goldstino: gldgrv.fr

File gldgrv.fr, 4.3 KB (added by Benjamin Fuks, 11 years ago)

Goldstino and gravitino interactions

Line 
1(* ********************************************************* *)
2(* ***** ***** *)
3(* ***** FeynRules model file: goldstino ***** *)
4(* ***** Author: B. Fuks ***** *)
5(* ***** ***** *)
6(* ********************************************************* *)
7
8(* ************************** *)
9(* ***** Information ***** *)
10(* ************************** *)
11M$ModelName = "GldGrv";
12M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"benjamin.fuks@iphc.cnrs.fr"}, Institutions->{"CERN / IPHC Strasbourg / University of Strasbourg"},
13 Date->"01.09.13", Version->"1.0.4",
14 References->{""},
15 URLs->{"http://feynrules.phys.ucl.ac.be/view/Main/GldGrv"} };
16
17(* Change log *)
18(* v1.0.4: compatibility woth calchep (m32 parameter) *)
19(* v1.0.3: copatible with the new supercurrent routine *)
20(* v1.0.2: sgoldstino added *)
21(* v1.0.1: non zero goldstino mass added *)
22
23(* ************************** *)
24(* ***** Superfields ***** *)
25(* ************************** *)
26M$Superfields = {
27 CSF[100] == { ClassName->GLDSF, Chirality->Left, Weyl->GLDw, Scalar->GLDs}
28};
29
30(* ************************** *)
31(* ***** Fields ***** *)
32(* ************************** *)
33M$ClassesDescription = {
34(* Goldstino: physical Weyls *)
35 W[100] == { ClassName->GLDww, Unphysical->True, Chirality->Left, SelfConjugate->False},
36 W[101] == { ClassName->GLDw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{GLDw[inds_]->-I*GLDww[inds]}},
37
38(* Gravitino: physical Weyls *)
39 RW[100] == { ClassName->GRww, Unphysical->True, Chirality->Left, SelfConjugate->False},
40 RW[101] == { ClassName->GRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{GRw[inds__]->-I*GRww[inds]}},
41
42(* Goldstino: physical Majorana *)
43 F[100] == { ClassName->gld, SelfConjugate->True, WeylComponents->GLDww, ParticleName->"gld", Mass->{Mgld,1*^-13}, Width->0, PDG->1000039,
44 PropagatorLabel->"gld", PropagatorType->Straight, PropagatorArrow->None},
45
46(* Gravitino: physical Rarita-Schwinger *)
47 R[100] == { ClassName->grv, SelfConjugate->True, WeylComponents->GRww, ParticleName->"grv", Mass->{Mgrv,1*^-13}, Width->0, PDG->1000049,
48 PropagatorLabel->"grv", PropagatorType->Straight, PropagatorArrow->None},
49
50(* Goldstino: physical decoupling scalar *)
51 S[100] == { ClassName->GLDs, Unphysical->True, SelfConjugate->False, Definitions->{ GLDs -> 0 } }
52};
53
54
55(* ************************** *)
56(* ***** Parameters ***** *)
57(* ************************** *)
58M$Parameters = {
59 MP == { TeX->Subscript[M,P], ParameterType->External, ComplexParameter->False, Value->1.22089*^19/Sqrt[8 Pi],
60 BlockName->SMINPUTS, OrderBlock->10, InteractionOrder->{QGR,-1}, Description->"Reduced Planck mass"},
61 M32 == { TeX->Subscript[M,3/2], ParameterType->External, ComplexParameter->False, Value->1*^-13, ParameterName -> MM32,
62 BlockName->SMINPUTS, OrderBlock->11, Description->"Gravitino mass"}
63};
64
65(* ************************** *)
66(* ***** Lagrangian ***** *)
67(* ************************** *)
68
69lagra:=Module[{lc, lv ,lw, lmssm, lgld, lgrv, JJ, sp,lor},
70 Print[Style["Preprocessing the MSSM Lagrangian...",Green,Bold]];
71 lc = Plus@@( GrassmannExpand[#] &/@ (List @@ CSFKineticTerms[]) );
72 lv = Plus@@( GrassmannExpand[#] &/@ (List @@ VSFKineticTerms[]) );
73 lw = Plus@@( GrassmannExpand[#] &/@ (List @@ Expand[SPot+HC[SPot]]));
74 lw = lw/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
75
76 JJ = SuperCurrent[lv,lc,lw, sp, lor];
77
78 Print[Style["Computing the MSSM Lagrangian...",Green,Bold]];
79 lmssm = Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ Tonc[lc]) ) +
80 Plus@@( Theta2Component[#] &/@ (List @@ Tonc[lv+lw]) ) +
81 Plus@@( Thetabar2Component[#] &/@ (List @@ Tonc[lv+lw]) ) +
82 LSoft;
83 lmssm = ToDirac[SolveEqMotionF[SolveEqMotionD[lmssm]]] + LFeynmanGFix;
84
85 Print[Style["Computing the gravitino Lagrangian...",Green,Bold]];
86 lgrv = ToDirac[GrassmannExpand[1/(2 MP) Ueps[sp,sp2] nc[GRw[sp2, lor], JJ]]];
87 lgrv = lgrv + HC[lgrv];
88
89 Print[Style["Computing the goldstino Lagrangian...",Green,Bold]];
90 lgld = ToDirac[GrassmannExpand[-1/(Sqrt[6] M32 MP) Ueps[sp,sp2] nc[del[GLDw [sp2], lor], JJ]]];
91 lgld = lgld + HC[lgld];
92
93{lmssm,lgrv,lgld}];