Changes between Version 50 and Version 51 of HeavyN


Ignore:
Timestamp:
May 24, 2021, 4:34:06 PM (3 years ago)
Author:
Richard Ruiz
Comment:

Update for vSMEFT

Legend:

Unmodified
Added
Removed
Modified
  • HeavyN

    v50 v51  
    33=== Contact Author ===
    44Richard Ruiz
    5 * Universite Catholique de Louvain
    6 * richard.ruiz AT uclouvain.be
     5* Institute of Nuclear Physics Polish Academy of Science (IFJ PAN)
     6* richard.physics AT gmail.com
    77
    88In collaboration with:
    9 Daniel Alva and Tao Han [ [#Alva 1] ];
    10 Celine Degrande, Olivier Mattelear, and Jessica Turner [ [#Degrande 2] ];
    11 and Silvia Pascoli and Cedric Weiland [ [#Pascoli 3], [#Pascoli2 4] ].
    12 
    13 For detailed instructions and examples on using the HeavyN UFO libraries, see C. Degrande, et al, arXiv:1602.06957 and S. Pascoli, et al, arXiv:1812.08750
    14 
    15 * For studies of heavy Majorana neutrinos, please consider citing [ [#Atre 5] ] for the Lagrangian and [ [#Alva 1], [#Degrande 2] ] for the Majorana FR/UFO files.
     9D. Alva and T. Han [ [#Alva 1] ]; C. Degrande, O. Mattelear, and J. Turner [ [#Degrande 2] ]; S. Pascoli and C. Weiland [ [#Pascoli 3], [#Pascoli2 4] ]; and V. Cirigliano, W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti [ [#Cirigliano 5] ].
     10
     11For detailed instructions and examples on using the HeavyN UFO libraries, see C. Degrande, et al, arXiv:1602.06957 and S. Pascoli, et al, arXiv:1812.08750 . For heavy neutrinos in vSMEFT, see V. Cirigliano, et al, arXiv:2021.xxxxx .
     12
     13* For studies of heavy Majorana neutrinos, please consider citing [ [#Atre 6] ] for the Lagrangian and [ [#Alva 1], [#Degrande 2] ] for the Majorana FR/UFO files.
    1614* For studies of heavy Dirac neutrinos, please also consider citing [ [#Pascoli2 4] ].
    17 
     15* For studies of heavy neutrinos in vSMEFT, please consider citing [ [#Cirigliano 5] ].
    1816
    1917== Model Description ==
    2018=== Majorana ===
    21 This effective/simplified model extends the Standard Model (SM) field content by introducing three right-handed (RH) neutrinos, which are singlets under the SM gauge symmetry (no color, weak isospin, or weak hypercharge charges). Each RH neutrino possesses one RH Majorana mass. After electroweak symmetry breaking, the Lagrangian with three heavy Majorana neutrinos ''N''i (for i=1,2,3) is given by [ [#Atre 5] ]
     19This effective/simplified model extends the Standard Model (SM) field content by introducing three right-handed (RH) neutrinos, which are singlets under the SM gauge symmetry (no color, weak isospin, or weak hypercharge charges). Each RH neutrino possesses one RH Majorana mass. After electroweak symmetry breaking, the Lagrangian with three heavy Majorana neutrinos ''N''i (for i=1,2,3) is given by [ [#Atre 6] ]
    2220{{{
    2321#!latex
     
    6159}}}
    6260
     61=== vSMEFT ===
     62In the {{{HeavyN_vSMEFTdim6}}} UFO [ [#Cirigliano 5] ], the {{{HeavyN}}} (Majorana) Lagrangian is extended by the dimension-six EFT operator
     63{{{
     64#!latex
     65\begin{equation}
     66\mathcal{L}_{H\nu e}^{(6)} = \frac{1}{\Lambda^2}   \left(i \tilde{\varphi}^{\dagger} D_{\mu} \varphi\right) \, \bar \nu_R \gamma^\mu \,C_{H\nu l} ~ l_R
     67+  \mathrm{H.c.}\, ,
     68\end{equation}
     69}}}
     70where {{{D_\mu}}} is the usual SM covariant derivative. {{{\Lambda}}} is the EFT cutoff in GeV scale, {{{ C_{H\nu l} }}} is the dimensionless Wilson coefficient, and {{{$l=e,\mu,\tau$}}}. Note that in Ref. [ [#Cirigliano 5] ], {{{ C_{H\nu l} }}} has dimension {{{GeV^-2}}}. In the unitary gauge after and EW symmetry breaking, the leading contribution of this operator can be written in the neutrino mass basis as
     71{{{
     72#!latex
     73\begin{equation}
     74\mathcal{L}_{H\nu e}^{(6)} \approx
     75\frac{g v^2}{2\sqrt{2}\Lambda^2}
     76\sum_{\ell=e}^{\tau}
     77\sum_{k=1}^{3} \,\overline{N_k} 
     78 \left[\bar{C}_{H\nu l}\right]_{k \ell} \gamma^\mu P_R \ell_{R}\,W_\mu^+ 
     79\left(1+\frac{h}{v}\right)^2 +\text{H.c.}
     80\end{equation}
     81}}}
     82Here {{{k=1,\dots,3}}} runs over all three heavy neutrino mass eigenstates and {{{$\ell=e,\mu,\tau$}}} runs over all lepton flavors. For the precise definition of the effective Wilson coefficient {{{$\bar{C}_{H\nu l}$}}}, see Ref. [ [#Cirigliano 5] ].
     83
     84
    6385== QCD Corrections ==
    6486The above Lagrangian with Goldstone boson couplings and in the Feynman Gauge was implemented into FeynRules  2.3.10. QCD renormalization and R2 rational counter terms were determined using NLOCT 1.02 and FeynArts 3.8. Feynman rules were collected into a single UFO, available below.
     
    97119 * [https://feynrules.irmp.ucl.ac.be/attachment/wiki/HeavyN/heavyN_Dirac.fr heavyN_Dirac.fr]: Main model file. Relies on sm.fr (default FR model file) being declared elsewhere.
    98120
    99 
    100 
     121==== vSMEFT ====
     122* [https://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/HeavyN/SM_HeavyN_vSMEFTdim6_NLO.tgz SM_HeavyN_vSMEFTdim6_NLO.tgz]: Standalone NLO UFO folder. Assumes massless bottom quark and tau lepton, diagonal CKM.
     123
     124* [https://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/HeavyN/SM_HeavyN_vSMEFTdim6_XLO.tgz SM_HeavyN_vSMEFTdim6_XLO.tgz]: Standalone LO UFO folder. Assumes massless bottom quark and tau lepton, diagonal CKM.
     125
     126* [https://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/HeavyN/heavyN_vSMEFTdim6.fr heavyN_vSMEFTdim6.fr]: Main model file. Relies on sm.fr (default FR model file) being declared elsewhere.
    101127
    102128== Download and Unpack ==
     
    123149~/Path $ tar -zxvf SM_HeavyN_Dirac_LO_UFO.tgz
    124150
     151==== vSMEFT NLO ====
     152~/Path $ wget https://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/HeavyN/SM_HeavyN_vSMEFTdim6_NLO.tgz
     153
     154~/Path $ tar -zxvf SM_HeavyN_vSMEFTdim6_NLO.tgz
     155
     156==== vSMEFT LO ====
     157~/Path $ wget http://feynrules.irmp.ucl.ac.be/raw-attachment/wiki/HeavyN/SM_HeavyN_vSMEFTdim6_XLO.tgz
     158
     159~/Path $ tar -zxvf SM_HeavyN_vSMEFTdim6_XLO.tgz
     160
     161
     162
    125163== Notes ==
    126164 * For instructions on using the HeavyN UFO, see C. Degrande, et al, arXiv:1602.06957 and S. Pascoli, et al, arXiv:1812.08750
    127165
    128  * This model contains 15 free parameters:
     166 * The flagship {{{HeavyN}}} UFO model contains 15 free parameters:
    129167  * Three masses: mN1, mN2, mN3. Defaults are 300 GeV, 500 GeV, and 1 TeV, respectively.
    130168  * Three widths: WN1, WN2, WN3. Defaults are 0.303 GeV, 1.50 GeV, and 12.3 GeV, respectively.
    131   * Nine real (no CP violation) mixing parameters: V''lk'' for ''l'' = ''e, mu, tau'' and ''k'' = 1,2,3. Default values are V''lk'' = Identity(3x3), i.e., Ve1 = Vmu2 = Vta3 = 1 and all others zero.
     169  * Nine real (no CP violation) mixing parameters: V''lk'' for ''l'' = ''e, mu, tau'' and ''k'' = 1,2,3. Default values are V''lk'' = Identity(3x3), i.e., {{{Ve1 = Vmu2 = Vta3 = 1}}} and all others zero.
    132170  * '''Note''': VlN are restricted to be real in the model file.
    133171  * '''Note''': Default parameters are set so "out-of-the-box" checks can be made with [ [#Alva 1] ] and [ [#Degrande 2] ].
    134172
    135 * For Majorana file, particle identification (PID) codes for N1,...,N3, follow standard HEP MCPID codes: 9900012, 9900014, 9900016
    136 
    137 * For Dirac file, to avoid conflict with Pythia8, where the above PIDs are reserved for Majorana fields, the nonstandard HEP MCPID codes for N1,...,N3 are:9990012, 9990014, 9990016
    138 
    139  
     173* For the Majorana file, particle identification (PID) codes for N1,...,N3, follow standard HEP MCPID codes: 9900012, 9900014, 9900016
     174
     175* For the Dirac file, to avoid conflict with Pythia8, where the above PIDs are reserved for Majorana fields, the nonstandard HEP MCPID codes for N1,...,N3 are:9990012, 9990014, 9990016
     176
     177* For vSMEFT file, 10 additional model parameters are introduced:
     178  * One EFT cutoff scale {{{Lambda}}} in units of GeV.
     179  * Nine Wilson coefficients coupling {{{N_k}}} to {{{l}}}: {{{CeN1, CeN2, CeN3, CmuN1, CmuN2, CmuN3, CtaN1, CtaN2, CtaN3}}}
     180  * '''Note''': Default parameters are set such that {{{Lambda=1000}}} (GeV), {{{CeN1=CmuN2=CtaN3=1}}}, and all other coefficients are zero
     181
    140182
    141183== Validation ==
     
    173215[=#Pascoli2] [4] S. Pascoli, R. Ruiz and C. Weiland, ''Heavy Neutrinos with Dynamic Jet Vetoes: Multilepton Searches at {{{$\sqrt{s}=$}}}14, 27, and 100 TeV,'' JHEP '''1906''', 049 (2019), arXiv:1812.08750 [hep-ph]
    174216
    175 
    176 [=#Atre] [5] A. Atre, T. Han, S. Pascoli and B. Zhang, ''The Search for Heavy Majorana Neutrinos,'' JHEP '''0905''', 030 (2009),  arXiv:0901.3589 [hep-ph]
    177 
    178 [=#Ruiz] [6] R. Ruiz, ''A quantitative study on helicity inversion in Majorana neutrino decays at the LHC,'' arXiv:2008.01092 [hep-ph]
     217[=#Cirigliano] [5]
     218
     219[=#Atre] [6] A. Atre, T. Han, S. Pascoli and B. Zhang, ''The Search for Heavy Majorana Neutrinos,'' JHEP '''0905''', 030 (2009),  arXiv:0901.3589 [hep-ph]
     220
     221[=#Ruiz] [7] R. Ruiz, ''A quantitative study on helicity inversion in Majorana neutrino decays at the LHC,'' arXiv:2008.01092 [hep-ph]