21 | | This effective model extends the Standard Model (SM) field content by introducing heavy Left-Right symmetric gauge bosons W,,R,,^+-^, Z,,R,, with masses M,,WR,, and M,,ZR,,, as well as three heavy Majorana neutrinos N,,i,, with mass m,,Ni,,. |
| 21 | This effective model extends the Standard Model (SM) field content by introducing heavy Left-Right symmetric gauge bosons W,,R,,^+/-^, Z,,R,, with masses M,,WR,, and M,,ZR,,, as well as three heavy Majorana neutrinos N,,i,, with mass m,,Ni,,. The Lagrangian is given by, |
33 | | \mathcal{L}_{N} = \frac{1}{2}\overline{N_k} i\!\not\!\partial N_k - \frac{1}{2}m_{N_k} \overline{N_k}N_k, \quad k=1,\dots,3, |
| 33 | \mathcal{L}_{\rm LRSM~Kin.} \ni \frac{1}{2}\overline{N_k} i\!\not\!\partial N_k - \frac{1}{2}m_{N_k} \overline{N_k}N_k, \quad k=1,\dots,3, |
| 34 | \end{equation} |
| 35 | }}} |
| 36 | The W,,R,,, Z,,R,,, couplings to fermions is separated into three pieces: |
| 37 | {{{ |
| 38 | #!latex |
| 39 | \begin{equation} |
| 40 | \mathcal{L}_{\rm LRSM~Int.} = \mathcal{L}_{W_R-q-q'} + \mathcal{L}_{W_R-\ell-\nu/N} + |
| 41 | \mathcal{L}_{Z_R-f-f} |
| 42 | \end{equation} |
| 43 | }}} |
| 44 | The W,,R,, chiral coupling to quarks are |
| 45 | {{{ |
| 46 | #!latex |
| 47 | \begin{equation} |
| 48 | \mathcal{L}_{W_R-q-q'} = \frac{-\kappa_R^q g}{\sqrt{2}}\sum_{i,j=u,d,\dots}\overline{u}_i V_{ij}^{\rm CKM'}~W_{R \mu}^+ \gamma^\mu P_R~ d_j + \text{H.c.} |
| 49 | \end{equation} |
| 50 | }}} |
| 51 | V^^CKM'^^ is the RH Cabbibo-Kobayashi-Masakawa (CKM) matrix, which is related to the SM CKM matrix. |
| 52 | g=\sqrt{4\pi\alpha_{\rm EM}(M_Z)}/\sin\theta_W is the SM Weak coupling constant and |
| 53 | \kappa_{R}^^{q}^^ is an overall real normalization for the W,,R,, interaction strength. |
| 54 | For leptons, the W,,R,, coupling and leptonic mixing is parametrized by~\cite{Atre:2009rg,Han:2012vk} |
| 55 | {{{ |
| 56 | #!latex |
| 57 | \begin{equation} |
| 58 | \mathcal{L}_{W_R-\ell-\nu/N} = \frac{-\kappa_R^\ell g}{\sqrt{2}} |
| 59 | \sum_{\ell=e,\mu,\tau} |
| 60 | \sum_{m'=1}^3 \overline{N_{m'}} Y_{\ell m'} |
| 61 | ~W_{R \mu}^+ \gamma^\mu P_R~ \ell^-+\text{H.c.} |
| 62 | \end{equation} |
| 63 | }}} |
| 64 | For chiral fermion $f$, we parametrize the $\ZR$ neutral currents by |
| 65 | {{{ |
| 66 | #!latex |
| 67 | \begin{equation} |
| 68 | \mathcal{L}_{Z_R-f-f} = \frac{-\kappa_{R}^f g}{\sqrt{1 - \left(1/\kappa_{R}^f\right)^2 \tan^2\theta_W}}\sum_{f=u,e,\dots} |
| 69 | \overline{f} Z_{R \mu} \gamma^\mu \left(g_{L}^{Z_R,f}P_L + g_{R}^{Z_R,f}P_R\right)f. |
| 70 | \end{equation} |
| 71 | }}} |
| 72 | $\kappa_{R}^{f}$ are the same $\kappa_{R}^{q,\ell}$ as for $\WR$. |
| 73 | In terms of electric and isospin charges, the chiral coefficients are |
| 74 | {{{ |
| 75 | #!latex |
| 76 | \begin{equation} |
| 77 | c |