1 | module clip
|
---|
2 | #(
|
---|
3 | parameter shift = 24, // right shift of the result
|
---|
4 | parameter width = 27, // bit width of the input data
|
---|
5 | parameter widthr = 12 // bit width of the output data
|
---|
6 | )
|
---|
7 | (
|
---|
8 | input wire clock, frame, reset,
|
---|
9 | input wire [4*6-1:0] del_data,
|
---|
10 | input wire [4*6-1:0] amp_data,
|
---|
11 | input wire [4*16-1:0] tau_data,
|
---|
12 | input wire [4*width-1:0] inp_data,
|
---|
13 | output wire [4*widthr-1:0] out_data
|
---|
14 | );
|
---|
15 |
|
---|
16 | localparam width1 = width + 16;
|
---|
17 | localparam width2 = width + 6;
|
---|
18 | localparam width3 = width1 + 2;
|
---|
19 |
|
---|
20 | reg int_wren_reg, int_wren_next;
|
---|
21 | reg int_flag_reg, int_flag_next;
|
---|
22 | reg [1:0] int_chan_reg, int_chan_next;
|
---|
23 | reg [2:0] int_case_reg, int_case_next;
|
---|
24 | reg [7:0] int_addr_reg, int_addr_next;
|
---|
25 |
|
---|
26 | reg [5:0] del_addr_reg, del_addr_next;
|
---|
27 | wire [5:0] del_addr_wire;
|
---|
28 | wire [7:0] int_addr_wire;
|
---|
29 |
|
---|
30 | reg [widthr-1:0] out_data_reg [4:0], out_data_next [4:0];
|
---|
31 | wire [widthr-1:0] out_data_wire;
|
---|
32 |
|
---|
33 | wire [width3-1:0] add_data_wire;
|
---|
34 |
|
---|
35 | wire [width1-1:0] mul_data_wire1;
|
---|
36 | wire [width2-1:0] mul_data_wire2;
|
---|
37 |
|
---|
38 | reg [width-1:0] inp_data_reg [3:0], inp_data_next [3:0];
|
---|
39 | wire [width-1:0] inp_data_wire [4:0];
|
---|
40 |
|
---|
41 | reg [5:0] amp_data_reg, amp_data_next;
|
---|
42 | wire [5:0] amp_data_wire [3:0];
|
---|
43 |
|
---|
44 | reg [15:0] tau_data_reg, tau_data_next;
|
---|
45 | wire [15:0] tau_data_wire [3:0];
|
---|
46 |
|
---|
47 | integer i;
|
---|
48 | genvar j;
|
---|
49 |
|
---|
50 | generate
|
---|
51 | for (j = 0; j < 4; j = j + 1)
|
---|
52 | begin : INT_DATA
|
---|
53 | assign inp_data_wire[j] = inp_data[j*width+width-1:j*width];
|
---|
54 | assign amp_data_wire[j] = amp_data[j*6+6-1:j*6];
|
---|
55 | assign tau_data_wire[j] = tau_data[j*16+16-1:j*16];
|
---|
56 | end
|
---|
57 | endgenerate
|
---|
58 |
|
---|
59 | lpm_mux #(
|
---|
60 | .lpm_size(4),
|
---|
61 | .lpm_type("LPM_MUX"),
|
---|
62 | .lpm_width(8),
|
---|
63 | .lpm_widths(2)) mux_unit_1 (
|
---|
64 | .sel(int_chan_next),
|
---|
65 | .data({
|
---|
66 | 2'd3, del_data[3*6+6-1:3*6],
|
---|
67 | 2'd2, del_data[2*6+6-1:2*6],
|
---|
68 | 2'd1, del_data[1*6+6-1:1*6],
|
---|
69 | 2'd0, del_data[0*6+6-1:0*6]}),
|
---|
70 | .result(int_addr_wire));
|
---|
71 |
|
---|
72 | assign del_addr_wire = del_addr_reg - int_addr_wire[5:0];
|
---|
73 |
|
---|
74 | lpm_mult #(
|
---|
75 | .lpm_hint("MAXIMIZE_SPEED=9"),
|
---|
76 | .lpm_representation("UNSIGNED"),
|
---|
77 | .lpm_type("LPM_MULT"),
|
---|
78 | .lpm_pipeline(3),
|
---|
79 | .lpm_widtha(width),
|
---|
80 | .lpm_widthb(16),
|
---|
81 | .lpm_widthp(width1)) mult_unit_1 (
|
---|
82 | .clock(clock),
|
---|
83 | .clken(int_wren_reg),
|
---|
84 | .dataa(inp_data_wire[4]),
|
---|
85 | .datab(tau_data_reg),
|
---|
86 | .result(mul_data_wire1));
|
---|
87 |
|
---|
88 | lpm_mult #(
|
---|
89 | .lpm_hint("MAXIMIZE_SPEED=9"),
|
---|
90 | .lpm_representation("UNSIGNED"),
|
---|
91 | .lpm_type("LPM_MULT"),
|
---|
92 | .lpm_pipeline(3),
|
---|
93 | .lpm_widtha(width),
|
---|
94 | .lpm_widthb(6),
|
---|
95 | .lpm_widthp(width2)) mult_unit_2 (
|
---|
96 | .clock(clock),
|
---|
97 | .clken(int_wren_reg),
|
---|
98 | .dataa(inp_data_reg[0]),
|
---|
99 | .datab(amp_data_reg),
|
---|
100 | .result(mul_data_wire2));
|
---|
101 |
|
---|
102 | assign add_data_wire =
|
---|
103 | {2'b0, mul_data_wire2, {(width1-width2){1'b0}}}
|
---|
104 | - {2'b0, mul_data_wire1};
|
---|
105 |
|
---|
106 | assign out_data_wire =
|
---|
107 | add_data_wire[shift+widthr-1:shift]
|
---|
108 | + {{(widthr-1){add_data_wire[width3-1]}}, add_data_wire[shift-1]};
|
---|
109 |
|
---|
110 |
|
---|
111 | altsyncram #(
|
---|
112 | .address_aclr_b("NONE"),
|
---|
113 | .address_reg_b("CLOCK0"),
|
---|
114 | .clock_enable_input_a("BYPASS"),
|
---|
115 | .clock_enable_input_b("BYPASS"),
|
---|
116 | .clock_enable_output_b("BYPASS"),
|
---|
117 | .intended_device_family("Cyclone III"),
|
---|
118 | .lpm_type("altsyncram"),
|
---|
119 | .numwords_a(256),
|
---|
120 | .numwords_b(256),
|
---|
121 | .operation_mode("DUAL_PORT"),
|
---|
122 | .outdata_aclr_b("NONE"),
|
---|
123 | .outdata_reg_b("CLOCK0"),
|
---|
124 | .power_up_uninitialized("FALSE"),
|
---|
125 | .read_during_write_mode_mixed_ports("DONT_CARE"),
|
---|
126 | .widthad_a(8),
|
---|
127 | .widthad_b(8),
|
---|
128 | .width_a(width),
|
---|
129 | .width_b(width),
|
---|
130 | .width_byteena_a(1)) ram_unit_1 (
|
---|
131 | .wren_a(int_wren_reg),
|
---|
132 | .clock0(clock),
|
---|
133 | .address_a(int_addr_reg),
|
---|
134 | .address_b({int_addr_wire[7:6], del_addr_wire}),
|
---|
135 | .data_a(inp_data_reg[0]),
|
---|
136 | .q_b(inp_data_wire[4]),
|
---|
137 | .aclr0(1'b0),
|
---|
138 | .aclr1(1'b0),
|
---|
139 | .addressstall_a(1'b0),
|
---|
140 | .addressstall_b(1'b0),
|
---|
141 | .byteena_a(1'b1),
|
---|
142 | .byteena_b(1'b1),
|
---|
143 | .clock1(1'b1),
|
---|
144 | .clocken0(1'b1),
|
---|
145 | .clocken1(1'b1),
|
---|
146 | .clocken2(1'b1),
|
---|
147 | .clocken3(1'b1),
|
---|
148 | .data_b({(width){1'b1}}),
|
---|
149 | .eccstatus(),
|
---|
150 | .q_a(),
|
---|
151 | .rden_a(1'b1),
|
---|
152 | .rden_b(1'b1),
|
---|
153 | .wren_b(1'b0));
|
---|
154 |
|
---|
155 | always @(posedge clock)
|
---|
156 | begin
|
---|
157 | if (reset)
|
---|
158 | begin
|
---|
159 | int_wren_reg <= 1'b1;
|
---|
160 | int_flag_reg <= 1'b0;
|
---|
161 | int_chan_reg <= 2'd0;
|
---|
162 | int_case_reg <= 3'd0;
|
---|
163 | del_addr_reg <= 6'd0;
|
---|
164 | int_addr_reg <= 8'd0;
|
---|
165 | amp_data_reg <= 6'd0;
|
---|
166 | tau_data_reg <= 16'd0;
|
---|
167 | for(i = 0; i <= 3; i = i + 1)
|
---|
168 | begin
|
---|
169 | inp_data_reg[i] <= {(width){1'b0}};
|
---|
170 | end
|
---|
171 | for(i = 0; i <= 4; i = i + 1)
|
---|
172 | begin
|
---|
173 | out_data_reg[i] <= {(widthr){1'b0}};
|
---|
174 | end
|
---|
175 | end
|
---|
176 | else
|
---|
177 | begin
|
---|
178 | int_wren_reg <= int_wren_next;
|
---|
179 | int_flag_reg <= int_flag_next;
|
---|
180 | int_chan_reg <= int_chan_next;
|
---|
181 | int_case_reg <= int_case_next;
|
---|
182 | del_addr_reg <= del_addr_next;
|
---|
183 | int_addr_reg <= int_addr_next;
|
---|
184 | amp_data_reg <= amp_data_next;
|
---|
185 | tau_data_reg <= tau_data_next;
|
---|
186 | for(i = 0; i <= 3; i = i + 1)
|
---|
187 | begin
|
---|
188 | inp_data_reg[i] <= inp_data_next[i];
|
---|
189 | end
|
---|
190 | for(i = 0; i <= 4; i = i + 1)
|
---|
191 | begin
|
---|
192 | out_data_reg[i] <= out_data_next[i];
|
---|
193 | end
|
---|
194 | end
|
---|
195 | end
|
---|
196 |
|
---|
197 | always @*
|
---|
198 | begin
|
---|
199 | int_wren_next = int_wren_reg;
|
---|
200 | int_flag_next = int_flag_reg;
|
---|
201 | int_chan_next = int_chan_reg;
|
---|
202 | int_case_next = int_case_reg;
|
---|
203 | del_addr_next = del_addr_reg;
|
---|
204 | int_addr_next = int_addr_reg;
|
---|
205 | amp_data_next = amp_data_reg;
|
---|
206 | tau_data_next = tau_data_reg;
|
---|
207 | for(i = 0; i <= 3; i = i + 1)
|
---|
208 | begin
|
---|
209 | inp_data_next[i] = inp_data_reg[i];
|
---|
210 | end
|
---|
211 | for(i = 0; i <= 4; i = i + 1)
|
---|
212 | begin
|
---|
213 | out_data_next[i] = out_data_reg[i];
|
---|
214 | end
|
---|
215 |
|
---|
216 | case (int_case_reg)
|
---|
217 | 0:
|
---|
218 | begin
|
---|
219 | // write zeros
|
---|
220 | int_wren_next = 1'b1;
|
---|
221 | del_addr_next = 6'd0;
|
---|
222 | int_addr_next = 8'd0;
|
---|
223 | amp_data_next = 6'd0;
|
---|
224 | tau_data_next = 16'd0;
|
---|
225 | for(i = 0; i <= 3; i = i + 1)
|
---|
226 | begin
|
---|
227 | inp_data_next[i] = {(width){1'b0}};
|
---|
228 | end
|
---|
229 | for(i = 0; i <= 4; i = i + 1)
|
---|
230 | begin
|
---|
231 | out_data_next[i] = {(widthr){1'b0}};
|
---|
232 | end
|
---|
233 |
|
---|
234 | int_case_next = 3'd1;
|
---|
235 | end
|
---|
236 | 1:
|
---|
237 | begin
|
---|
238 | // write zeros
|
---|
239 | int_addr_next = int_addr_reg + 8'd1;
|
---|
240 | if (&int_addr_reg)
|
---|
241 | begin
|
---|
242 | int_wren_next = 1'b0;
|
---|
243 | int_flag_next = 1'b0;
|
---|
244 | int_chan_next = 2'd0;
|
---|
245 | int_case_next = 3'd2;
|
---|
246 | end
|
---|
247 | end
|
---|
248 | 2: // frame
|
---|
249 | begin
|
---|
250 | int_flag_next = 1'b0;
|
---|
251 | int_wren_next = frame;
|
---|
252 | if (frame)
|
---|
253 | begin
|
---|
254 | int_addr_next[7:6] = 2'd0;
|
---|
255 |
|
---|
256 | // set read addr for 2nd pipeline
|
---|
257 | int_chan_next = 2'd1;
|
---|
258 |
|
---|
259 | // register input data for 2nd, 3rd and 4th sums
|
---|
260 | inp_data_next[1] = inp_data_wire[1];
|
---|
261 | inp_data_next[2] = inp_data_wire[2];
|
---|
262 | inp_data_next[3] = inp_data_wire[3];
|
---|
263 |
|
---|
264 | // prepare registers for 1st sum
|
---|
265 | inp_data_next[0] = inp_data_wire[0];
|
---|
266 |
|
---|
267 | tau_data_next = tau_data_wire[0];
|
---|
268 | amp_data_next = amp_data_wire[0];
|
---|
269 |
|
---|
270 | int_case_next = 3'd3;
|
---|
271 | end
|
---|
272 | if (int_flag_reg) // register 4th sum
|
---|
273 | begin
|
---|
274 | int_addr_next[5:0] = del_addr_reg;
|
---|
275 | // register 1st product
|
---|
276 | out_data_next[0] = out_data_wire;
|
---|
277 | end
|
---|
278 | end
|
---|
279 | 3: // 1st sum
|
---|
280 | begin
|
---|
281 | int_addr_next[7:6] = 2'd1;
|
---|
282 |
|
---|
283 | // set read addr for 3rd pipeline
|
---|
284 | int_chan_next = 2'd2;
|
---|
285 |
|
---|
286 | // prepare registers for 2nd sum
|
---|
287 | inp_data_next[0] = inp_data_reg[1];
|
---|
288 |
|
---|
289 | tau_data_next = tau_data_wire[1];
|
---|
290 | amp_data_next = amp_data_wire[1];
|
---|
291 |
|
---|
292 | // register 2nd product
|
---|
293 | out_data_next[1] = out_data_wire;
|
---|
294 |
|
---|
295 | int_case_next = 3'd4;
|
---|
296 | end
|
---|
297 | 4: // 2nd sum
|
---|
298 | begin
|
---|
299 | int_addr_next[7:6] = 2'd2;
|
---|
300 |
|
---|
301 | // set read addr for 4th pipeline
|
---|
302 | int_chan_next = 2'd3;
|
---|
303 |
|
---|
304 | // prepare registers for 3rd sum
|
---|
305 | inp_data_next[0] = inp_data_reg[2];
|
---|
306 |
|
---|
307 | tau_data_next = tau_data_wire[2];
|
---|
308 | amp_data_next = amp_data_wire[2];
|
---|
309 |
|
---|
310 | // register 3rd product
|
---|
311 | out_data_next[2] = out_data_wire;
|
---|
312 |
|
---|
313 | del_addr_next = del_addr_reg + 6'd1;
|
---|
314 |
|
---|
315 | int_case_next = 3'd5;
|
---|
316 | end
|
---|
317 | 5: // 3rd sum
|
---|
318 | begin
|
---|
319 | int_flag_next = 1'b1;
|
---|
320 |
|
---|
321 | int_addr_next[7:6] = 2'd3;
|
---|
322 |
|
---|
323 | // set read addr for 1st pipeline
|
---|
324 | int_chan_next = 2'd0;
|
---|
325 |
|
---|
326 | // prepare registers for 4th sum
|
---|
327 | inp_data_next[0] = inp_data_reg[3];
|
---|
328 |
|
---|
329 | tau_data_next = tau_data_wire[3];
|
---|
330 | amp_data_next = amp_data_wire[3];
|
---|
331 |
|
---|
332 | // register 4th product
|
---|
333 | out_data_next[3] = out_data_wire;
|
---|
334 |
|
---|
335 | // register 4th output
|
---|
336 | out_data_next[4] = out_data_reg[0];
|
---|
337 |
|
---|
338 | int_case_next = 3'd2;
|
---|
339 | end
|
---|
340 | default:
|
---|
341 | begin
|
---|
342 | int_case_next = 3'd0;
|
---|
343 | end
|
---|
344 | endcase
|
---|
345 | end
|
---|
346 |
|
---|
347 | assign out_data = {out_data_reg[3], out_data_reg[2], out_data_reg[1], out_data_reg[4]};
|
---|
348 |
|
---|
349 | endmodule
|
---|