Changes between Version 1 and Version 2 of ALRM_general


Ignore:
Timestamp:
Nov 29, 2019, 5:44:31 PM (5 years ago)
Author:
Benjamin Fuks
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • ALRM_general

    v1 v2  
    1 Text to be added...
     1= {{{ALRM_general}}}: A general implementation of the alternative left-right symmetric model =
     2
     3=== Contact Information ===
     4Implementation author:
     5Benjamin Fuks
     6 * LPTHE / Sorbonne U.
     7 *  fuks@lpthe.jussieu.fr
     8
     9In collaboration with Mariana Frank and Özer Özdal. See arXiv:1912.NNNNN [hep-ph]. This implementation is the most general one of the model.
     10
     11=== Model Description and FeynRules Implementation ===
     12
     13In the alternative left-right symmetric model, the SU(2),,R,, partner of the right-handed up-quark u,,R,, is an exotic down-type quark d′,,R,, (instead of the SM right-handed down-type quark d,,R,,), and the SU(2),,R,, partner of the right-handed charged lepton e,,R,, is an exotic neutral lepton, the scotino n,,R,, (instead of the right-handed neutrino ν,,R,,). The right-handed neutrino ν,,R,, and down-type quark d,,R,, remain singlets under both the SU(2),,L,, and SU(2),,R,, groups. To preserve the left-right symmetry, the model includes an SU(2),,L,, singlet scotino n,,L,,and down-type quark d',,L,,. The model is moreover invariant under a global symmetry U(1),,S,, and a gauged B-L symmetry.
     14
     15The gauge and global symmetry SU(2),,R,, × U(1),,B−L,, × U(1),,S,, is first broken to the hypercharge through an SU(2),,R,, doublet of scalar fields χ,,R,, charged under U(1),,S,,. The model moreover includes an SU(2),,L,, counterpart χ,,L,,, insensitive to U(1),,S,,, to maintain the left-right symmetry. The electroweak symmetry is then broken down to electromagnetism by means of a bidoublet of Higgs fields charged under both SU(2),,L,, and SU(2),,R,, and without any B − L quantum numbers.
     16
     17The model Lagrangian includes, in addition to gauge-invariant kinetic terms for all fields, a Yukawa Lagrangian generating masses for all fields,
     18{{{
     19#!latex
     20\begin{eqnarray*}
     21  \mathcal{L}_{\rm Y} &=& \bar Q_L {\bf \hat Y}^u \hat\phi^\dag Q_R
     22     - \bar Q_L {\bf \hat Y}^d \chi_L d_R
     23     - \bar Q_R {\bf \hat Y}^{d'}\chi_R d'_L
     24     - \bar L_L {\bf \hat Y}^e \phi L_R
     25     + \bar L_L {\bf \hat Y}^\nu \hat\chi_L^\dag \nu_R \\&&
     26     + \bar L_R {\bf \hat Y}^n \hat\chi_R^\dag n_L + {\rm h.c.} \ ,
     27\end{eqnarray*}
     28}}}
     29and the Higgs potential is given by
     30{{{
     31#!latex
     32\begin{eqnarray*}
     33  V_{\rm H}  &= &
     34    -\mu_1^2 {\rm Tr} \big[\phi^\dag \phi\big]
     35     -\mu_2^2 \big[\chi_L^\dag \chi_L + \chi_R^\dag \chi_R\big]
     36     + \lambda_1 \big({\rm Tr}\big[\phi^\dag \phi\big]\big)^2
     37     + \lambda_2\ (\phi\!\cdot\!\hat\phi)\ (\hat\phi^\dag\!\cdot\!\phi^\dag)
     38  \\&&
     39     + \lambda_3 \Big[\big(\chi_L^\dag \chi_L\big)^2 +
     40           \big(\chi_R^\dag\chi_R\big)^2\Big]
     41     + 2 \lambda_4\ \big(\chi_L^\dag \chi_L\big)\ \big(\chi_R^\dag\chi_R\big)
     42  \\&&
     43     + 2 \alpha_1 {\rm Tr} \big[\phi^\dag \phi\big]
     44            \big[\chi_L^\dag \chi_L + \chi_R^\dag \chi_R\big]
     45     + 2 \alpha_2 \big[ \big(\chi_L^\dag \phi\big) \big(\chi_L\phi^\dag\big)      +
     46            \big(\phi^\dag \chi_R^\dag\big)\ \big(\phi\chi_R\big)\big]
     47  \\&&
     48     + 2 \alpha_3 \big[ \big(\chi_L^\dag \hat\phi^\dag\big)\
     49            \big(\chi_L\hat\phi\big) + \big(\hat\phi\chi_R^\dag\big)\
     50            \big(\hat\phi^\dag\chi_R\big)\big]
     51     + \kappa \big[\chi_L^\dag \phi \chi_R + \chi_R^\dag\phi^\dag\chi_L\big]      \  .
     52\end{eqnarray*}
     53}}}
     54
     55We refer to arXiv:1912.NNNNN [hep-ph] for more detailed information, in particular on the minimisation of the potential and the diagonalisation of the gauge eigenbasis.
     56
     57The above Lagrangian was implemented in the unitarity gauge into !FeynRules 2.3.35. Feynman rules were collected into a single [/raw-attachment/wiki/ALRM_general/alrsm.unitarity.ufo.tgz UFO model files] that permits tree-level calculations at LO using MadGraph_aMC@NLO and dark matter computations using MadDM. MicrOMEGAs can also be used for testing the cosmology of the model, relying on the generated [/raw-attachment/wiki/ALRM_general/alrsm.unitarity.ch.tgz CalcHEP model file].
     58
     59The model contains 16 free parameters (on top of the Standard Model ones):
     60 - the ratio of the bidoublet to the SU(2),,L,, triplet vacuum expectation values tanβ (tb, block SMINPUTS, entry 5);
     61 - the SU(2),,R,, coupling constant g,,R,, (gR, block SMINPUTS, entry 6);
     62 - the square root of the sum of the squared bidoublet and SU(2),,R,, vevs v’ (vevp, block SMINPUTS, entry 7);
     63 - the potential parameters λ,,2,, (lam2), λ,,3,,(lam3), α,,1,,(alp1), α,,2,,(alp2), α,,3,,(alp3), and κ (kap) (block HPOTINPUTS);
     64 - the masses of the neutrino (PDG 12, 14, 16), scotino (PDG 6000012, 6000014, 6000016) and exotic down quark (PDG 6000001, 6000003, 6000005) fields (in the LH block MASS);
     65 - the 8 inputs dictating the two CKM matrices (block CKMBLOCK);
     66 - the 8 inputs dictating the two PMNS matrices (block PMNSBLOCK).
     67All other parameters are derived quantities. We refer to arXiv:1912.NNNNN [hep-ph] for more information.
     68
     69
     70=== Model Files ===
     71 * [/raw-attachment/wiki/ALRM_general/ALRM_BF_ini_v2.fr FeynRules model file];
     72 * [/raw-attachment/wiki/ALRM_general/alrsm.unitarity.ufo.tgz UFO model file];
     73 * [/raw-attachment/wiki/ALRM_general/alrsm.unitarity.ch.tgz CalcHEP model file].