /* Output buffer must begin at some address with lower 8 bits all zero */
|
---|
72 | xdata at 0xE000 BYTE OutBuffer[OUTBUFFER_LEN];
|
---|
73 | #else
|
---|
74 | #define OUTBUFFER_LEN 0x200
|
---|
75 | static xdata BYTE OutBuffer[OUTBUFFER_LEN];
|
---|
76 | #endif
|
---|
77 |
|
---|
78 | //-----------------------------------------------------------------------------
|
---|
79 |
|
---|
80 | void usb_jtag_init(void) // Called once at startup
|
---|
81 | {
|
---|
82 | WORD tmp;
|
---|
83 |
|
---|
84 | Running = FALSE;
|
---|
85 | ClockBytes = 0;
|
---|
86 | Pending = 0;
|
---|
87 | WriteOnly = TRUE;
|
---|
88 | FirstDataInOutBuffer = 0;
|
---|
89 | FirstFreeInOutBuffer = 0;
|
---|
90 |
|
---|
91 | ProgIO_Init();
|
---|
92 |
|
---|
93 | ProgIO_Enable();
|
---|
94 |
|
---|
95 | // Make Timer2 reload at 100 Hz to trigger Keepalive packets
|
---|
96 |
|
---|
97 | tmp = 65536 - ( 48000000 / 12 / 100 );
|
---|
98 | RCAP2H = tmp >> 8;
|
---|
99 | RCAP2L = tmp & 0xFF;
|
---|
100 | CKCON = 0; // Default Clock
|
---|
101 | T2CON = 0x04; // Auto-reload mode using internal clock, no baud clock.
|
---|
102 |
|
---|
103 | // Enable Autopointer
|
---|
104 |
|
---|
105 | EXTACC = 1; // Enable
|
---|
106 | APTR1FZ = 1; // Don't freeze
|
---|
107 | APTR2FZ = 1; // Don't freeze
|
---|
108 |
|
---|
109 | // define endpoint configuration
|
---|
110 |
|
---|
111 | REVCTL = 3; SYNCDELAY; // Allow FW access to FIFO buffer
|
---|
112 | FIFORESET = 0x80; SYNCDELAY; // From now on, NAK all, reset all FIFOS
|
---|
113 | FIFORESET = 0x02; SYNCDELAY; // Reset FIFO 2
|
---|
114 | FIFORESET = 0x04; SYNCDELAY; // Reset FIFO 4
|
---|
115 | FIFORESET = 0x06; SYNCDELAY; // Reset FIFO 6
|
---|
116 | FIFORESET = 0x08; SYNCDELAY; // Reset FIFO 8
|
---|
117 | FIFORESET = 0x00; SYNCDELAY; // Restore normal behaviour
|
---|
118 |
|
---|
119 | EP1OUTCFG = 0xA0; SYNCDELAY; // Endpoint 1 Type Bulk
|
---|
120 | EP1INCFG = 0xA0; SYNCDELAY; // Endpoint 1 Type Bulk
|
---|
121 |
|
---|
122 | EP2FIFOCFG = 0x00; SYNCDELAY; // Endpoint 2
|
---|
123 | EP2CFG = 0xA2; SYNCDELAY; // Endpoint 2 Valid, Out, Type Bulk, Double buffered
|
---|
124 |
|
---|
125 | EP4FIFOCFG = 0x00; SYNCDELAY; // Endpoint 4 not used
|
---|
126 | EP4CFG = 0xA0; SYNCDELAY; // Endpoint 4 not used
|
---|
127 |
|
---|
128 | REVCTL = 0; SYNCDELAY; // Reset FW access to FIFO buffer, enable auto-arming when AUTOOUT is switched to 1
|
---|
129 |
|
---|
130 | EP6CFG = 0xA2; SYNCDELAY; // Out endpoint, Bulk, Double buffering
|
---|
131 | EP6FIFOCFG = 0x00; SYNCDELAY; // Firmware has to see a rising edge on auto bit to enable auto arming
|
---|
132 | EP6FIFOCFG = bmAUTOOUT; SYNCDELAY; // Endpoint 6 used for user communicationn, auto commitment, 8 bits data bus
|
---|
133 |
|
---|
134 | EP8CFG = 0xE0; SYNCDELAY; // In endpoint, Bulk
|
---|
135 | EP8FIFOCFG = 0x00; SYNCDELAY; // Firmware has to see a rising edge on auto bit to enable auto arming
|
---|
136 | EP8FIFOCFG = bmAUTOIN; SYNCDELAY; // Endpoint 8 used for user communication, auto commitment, 8 bits data bus
|
---|
137 |
|
---|
138 | EP8AUTOINLENH = 0x00; SYNCDELAY; // Size in bytes of the IN data automatically commited (64 bytes here, but changed dynamically depending on the connection)
|
---|
139 | EP8AUTOINLENL = 0x40; SYNCDELAY; // Can use signal PKTEND if you want to commit a shorter packet
|
---|
140 |
|
---|
141 | // Out endpoints do not come up armed
|
---|
142 | // Since the defaults are double buffered we must write dummy byte counts twice
|
---|
143 | EP2BCL = 0x80; SYNCDELAY; // Arm EP2OUT by writing byte count w/skip.=
|
---|
144 | EP4BCL = 0x80; SYNCDELAY;
|
---|
145 | EP2BCL = 0x80; SYNCDELAY; // Arm EP4OUT by writing byte count w/skip.=
|
---|
146 | EP4BCL = 0x80; SYNCDELAY;
|
---|
147 |
|
---|
148 | PINFLAGSAB = 0xFA; SYNCDELAY; // 1111_1010 => FLAGA = EMPTY flag for EP6; FLAGB = FULL flag for EP8
|
---|
149 |
|
---|
150 | // Put the system in high speed by default (REM: USB-Blaster is in full speed)
|
---|
151 | // This can be changed by vendor commands
|
---|
152 | CT1 &= ~0x02;
|
---|
153 | }
|
---|
154 |
|
---|
155 | void OutputByte(BYTE d)
|
---|
156 | {
|
---|
157 | #ifdef USE_MOD256_OUTBUFFER
|
---|
158 | OutBuffer[FirstFreeInOutBuffer] = d;
|
---|
159 | FirstFreeInOutBuffer = ( FirstFreeInOutBuffer + 1 ) & 0xFF;
|
---|
160 | #else
|
---|
161 | OutBuffer[FirstFreeInOutBuffer++] = d;
|
---|
162 | if(FirstFreeInOutBuffer >= OUTBUFFER_LEN) FirstFreeInOutBuffer = 0;
|
---|
163 | #endif
|
---|
164 | Pending++;
|
---|
165 | }
|
---|
166 |
|
---|
167 | //-----------------------------------------------------------------------------
|
---|
168 | // usb_jtag_activity does most of the work. It now happens to behave just like
|
---|
169 | // the combination of FT245BM and Altera-programmed EPM7064 CPLD in Altera's
|
---|
170 | // USB-Blaster. The CPLD knows two major modes: Bit banging mode and Byte
|
---|
171 | // shift mode. It starts in Bit banging mode. While bytes are received
|
---|
172 | // from the host on EP2OUT, each byte B of them is processed as follows:
|
---|
173 | //
|
---|
174 | // Please note: nCE, nCS, LED pins and DATAOUT actually aren't supported here.
|
---|
175 | // Support for these would be required for AS/PS mode and isn't too complicated,
|
---|
176 | // but I haven't had the time yet.
|
---|
177 | //
|
---|
178 | // Bit banging mode:
|
---|
179 | //
|
---|
180 | // 1. Remember bit 6 (0x40) in B as the "Read bit".
|
---|
181 | //
|
---|
182 | // 2. If bit 7 (0x40) is set, switch to Byte shift mode for the coming
|
---|
183 | // X bytes ( X := B & 0x3F ), and don't do anything else now.
|
---|
184 | //
|
---|
185 | // 3. Otherwise, set the JTAG signals as follows:
|
---|
186 | // TCK/DCLK high if bit 0 was set (0x01), otherwise low
|
---|
187 | // TMS/nCONFIG high if bit 1 was set (0x02), otherwise low
|
---|
188 | // nCE high if bit 2 was set (0x04), otherwise low
|
---|
189 | // nCS high if bit 3 was set (0x08), otherwise low
|
---|
190 | // TDI/ASDI/DATA0 high if bit 4 was set (0x10), otherwise low
|
---|
191 | // Output Enable/LED active if bit 5 was set (0x20), otherwise low
|
---|
192 | //
|
---|
193 | // 4. If "Read bit" (0x40) was set, record the state of TDO(CONF_DONE) and
|
---|
194 | // DATAOUT(nSTATUS) pins and put it as a byte ((DATAOUT<<1)|TDO) in the
|
---|
195 | // output FIFO _to_ the host (the code here reads TDO only and assumes
|
---|
196 | // DATAOUT=1)
|
---|
197 | //
|
---|
198 | // Byte shift mode:
|
---|
199 | //
|
---|
200 | // 1. Load shift register with byte from host
|
---|
201 | //
|
---|
202 | // 2. Do 8 times (i.e. for each bit of the byte; implemented in shift.a51)
|
---|
203 | // 2a) if nCS=1, set carry bit from TDO, else set carry bit from DATAOUT
|
---|
204 | // 2b) Rotate shift register through carry bit
|
---|
205 | // 2c) TDI := Carry bit
|
---|
206 | // 2d) Raise TCK, then lower TCK.
|
---|
207 | //
|
---|
208 | // 3. If "Read bit" was set when switching into byte shift mode,
|
---|
209 | // record the shift register content and put it into the FIFO
|
---|
210 | // _to_ the host.
|
---|
211 | //
|
---|
212 | // Some more (minor) things to consider to emulate the FT245BM:
|
---|
213 | //
|
---|
214 | // a) The FT245BM seems to transmit just packets of no more than 64 bytes
|
---|
215 | // (which perfectly matches the USB spec). Each packet starts with
|
---|
216 | // two non-data bytes (I use 0x31,0x60 here). A USB sniffer on Windows
|
---|
217 | // might show a number of packets to you as if it was a large transfer
|
---|
218 | // because of the way that Windows understands it: it _is_ a large
|
---|
219 | // transfer until terminated with an USB packet smaller than 64 byte.
|
---|
220 | //
|
---|
221 | // b) The Windows driver expects to get some data packets (with at least
|
---|
222 | // the two leading bytes 0x31,0x60) immediately after "resetting" the
|
---|
223 | // FT chip and then in regular intervals. Otherwise a blue screen may
|
---|
224 | // appear... In the code below, I make sure that every 10ms there is
|
---|
225 | // some packet.
|
---|
226 | //
|
---|
227 | // c) Vendor specific commands to configure the FT245 are mostly ignored
|
---|
228 | // in my code. Only those for reading the EEPROM are processed. See
|
---|
229 | // DR_GetStatus and DR_VendorCmd below for my implementation.
|
---|
230 | //
|
---|
231 | // All other TD_ and DR_ functions remain as provided with CY3681.
|
---|
232 | //
|
---|
233 | //-----------------------------------------------------------------------------
|
---|
234 |
|
---|
235 | void usb_jtag_activity(void) // Called repeatedly while the device is idle
|
---|
236 | {
|
---|
237 | if(!Running) return;
|
---|
238 |
|
---|
239 | ProgIO_Poll();
|
---|
240 |
|
---|
241 | if(!(EP1INCS & bmEPBUSY))
|
---|
242 | {
|
---|
243 | if(Pending > 0)
|
---|
244 | {
|
---|
245 | BYTE o, n;
|
---|
246 |
|
---|
247 | AUTOPTRH2 = MSB( EP1INBUF );
|
---|
248 | AUTOPTRL2 = LSB( EP1INBUF );
|
---|
249 |
|
---|
250 | XAUTODAT2 = 0x31;
|
---|
251 | XAUTODAT2 = 0x60;
|
---|
252 |
|
---|
253 | if(Pending > 0x3E) { n = 0x3E; Pending -= n; }
|
---|
254 | else { n = Pending; Pending = 0; };
|
---|
255 |
|
---|
256 | o = n;
|
---|
257 |
|
---|
258 | #ifdef USE_MOD256_OUTBUFFER
|
---|
259 | APTR1H = MSB( OutBuffer );
|
---|
260 | APTR1L = FirstDataInOutBuffer;
|
---|
261 | while(n--)
|
---|
262 | {
|
---|
263 | XAUTODAT2 = XAUTODAT1;
|
---|
264 | APTR1H = MSB( OutBuffer ); // Stay within 256-Byte-Buffer
|
---|
265 | };
|
---|
266 | FirstDataInOutBuffer = APTR1L;
|
---|
267 | #else
|
---|
268 | APTR1H = MSB( &(OutBuffer[FirstDataInOutBuffer]) );
|
---|
269 | APTR1L = LSB( &(OutBuffer[FirstDataInOutBuffer]) );
|
---|
270 | while(n--)
|
---|
271 | {
|
---|
272 | XAUTODAT2 = XAUTODAT1;
|
---|
273 |
|
---|
274 | if(++FirstDataInOutBuffer >= OUTBUFFER_LEN)
|
---|
275 | {
|
---|
276 | FirstDataInOutBuffer = 0;
|
---|
277 | APTR1H = MSB( OutBuffer );
|
---|
278 | APTR1L = LSB( OutBuffer );
|
---|
279 | };
|
---|
280 | };
|
---|
281 | #endif
|
---|
282 | SYNCDELAY;
|
---|
283 | EP1INBC = 2 + o;
|
---|
284 | TF2 = 1; // Make sure there will be a short transfer soon
|
---|
285 | }
|
---|
286 | else if(TF2)
|
---|
287 | {
|
---|
288 | EP1INBUF[0] = 0x31;
|
---|
289 | EP1INBUF[1] = 0x60;
|
---|
290 | SYNCDELAY;
|
---|
291 | EP1INBC = 2;
|
---|
292 | TF2 = 0;
|
---|
293 | };
|
---|
294 | };
|
---|
295 |
|
---|
296 | if(!(EP2468STAT & bmEP2EMPTY) && (Pending < OUTBUFFER_LEN-0x3F))
|
---|
297 | {
|
---|
298 | WORD i, n = EP2BCL|EP2BCH<<8;
|
---|
299 |
|
---|
300 | APTR1H = MSB( EP2FIFOBUF );
|
---|
301 | APTR1L = LSB( EP2FIFOBUF );
|
---|
302 |
|
---|
303 | for(i=0;i<n;)
|
---|
304 | {
|
---|
305 | if(ClockBytes > 0)
|
---|
306 | {
|
---|
307 | WORD m;
|
---|
308 |
|
---|
309 | m = n-i;
|
---|
310 | if(ClockBytes < m) m = ClockBytes;
|
---|
311 | ClockBytes -= m;
|
---|
312 | i += m;
|
---|
313 |
|
---|
314 | /* Shift out 8 bits from d */
|
---|
315 |
|
---|
316 | if(WriteOnly) /* Shift out 8 bits from d */
|
---|
317 | {
|
---|
318 | while(m--) ProgIO_ShiftOut(XAUTODAT1);
|
---|
319 | }
|
---|
320 | else /* Shift in 8 bits at the other end */
|
---|
321 | {
|
---|
322 | while(m--) OutputByte(ProgIO_ShiftInOut(XAUTODAT1));
|
---|
323 | }
|
---|
324 | }
|
---|
325 | else
|
---|
326 | {
|
---|
327 | BYTE d = XAUTODAT1;
|
---|
328 | WriteOnly = (d & bmBIT6) ? FALSE : TRUE;
|
---|
329 |
|
---|
330 | if(d & bmBIT7)
|
---|
331 | {
|
---|
332 | /* Prepare byte transfer, do nothing else yet */
|
---|
333 |
|
---|
334 | ClockBytes = d & 0x3F;
|
---|
335 | }
|
---|
336 | else
|
---|
337 | {
|
---|
338 | if(WriteOnly)
|
---|
339 | ProgIO_Set_State(d);
|
---|
340 | else
|
---|
341 | OutputByte(ProgIO_Set_Get_State(d));
|
---|
342 | };
|
---|
343 | i++;
|
---|
344 | };
|
---|
345 | };
|
---|
346 |
|
---|
347 | SYNCDELAY;
|
---|
348 | EP2BCL = 0x80; // Re-arm endpoint 2
|
---|
349 | };
|
---|
350 | }
|
---|
351 |
|
---|
352 | //-----------------------------------------------------------------------------
|
---|
353 | // Handler for Vendor Requests (
|
---|
354 | //-----------------------------------------------------------------------------
|
---|
355 |
|
---|
356 | unsigned char app_vendor_cmd(void)
|
---|
357 | {
|
---|
358 | // because of fx2/usb_common.c, this code returns nonzero on success
|
---|
359 | // OUT requests. Pretend we handle them all...
|
---|
360 |
|
---|
361 | if ((bRequestType & bmRT_DIR_MASK) == bmRT_DIR_OUT)
|
---|
362 | {
|
---|
363 | if(bRequest == RQ_GET_STATUS)
|
---|
364 | {
|
---|
365 | Running = 1;
|
---|
366 | }
|
---|
367 |
|
---|
368 | if (bRequest == VEN_SPI_WR) // 0x99
|
---|
369 | {
|
---|
370 | // get EP0 data
|
---|
371 | EP0BCL = 0; // arm EP0 for OUT xfer. This sets the busy bit
|
---|
372 |
|
---|
373 | while (EP0CS & bmEPBUSY) // wait for busy to clear
|
---|
374 | ;
|
---|
375 |
|
---|
376 | // head_hi, head_l , format , address, *buf , len
|
---|
377 | return !spi_write (wValueH, wValueL, wIndexH, wIndexL, EP0BUF, EP0BCL);
|
---|
378 | }
|
---|
379 |
|
---|
380 |
|
---|
381 | return 1;
|
---|
382 | }
|
---|
383 |
|
---|
384 | // IN requests.
|
---|
385 |
|
---|
386 | // change USB speed
|
---|
387 | if (bRequest == 0x91)
|
---|
388 | {
|
---|
389 | if (wIndexL == 0) // high speed
|
---|
390 | {
|
---|
391 | CT1 &= ~0x02;
|
---|
392 | fx2_renumerate(); // renumerate
|
---|
393 | }
|
---|
394 | else // full speed
|
---|
395 | {
|
---|
396 | CT1 |= 0x02;
|
---|
397 | fx2_renumerate(); // renumerate
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | // change synchronous/asynchronous mode
|
---|
402 | if (bRequest == 0x92)
|
---|
403 | {
|
---|
404 | if(IFCONFIG & bmASYNC)
|
---|
405 | {
|
---|
406 | IFCONFIG &= ~bmASYNC;
|
---|
407 | }
|
---|
408 | else
|
---|
409 | {
|
---|
410 | IFCONFIG |= bmASYNC;
|
---|
411 | }
|
---|
412 | }
|
---|
413 |
|
---|
414 | if (bRequest == 0x93) // change to synchronous mode
|
---|
415 | {
|
---|
416 | IFCONFIG &= ~bmASYNC;
|
---|
417 | }
|
---|
418 |
|
---|
419 | if (bRequest == VEN_SPI_EN) // 0x96
|
---|
420 | {
|
---|
421 | SPI_OE |= bmSPI_OE; // PA.0,1,3,7 output enable
|
---|
422 | init_spi();
|
---|
423 | EP0BUF[0] = 0;
|
---|
424 | EP0BUF[1] = 0;
|
---|
425 | }
|
---|
426 |
|
---|
427 | if (bRequest == VEN_SPI_DIS) // 0x97
|
---|
428 | {
|
---|
429 | SPI_OE &= ~bmSPI_OE; // PA.0,1,3,7 output disable
|
---|
430 | EP0BUF[0] = 0x42;
|
---|
431 | EP0BUF[1] = 0x43;
|
---|
432 | EP0BUF[2] = 0x42;
|
---|
433 | EP0BUF[3] = 0x43;
|
---|
434 | EP0BCH = 0;
|
---|
435 | EP0BCL = wLengthL;
|
---|
436 | return 1;
|
---|
437 | }
|
---|
438 |
|
---|
439 | if (bRequest == VEN_SPI_RD) // 0x98
|
---|
440 | {
|
---|
441 | // header_H,header_L, format, address, *buf , len
|
---|
442 | if (spi_read (wValueH, wValueL, wIndexH, wIndexL, EP0BUF, wLengthL))
|
---|
443 | return 0;
|
---|
444 |
|
---|
445 | EP0BCH = 0;
|
---|
446 | EP0BCL = wLengthL;
|
---|
447 | return 1;
|
---|
448 | }
|
---|
449 |
|
---|
450 | if(bRequest == 0x90)
|
---|
451 | {
|
---|
452 | BYTE addr = (wIndexL<<1) & 0x7F;
|
---|
453 | EP0BUF[0] = eeprom[addr];
|
---|
454 | EP0BUF[1] = eeprom[addr+1];
|
---|
455 | }
|
---|
456 | else
|
---|
457 | {
|
---|
458 | // dummy data
|
---|
459 | EP0BUF[0] = 0x36;
|
---|
460 | EP0BUF[1] = 0x83;
|
---|
461 | }
|
---|
462 |
|
---|
463 | EP0BCH = 0;
|
---|
464 | EP0BCL = (wLengthL<2) ? wLengthL : 2; // Arm endpoint with # bytes to transfer
|
---|
465 |
|
---|
466 | return 1;
|
---|
467 | }
|
---|
468 |
|
---|
469 | //-----------------------------------------------------------------------------
|
---|
470 |
|
---|
471 | static void main_loop(void)
|
---|
472 | {
|
---|
473 | while(1)
|
---|
474 | {
|
---|
475 | if(usb_setup_packet_avail()) usb_handle_setup_packet();
|
---|
476 | usb_jtag_activity();
|
---|
477 | }
|
---|
478 | }
|
---|
479 |
|
---|
480 | //-----------------------------------------------------------------------------
|
---|
481 |
|
---|
482 | void main(void)
|
---|
483 | {
|
---|
484 | EA = 0; // disable all interrupts
|
---|
485 |
|
---|
486 | usb_jtag_init();
|
---|
487 | eeprom_init();
|
---|
488 | setup_autovectors();
|
---|
489 | usb_install_handlers();
|
---|
490 |
|
---|
491 |
|
---|
492 | EA = 1; // enable interrupts
|
---|
493 |
|
---|
494 | fx2_renumerate(); // simulates disconnect / reconnect
|
---|
495 |
|
---|
496 | main_loop();
|
---|
497 | }
|
---|
498 |
|
---|
499 |
|
---|
500 |
|
---|
501 |
|
---|