1 | | To be continued |
| 1 | Interaction operators for fermionic WIMP of 6-dimensional Effective Field Theory in tree level, which contains four-fermion interactions and vector, scalar, fermion interactions, are implemented. |
| 2 | |
| 3 | For 6-dimensional EFT, fermionic DM is a SM gauge singlet and odd under global Z2 symmetry. The tree level |
| 4 | interactions between this fermionic DM and SM particles can be chosen as the Lagrangian form of the operators given [1,2,3] |
| 5 | |
| 6 | \begin{itemize} |
| 7 | \item 4-fermion vectoral interactions: |
| 8 | \begin{eqnarray} |
| 9 | \mathcal{L}_{(uR,dR,eR)\chi}=\frac{g^u_{R}}{2 \Lambda^2}(\bar{u}\gamma^{\mu}u)(\bar{\chi}\gamma_{\mu}\chi) +\frac{g^d_{R}}{2 \Lambda^2}(\bar{d}\gamma^{\mu}d)(\bar{\chi}\gamma_{\mu}\chi) + \frac{g^e_{R}}{2\Lambda^2}(\bar{e}\gamma^{\mu}e)(\bar{\chi}\gamma_{\mu}\chi) \label{eq-lag-4ferm-vekt} |
| 10 | \end{eqnarray} |
| 11 | |
| 12 | \item 4-fermion scalar interactions: |
| 13 | \begin{eqnarray} |
| 14 | \mathcal{L}_{(\ell,q)\chi}=\frac{g^{\ell}_L}{\Lambda^2}(\bar{\ell}\chi)(\bar{\chi}\ell) + \frac{g^q_L}{\Lambda^2} (\bar{q}\chi)(\bar{\chi}q) \label{eq-lag-4ferm-sca} |
| 15 | \end{eqnarray} |
| 16 | |
| 17 | \item Fermion-vector-scalar interactions: |
| 18 | \begin{eqnarray} |
| 19 | \mathcal{L}_{\phi\chi}=\frac{i \alpha_{\phi \chi}}{\Lambda^2}({\phi}^{\dagger}D^{\mu}\phi)(\bar{\chi}\gamma_{\mu}\chi)+h.c. |
| 20 | \label{eq-lag-ferm-vec-sca} |
| 21 | \end{eqnarray} |
| 22 | \end{itemize} |
| 23 | |
| 24 | where, $\chi$ is fermionic DM field, $u,d,e$'s are right-handed fermions, $\gamma$'s are gamma matrices, $q,\ell$ denotes left-handed quarks and leptons, $\phi$ is Higgs field $\Lambda$ is cut-off scale of new physics, $g_{R}^{u(d,e)}$ and $g_L^{\ell(q)}$'s are the coupling parameters related to dark operators $\alpha$'s. The apparent relation between $g$'s and $\alpha$'s are given as: |
| 25 | |
| 26 | \begin{eqnarray} |
| 27 | g^{u}_{L}=-\frac{1}{2}\alpha_{q\chi}, \qquad g^{u}_{R}=\frac{1}{2}\alpha_{u\chi} \nonumber |
| 28 | \end{eqnarray} |
| 29 | \begin{eqnarray} |
| 30 | g^{d}_{L}=-\frac{1}{2}\alpha_{q \chi}, \qquad g^{d}_{R}=\frac{1}{2}\alpha_{d\chi} \nonumber |
| 31 | \end{eqnarray} |
| 32 | \begin{eqnarray} |
| 33 | g^{e}_{L}=-\frac{1}{2}\alpha_{\ell \chi},\qquad g^{e}_{R}=\frac{1}{2}\alpha_{e\chi} \nonumber |
| 34 | \end{eqnarray} |
| 35 | \begin{eqnarray} |
| 36 | g^{\nu}_{L}=-\frac{1}{2}\alpha_{\ell \chi}, \qquad g^{\nu}_{R}=0 \nonumber |
| 37 | \end{eqnarray} |
| 38 | |
| 39 | [1] Ayşe Elçiboğa KUDAY, Erdinç Ulaş SAKA, Ferhat ÖZOK. June 2022. Analysis of Direct and Indirect Detection of Fermionic Dark Matter of 6-Dimensional Effective Field Theory. International Journal of Geometric Methods in Modern Physics, Vol. 19, No. 13 (2022) 2250202,[ArXiV: 2305.02302 [hep_ph]. |
| 40 | [2] Ayşe Elçiboğa KUDAY, Erdinç Ulaş SAKA, Ferhat ÖZOK. 2020. Probing Dark Matter via Effective Field Theory Approach. International Journal of Geometric Methods in Modern Physics, Vol. 17, No. 2 (2020) 2050028, [ArXiV: 2305.02592 [hep_ph]]. |
| 41 | [3] Zhang, H., Cao, QH., Chen, CR. et al. Effective dark matter model: relic density, |
| 42 | CDMS II, Fermi LAT and LHC. J. High Energ. Phys. (2011) 2011: 18 [ArXiV: 0912.4511v2 [hep_ph]] |