Changes between Version 4 and Version 5 of SMWeinberg
- Timestamp:
- Dec 18, 2020, 7:23:15 AM (4 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
SMWeinberg
v4 v5 2 2 3 3 4 = {{{SMWeinberg}}}: The Standard Model + The Dimension FiveWeinberg Operator at NLO in QCD =4 = {{{SMWeinberg}}}: The Standard Model + The Weinberg Operator at NLO in QCD = 5 5 6 6 === Contact Author === … … 25 25 26 26 === Full Description === 27 This model file works in the context of the Standard Model (SM) Effective Field Theory (SM EFT), where the SM Lagrangian is extended by gauge-invariant operators up to dimension {{{$d=5$}}}. In the canonical representationthe Lagrangian is given by27 This model file works in the context of the Standard Model (SM) Effective Field Theory (SM EFT), where the SM Lagrangian is extended by gauge-invariant operators up to dimension {{{$d=5$}}}. In the standard representation, i.e., the Warsaw basis, the Lagrangian is given by 28 28 {{{ 29 29 #!latex … … 32 32 \end{equation} 33 33 }}} 34 The first term is the Standard Model Lagrangian. The second is the Weinberg operator34 The first term is the Standard Model Lagrangian. The second term {{{L5}}} is the Weinberg operator 35 35 {{{ 36 36 #!latex … … 42 42 where 43 43 {{{Lambda}}} is the EFT cutoff scale [GeV], 44 {{{#!latex 45 $C^{\ell\ell'}_5$ 46 }}} 47 {{{#!latex $C^{\ell\ell'}_5$}}} 48 is the flavor-dependent Wilson coefficient in the flavor basis, 49 and the the SU(2)-invariant product {{{$\Phi\cdot \overline{L^c} = \Phi^i\varepsilon_{ij} \overline{L^{cj}}$}}} is fixed by {{{$\varepsilon_{12}=1$}}}. 44 {{{Cll}}} is the flavor-dependent Wilson coefficient [dimensionless], 45 {{{Phi}}} is the SM Higgs doublet with vev {{{v}}}, and {{{L}}} is the SM lepton doublet of flavor {{{l,l'}}}. 50 46 51 47 52 The UFO file models the Weinberg operator by exploiting the observation [ [#Fuks 1] ] that an intermediate current of massless neutrinos {{{$(\nu_\ell \nu_{\ell'}^c)$}}} can be an unphysical Majorana neutrino with mass {{{$m_{\ell \ell'}=C^{\ell\ell'}_5 v^2/\Lambda$}}}. 53 54 55 56 In the mass basis, the heavy Majorana neutrinos' kinetic and mass terms are 48 A novelty of this implementation is the fact that under certain conditions [ [#Fuks 1] ], the intermediate propagation of light Majorana neutrinos {{{(\nu_l \nu^c_l')}}} can be modeled as an unphysical Majorana neutrino with mass 57 49 {{{ 58 50 #!latex 59 51 \begin{equation} 60 \mathcal{L}_{N} = \frac{1}{2}\overline{N} i\!\not\!\partial N - \frac{1}{2}m_{N} \overline{N}N, 52 m_{\ell\ell'} = C^{\ell\ell'}_5 v^2 / \Lambda. 61 53 \end{equation} 62 54 }}} 63 55 64 and its interactions with the Weak gauge and Higgs bosons are given by 56 57 In practice, the Lagrangian term {{{L5}}} is given by 58 {{{ 59 #!latex 60 \begin{equation} 61 \mathcal{L}_{5} = \frac{1}{2}\overline{N} i\!\not\!\partial N - \frac{1}{2}m_{N} \overline{N}N + \mathcal{L}_{Int.}, 62 \end{equation} 63 }}} 64 which describes a single (unphysical) Majorana neutrino {{{N}}} of mass 65 {{{ 66 #!latex 67 \begin{equation} 68 m_{N} = \left\vert C^{ee}_5+C^{e\mu}_5+C^{e\tau}_5+C^{\mu\mu}_5+C^{\mu\tau}_5+C^{\tau\tau}_5 \right\vert v^2 / \Lambda, 69 \end{equation} 70 }}} 71 that couples to electroweak bosons through the interactions (in standard notation) 65 72 {{{ 66 73 #!latex 67 74 \begin{eqnarray} 68 \mathcal{L}_{ N~\text{Int}} =69 &-&\frac{g}{\sqrt{2}} W_{\mu}^{+}\sum_{ k=1}^{3}\sum_{\ell=e}^{\tau} \overline{N_k}\gamma^{\mu}P_{L}\ell^{-}75 \mathcal{L}_{Int.} = 76 &-&\frac{g}{\sqrt{2}} W_{\mu}^{+}\sum_{\ell=e}^{\tau} \overline{N}\gamma^{\mu}P_{L}\ell^{-} 70 77 +{\rm H.c.} 71 78 \\ 72 &-&\frac{g}{2\cos\theta_W}Z_{\mu}\sum_{ k=1}^{3}\sum_{\ell=e}^{\tau} \overline{N_k}\gamma^{\mu}P_{L}\nu_\ell79 &-&\frac{g}{2\cos\theta_W}Z_{\mu}\sum_{\ell=e}^{\tau} \overline{N}\gamma^{\mu}P_{L}\nu_\ell 73 80 +{\rm H.c.} 74 81 \\ 75 &-&\frac{g m_N}{2 M_W} h \sum_{ k=1}^{3}\sum_{\ell=e}^{\tau} \overline{N_k} P_{L}\nu_\ell82 &-&\frac{g m_N}{2 M_W} h \sum_{\ell=e}^{\tau} \overline{N} P_{L}\nu_\ell 76 83 +{\rm H.c.} 77 84 \end{eqnarray} 78 85 }}} 79 ... are taken to be independent, phenomenological parameters. This allows for maximum flexibility and model independence when calculating rates. Therefore, some care is required by the user.80 86 87 The new external parameters of the {{{SMWeinberg}}} UFO are the six Wilson coefficients and the effective field theory cutoff scale. 81 88 82 89