Changes between Initial Version and Version 1 of DMsimpt


Ignore:
Timestamp:
Jan 14, 2020, 1:59:26 PM (5 years ago)
Author:
Benjamin Fuks
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DMsimpt

    v1 v1  
     1= {{{DMSimpt}}}: A general framework for t-channel dark matter models at NLO in QCD =
     2
     3=== Contact Information ===
     4
     5Benjamin Fuks
     6 * LPTHE / Sorbonne U.
     7 *  fuks@lpthe.jussieu.fr
     8
     9Chiara Arina
     10 * UC Louvain
     11 * chiara.arina@uclouvain.be
     12
     13Luca Mantani
     14 * UC Louvain
     15 * luca.mantani@uclouvain.be
     16
     17See arXiv:2001.NNNNN [hep-ph].
     18
     19=== Model Description and FeynRules Implementation ===
     20
     21We extend the Standard Model by a dark matter candidate X and a coloured mediator Y. The model includes several spin possibilities for X and Y, the dark matter being either of a Majorana nature or not and of spin equal to 0, 1/2 or 1. The mediator is accordingly of spin 1/2 (scalar or bosonic dark matter) or 0 (fermionic dark matter). The model Lagrangian is given by
     22{{{
     23#!latex
     24\begin{equation*}
     25  \mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde\chi) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde S)
     26       + \mathcal{L}_V(V)    + \mathcal{L}_V(\tilde V) \ .
     27\end{equation*}
     28}}}
     29The first term consists in the Standard Model Lagrangian, the second one includes gauge-invariant kinetic and mass terms for all new fields and the last ones describe the interactions of the dark matter state with the mediator and the Standard Model (and focus respectively on Dirac fermion, Majorana fermion, complex scalar, real scalar, complex vector and real vector dark matter. Those Lagrangians are given by
     30{{{
     31#!latex
     32\begin{eqnarray*}
     33   \mathcal{L}_F(X)& = & \Big[
     34           {\bf \lambda_{Q}} \bar X Q_L \varphi^\dag_{Q}
     35     \!+\! {\bf \lambda_{u}} \bar X u_R \varphi^\dag_{u}
     36     \!+\! {\bf \lambda_{d}} \bar X d_R \varphi^\dag_{d}
     37     \!+\! {\rm h.c.} \Big] \ ,\\
     38   \mathcal{L}_S(X)& = & \Big[
     39          {\bf \hat\lambda_{Q}} \bar\psi_{Q} Q_L X
     40    \!+\! {\bf \hat\lambda_{u}} \bar\psi_{u} u_R X
     41    \!+\! {\bf \hat\lambda_{d}} \bar\psi_{d} d_R X
     42    \!+\! {\rm h.c.} \Big] \ , \\
     43   \mathcal{L}_V(X)& = & \Big[
     44          {\bf \hat\lambda_{Q}} \bar\psi_{Q} \gamma^\mu X_\mu Q_L
     45    \!+\! {\bf \hat\lambda_{u}} \bar\psi_{u} \gamma^\mu X_\mu u_R
     46    \!+\! {\bf \hat\lambda_{d}} \bar\psi_{d} \gamma^\mu X_\mu d_R
     47    \!+\! {\rm h.c.} \Big] \ ,
     48\end{eqnarray*}
     49}}}
     50where φ and ψ consists in coloured scalar and fermionic mediators.
     51
     52The above Lagrangian was implemented in the Feynman gauge into !FeynRules 2.3.35. QCD renormalisation and R,,2,, rational counterterms were determined using NLOCT v1.02 and !FeynArts 3.9. Feynman rules were collected into a [/raw-attachment/wiki/TypeIISeesaw/dmsimpt_v1_2.ufo.tar.gz single UFO], in which 5 flavours of massless quarks are considered, which enables tree-level calculations at LO and NLO QCD and loop-induced calculations at LO QCD using MadGraph_aMC@NLO.
     53
     54The above new physics couplings can be controlled on run-time through the Les Houches blocks DMS3Q, DMS3U, DMS3D (scalar mediator interactions with the Q,,L,,, u,,R,, and d,,R,, quarks), as well as DMF3Q, DMF3U, DMF3D (scalar mediator interactions with the Q,,L,,, u,,R,, and d,,R,, quarks). The mass of the new particles can be modified through the usual mass blocks. The PDG codes of the new particles are:
     55 * Dark matter: 51 (real scalar), 52 (Majorana fermion), 53 (real vector), 56 (complex scalar), 57 (Dirac fermion) and 58 (complex vector).
     56 * Scalar mediators: 1000001 (φ,,dL,,), 1000002 (φ,,uL,,), 1000003 (φ,,sL,,), 1000004 (φ,,cL,,), 1000005 (φ,,bL,,), 1000006 (φ,,tL,,), 2000001 (φ,,dR,,), 2000002 (φ,,uR,,), 2000003 (φ,,sR,,), 2000004 (φ,,cR,,), 2000005 (φ,,bR,,) and 2000006 (φ,,tR,,).
     57 * Fermionic mediators: 5910001 (ψ,,dL,,), 5910002 (ψ,,uL,,), 5910003 (ψ,,sL,,), 5910004 (ψ,,cL,,), 5910005 (ψ,,bL,,), 5910006 (ψ,,tL,,), 5920001 (ψ,,dR,,), 5920002 (ψ,,uR,,), 5920003 (ψ,,sR,,), 5920004 (ψ,,cR,,), 5920005 (ψ,,bR,,) and 5920006 (ψ,,tR,,).
     58
     59More information can be found in arXiv:2001.NNNNN [hep-ph].
     60
     61
     62=== Model Files (and more) ===
     63
     64 * !Feynrules model files:
     65   * [/raw-attachment/wiki/DMsimpt/sm.fr sm.fr]: Accompanying SM implementation.
     66   * [/raw-attachment/wiki/DMsimpt/dmsimpt_v1.2.fr dmsimpt_v1.2.fr]: Main DMSimpt !FeynRules model.
     67   * [/raw-attachment/wiki/DMsimpt/Massless_5f.rst Restriction file] relevant for the 5FNS (5 massless quarks).
     68   * [/raw-attachment/wiki/DMsimpt/DiagonalCKM.rst Restriction file] relevant for a diagonal CKM matrix.
     69   * [/raw-attachment/wiki/DMsimpt/use-DMsimpt.nb use-DMsimpt.nb]: Illustrative Mathematica notebook using the DMSimpt !FeynRules model.
     70
     71 * UFO models
     72   * [/raw-attachment/wiki/DMsimpt/dmsimpt_v1_2.ufo.tar.gz dmsimpt_v1_2.ufo.tar.gz]: Standalone NLO UFO folder in the 5FNS.
     73   * [/raw-attachment/wiki/DMsimpt/dmsimpt_massive.ufo.tar.gz dmsimpt_v1_2.ufo.tar.gz]: Standalone LO UFO folder with 6 massive quarks.
     74
     75 * !CalcHep models
     76   * [/raw-attachment/wiki/DMsimpt/dmsimpt_v1_2.ch.tar.gz dmsimpt_v1_2.ch.tar.gz]: Standalone !CalcHep model files with massive quarks.