| 1 | (* ********************************************************* *)
|
|---|
| 2 | (* ***** ***** *)
|
|---|
| 3 | (* ***** FeynRules model file: goldstino ***** *)
|
|---|
| 4 | (* ***** Author: B. Fuks ***** *)
|
|---|
| 5 | (* ***** ***** *)
|
|---|
| 6 | (* ********************************************************* *)
|
|---|
| 7 |
|
|---|
| 8 | (* ************************** *)
|
|---|
| 9 | (* ***** Information ***** *)
|
|---|
| 10 | (* ************************** *)
|
|---|
| 11 | M$ModelName = "GldGrv";
|
|---|
| 12 | M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"benjamin.fuks@iphc.cnrs.fr"}, Institutions->{"CERN / IPHC Strasbourg / University of Strasbourg"},
|
|---|
| 13 | Date->"01.09.13", Version->"1.0.4",
|
|---|
| 14 | References->{""},
|
|---|
| 15 | URLs->{"http://feynrules.phys.ucl.ac.be/view/Main/GldGrv"} };
|
|---|
| 16 |
|
|---|
| 17 | (* Change log *)
|
|---|
| 18 | (* v1.0.4: compatibility woth calchep (m32 parameter) *)
|
|---|
| 19 | (* v1.0.3: copatible with the new supercurrent routine *)
|
|---|
| 20 | (* v1.0.2: sgoldstino added *)
|
|---|
| 21 | (* v1.0.1: non zero goldstino mass added *)
|
|---|
| 22 |
|
|---|
| 23 | (* ************************** *)
|
|---|
| 24 | (* ***** Superfields ***** *)
|
|---|
| 25 | (* ************************** *)
|
|---|
| 26 | M$Superfields = {
|
|---|
| 27 | CSF[100] == { ClassName->GLDSF, Chirality->Left, Weyl->GLDw, Scalar->GLDs}
|
|---|
| 28 | };
|
|---|
| 29 |
|
|---|
| 30 | (* ************************** *)
|
|---|
| 31 | (* ***** Fields ***** *)
|
|---|
| 32 | (* ************************** *)
|
|---|
| 33 | M$ClassesDescription = {
|
|---|
| 34 | (* Goldstino: physical Weyls *)
|
|---|
| 35 | W[100] == { ClassName->GLDww, Unphysical->True, Chirality->Left, SelfConjugate->False},
|
|---|
| 36 | W[101] == { ClassName->GLDw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{GLDw[inds_]->-I*GLDww[inds]}},
|
|---|
| 37 |
|
|---|
| 38 | (* Gravitino: physical Weyls *)
|
|---|
| 39 | RW[100] == { ClassName->GRww, Unphysical->True, Chirality->Left, SelfConjugate->False},
|
|---|
| 40 | RW[101] == { ClassName->GRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{GRw[inds__]->-I*GRww[inds]}},
|
|---|
| 41 |
|
|---|
| 42 | (* Goldstino: physical Majorana *)
|
|---|
| 43 | F[100] == { ClassName->gld, SelfConjugate->True, WeylComponents->GLDww, ParticleName->"gld", Mass->{Mgld,1*^-13}, Width->0, PDG->1000039,
|
|---|
| 44 | PropagatorLabel->"gld", PropagatorType->Straight, PropagatorArrow->None},
|
|---|
| 45 |
|
|---|
| 46 | (* Gravitino: physical Rarita-Schwinger *)
|
|---|
| 47 | R[100] == { ClassName->grv, SelfConjugate->True, WeylComponents->GRww, ParticleName->"grv", Mass->{Mgrv,1*^-13}, Width->0, PDG->1000049,
|
|---|
| 48 | PropagatorLabel->"grv", PropagatorType->Straight, PropagatorArrow->None},
|
|---|
| 49 |
|
|---|
| 50 | (* Goldstino: physical decoupling scalar *)
|
|---|
| 51 | S[100] == { ClassName->GLDs, Unphysical->True, SelfConjugate->False, Definitions->{ GLDs -> 0 } }
|
|---|
| 52 | };
|
|---|
| 53 |
|
|---|
| 54 |
|
|---|
| 55 | (* ************************** *)
|
|---|
| 56 | (* ***** Parameters ***** *)
|
|---|
| 57 | (* ************************** *)
|
|---|
| 58 | M$Parameters = {
|
|---|
| 59 | MP == { TeX->Subscript[M,P], ParameterType->External, ComplexParameter->False, Value->1.22089*^19/Sqrt[8 Pi],
|
|---|
| 60 | BlockName->SMINPUTS, OrderBlock->10, InteractionOrder->{QGR,-1}, Description->"Reduced Planck mass"},
|
|---|
| 61 | M32 == { TeX->Subscript[M,3/2], ParameterType->External, ComplexParameter->False, Value->1*^-13, ParameterName -> MM32,
|
|---|
| 62 | BlockName->SMINPUTS, OrderBlock->11, Description->"Gravitino mass"}
|
|---|
| 63 | };
|
|---|
| 64 |
|
|---|
| 65 | (* ************************** *)
|
|---|
| 66 | (* ***** Lagrangian ***** *)
|
|---|
| 67 | (* ************************** *)
|
|---|
| 68 |
|
|---|
| 69 | lagra:=Module[{lc, lv ,lw, lmssm, lgld, lgrv, JJ, sp,lor},
|
|---|
| 70 | Print[Style["Preprocessing the MSSM Lagrangian...",Green,Bold]];
|
|---|
| 71 | lc = Plus@@( GrassmannExpand[#] &/@ (List @@ CSFKineticTerms[]) );
|
|---|
| 72 | lv = Plus@@( GrassmannExpand[#] &/@ (List @@ VSFKineticTerms[]) );
|
|---|
| 73 | lw = Plus@@( GrassmannExpand[#] &/@ (List @@ Expand[SPot+HC[SPot]]));
|
|---|
| 74 | lw = lw/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
|
|---|
| 75 |
|
|---|
| 76 | JJ = SuperCurrent[lv,lc,lw, sp, lor];
|
|---|
| 77 |
|
|---|
| 78 | Print[Style["Computing the MSSM Lagrangian...",Green,Bold]];
|
|---|
| 79 | lmssm = Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ Tonc[lc]) ) +
|
|---|
| 80 | Plus@@( Theta2Component[#] &/@ (List @@ Tonc[lv+lw]) ) +
|
|---|
| 81 | Plus@@( Thetabar2Component[#] &/@ (List @@ Tonc[lv+lw]) ) +
|
|---|
| 82 | LSoft;
|
|---|
| 83 | lmssm = ToDirac[SolveEqMotionF[SolveEqMotionD[lmssm]]] + LFeynmanGFix;
|
|---|
| 84 |
|
|---|
| 85 | Print[Style["Computing the gravitino Lagrangian...",Green,Bold]];
|
|---|
| 86 | lgrv = ToDirac[GrassmannExpand[1/(2 MP) Ueps[sp,sp2] nc[GRw[sp2, lor], JJ]]];
|
|---|
| 87 | lgrv = lgrv + HC[lgrv];
|
|---|
| 88 |
|
|---|
| 89 | Print[Style["Computing the goldstino Lagrangian...",Green,Bold]];
|
|---|
| 90 | lgld = ToDirac[GrassmannExpand[-1/(Sqrt[6] M32 MP) Ueps[sp,sp2] nc[del[GLDw [sp2], lor], JJ]]];
|
|---|
| 91 | lgld = lgld + HC[lgld];
|
|---|
| 92 |
|
|---|
| 93 | {lmssm,lgrv,lgld}];
|
|---|