1 | (* ********************************************************* *)
|
---|
2 | (* ***** ***** *)
|
---|
3 | (* ***** FeynRules model file: goldstino ***** *)
|
---|
4 | (* ***** Author: B. Fuks ***** *)
|
---|
5 | (* ***** ***** *)
|
---|
6 | (* ********************************************************* *)
|
---|
7 |
|
---|
8 | (* ************************** *)
|
---|
9 | (* ***** Information ***** *)
|
---|
10 | (* ************************** *)
|
---|
11 | M$ModelName = "GldGrv";
|
---|
12 | M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"benjamin.fuks@iphc.cnrs.fr"}, Institutions->{"CERN / IPHC Strasbourg / University of Strasbourg"},
|
---|
13 | Date->"01.09.13", Version->"1.0.4",
|
---|
14 | References->{""},
|
---|
15 | URLs->{"http://feynrules.phys.ucl.ac.be/view/Main/GldGrv"} };
|
---|
16 |
|
---|
17 | (* Change log *)
|
---|
18 | (* v1.0.4: compatibility woth calchep (m32 parameter) *)
|
---|
19 | (* v1.0.3: copatible with the new supercurrent routine *)
|
---|
20 | (* v1.0.2: sgoldstino added *)
|
---|
21 | (* v1.0.1: non zero goldstino mass added *)
|
---|
22 |
|
---|
23 | (* ************************** *)
|
---|
24 | (* ***** Superfields ***** *)
|
---|
25 | (* ************************** *)
|
---|
26 | M$Superfields = {
|
---|
27 | CSF[100] == { ClassName->GLDSF, Chirality->Left, Weyl->GLDw, Scalar->GLDs}
|
---|
28 | };
|
---|
29 |
|
---|
30 | (* ************************** *)
|
---|
31 | (* ***** Fields ***** *)
|
---|
32 | (* ************************** *)
|
---|
33 | M$ClassesDescription = {
|
---|
34 | (* Goldstino: physical Weyls *)
|
---|
35 | W[100] == { ClassName->GLDww, Unphysical->True, Chirality->Left, SelfConjugate->False},
|
---|
36 | W[101] == { ClassName->GLDw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{GLDw[inds_]->-I*GLDww[inds]}},
|
---|
37 |
|
---|
38 | (* Gravitino: physical Weyls *)
|
---|
39 | RW[100] == { ClassName->GRww, Unphysical->True, Chirality->Left, SelfConjugate->False},
|
---|
40 | RW[101] == { ClassName->GRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{GRw[inds__]->-I*GRww[inds]}},
|
---|
41 |
|
---|
42 | (* Goldstino: physical Majorana *)
|
---|
43 | F[100] == { ClassName->gld, SelfConjugate->True, WeylComponents->GLDww, ParticleName->"gld", Mass->{Mgld,1*^-13}, Width->0, PDG->1000039,
|
---|
44 | PropagatorLabel->"gld", PropagatorType->Straight, PropagatorArrow->None},
|
---|
45 |
|
---|
46 | (* Gravitino: physical Rarita-Schwinger *)
|
---|
47 | R[100] == { ClassName->grv, SelfConjugate->True, WeylComponents->GRww, ParticleName->"grv", Mass->{Mgrv,1*^-13}, Width->0, PDG->1000049,
|
---|
48 | PropagatorLabel->"grv", PropagatorType->Straight, PropagatorArrow->None},
|
---|
49 |
|
---|
50 | (* Goldstino: physical decoupling scalar *)
|
---|
51 | S[100] == { ClassName->GLDs, Unphysical->True, SelfConjugate->False, Definitions->{ GLDs -> 0 } }
|
---|
52 | };
|
---|
53 |
|
---|
54 |
|
---|
55 | (* ************************** *)
|
---|
56 | (* ***** Parameters ***** *)
|
---|
57 | (* ************************** *)
|
---|
58 | M$Parameters = {
|
---|
59 | MP == { TeX->Subscript[M,P], ParameterType->External, ComplexParameter->False, Value->1.22089*^19/Sqrt[8 Pi],
|
---|
60 | BlockName->SMINPUTS, OrderBlock->10, InteractionOrder->{QGR,-1}, Description->"Reduced Planck mass"},
|
---|
61 | M32 == { TeX->Subscript[M,3/2], ParameterType->External, ComplexParameter->False, Value->1*^-13, ParameterName -> MM32,
|
---|
62 | BlockName->SMINPUTS, OrderBlock->11, Description->"Gravitino mass"}
|
---|
63 | };
|
---|
64 |
|
---|
65 | (* ************************** *)
|
---|
66 | (* ***** Lagrangian ***** *)
|
---|
67 | (* ************************** *)
|
---|
68 |
|
---|
69 | lagra:=Module[{lc, lv ,lw, lmssm, lgld, lgrv, JJ, sp,lor},
|
---|
70 | Print[Style["Preprocessing the MSSM Lagrangian...",Green,Bold]];
|
---|
71 | lc = Plus@@( GrassmannExpand[#] &/@ (List @@ CSFKineticTerms[]) );
|
---|
72 | lv = Plus@@( GrassmannExpand[#] &/@ (List @@ VSFKineticTerms[]) );
|
---|
73 | lw = Plus@@( GrassmannExpand[#] &/@ (List @@ Expand[SPot+HC[SPot]]));
|
---|
74 | lw = lw/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
|
---|
75 |
|
---|
76 | JJ = SuperCurrent[lv,lc,lw, sp, lor];
|
---|
77 |
|
---|
78 | Print[Style["Computing the MSSM Lagrangian...",Green,Bold]];
|
---|
79 | lmssm = Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ Tonc[lc]) ) +
|
---|
80 | Plus@@( Theta2Component[#] &/@ (List @@ Tonc[lv+lw]) ) +
|
---|
81 | Plus@@( Thetabar2Component[#] &/@ (List @@ Tonc[lv+lw]) ) +
|
---|
82 | LSoft;
|
---|
83 | lmssm = ToDirac[SolveEqMotionF[SolveEqMotionD[lmssm]]] + LFeynmanGFix;
|
---|
84 |
|
---|
85 | Print[Style["Computing the gravitino Lagrangian...",Green,Bold]];
|
---|
86 | lgrv = ToDirac[GrassmannExpand[1/(2 MP) Ueps[sp,sp2] nc[GRw[sp2, lor], JJ]]];
|
---|
87 | lgrv = lgrv + HC[lgrv];
|
---|
88 |
|
---|
89 | Print[Style["Computing the goldstino Lagrangian...",Green,Bold]];
|
---|
90 | lgld = ToDirac[GrassmannExpand[-1/(Sqrt[6] M32 MP) Ueps[sp,sp2] nc[del[GLDw [sp2], lor], JJ]]];
|
---|
91 | lgld = lgld + HC[lgld];
|
---|
92 |
|
---|
93 | {lmssm,lgrv,lgld}];
|
---|