1 | (* ****************************************************************** *)
|
---|
2 | (* ***** ***** *)
|
---|
3 | (* ***** FeynRules model file supplementing the reduced SM ***** *)
|
---|
4 | (* ***** with a type-II see-saw ***** *)
|
---|
5 | (* ***** ***** *)
|
---|
6 | (* ***** Author: Benjamin Fuks ***** *)
|
---|
7 | (* ***** ***** *)
|
---|
8 | (* ****************************************************************** *)
|
---|
9 |
|
---|
10 | (* ************************** *)
|
---|
11 | (* ***** Setup ***** *)
|
---|
12 | (* ************************** *)
|
---|
13 | M$ModelName = "TypeII_IH";
|
---|
14 | M$Information = { Authors -> {"B. Fuks"}, Version -> "1.1", Date -> "18.11.2019" };
|
---|
15 | FeynmanGauge = True;
|
---|
16 |
|
---|
17 |
|
---|
18 | (* ************************** *)
|
---|
19 | (* ***** Change log ***** *)
|
---|
20 | (* ************************** *)
|
---|
21 |
|
---|
22 | (* 08.11.19 - v1.0: first version *)
|
---|
23 | (* 18.11.19 - v1.1: Changing the name of the LH block for vevD (cannot be vevd too) *)
|
---|
24 |
|
---|
25 |
|
---|
26 | (* ************************** *)
|
---|
27 | (* **** Particle classes **** *)
|
---|
28 | (* ************************** *)
|
---|
29 | M$ClassesDescription = {
|
---|
30 | (* Fermions: physical fields *)
|
---|
31 | F[1] == {
|
---|
32 | ClassName -> vi, ClassMembers -> {v1,v2,v3}, Indices -> {Index[Generation]}, FlavorIndex -> Generation,
|
---|
33 | SelfConjugate -> True, Mass -> {Mvi, {Mv1, Internal}, {Mv2, Internal}, {Mv3, 0.05*^-9} }, Width -> 0,
|
---|
34 | PDG -> {12,14,16}
|
---|
35 | },
|
---|
36 |
|
---|
37 | (* Fermions: unphysical fields *)
|
---|
38 | F[11] == {
|
---|
39 | ClassName -> LL, Unphysical -> True, Indices -> {Index[SU2D], Index[Generation]}, FlavorIndex -> SU2D,
|
---|
40 | SelfConjugate -> False, QuantumNumbers -> {Y->-1/2},
|
---|
41 | Definitions -> {
|
---|
42 | LL[sp1_,1,ff_] :> Module[{sp2,ff2}, PMNS[ff,ff2] ProjM[sp1,sp2] vi[sp2,ff2]],
|
---|
43 | LL[sp1_,2,ff_] :> Module[{sp2}, ProjM[sp1,sp2] l[sp2,ff]]
|
---|
44 | }
|
---|
45 | },
|
---|
46 |
|
---|
47 | (* Higgs: unphysical scalars *)
|
---|
48 | S[11] == {
|
---|
49 | ClassName -> Phi, Unphysical -> True, Indices -> {Index[SU2D]}, FlavorIndex -> SU2D,
|
---|
50 | SelfConjugate -> False, QuantumNumbers -> {Y -> 1/2},
|
---|
51 | Definitions -> {
|
---|
52 | Phi[1] -> vev/Sqrt[vev^2+2*vevD^2] GP - Sqrt[2] vevD/Sqrt[vev^2+2*vevD^2] DP,
|
---|
53 | Phi[2] -> 1/Sqrt[2](vev + cxi H - sxi D0 + I vev/Sqrt[vev^2+4*vevD^2] G0 - 2 I vevD/Sqrt[vev^2+4*vevD^2] chi)
|
---|
54 | }
|
---|
55 | },
|
---|
56 | S[12] == {
|
---|
57 | ClassName -> hatD, Unphysical -> True, Indices-> {Index[SU2W]}, FlavorIndex->SU2W,
|
---|
58 | SelfConjugate -> False, QuantumNumbers -> {Y->1},
|
---|
59 | Definitions -> {
|
---|
60 | hatD[1] -> 1/2 (vevD + sxi*H + cxi*D0 + 2 I vevD/Sqrt[vev^2+4*vevD^2] G0 + I vev/Sqrt[vev^2+4*vevD^2] chi) \
|
---|
61 | + 1/Sqrt[2] DPP,
|
---|
62 | hatD[2] -> -I/2 (vevD + sxi*H + cxi*D0 + 2 I vevD/Sqrt[vev^2+4*vevD^2] G0 + I vev/Sqrt[vev^2+4*vevD^2] chi) \
|
---|
63 | + I/Sqrt[2] DPP,
|
---|
64 | hatD[3] -> Sqrt[2] vevD/Sqrt[vev^2+2*vevD^2] GP + vev/Sqrt[vev^2+2*vevD^2] DP
|
---|
65 | }
|
---|
66 | },
|
---|
67 |
|
---|
68 | (* Higgs: physical scalars *)
|
---|
69 | S[4] == {
|
---|
70 | ClassName -> D0, SelfConjugate -> True, Mass -> {MD0, 500.}, Width -> {WD0, 1.017718*^-5}, PDG -> 44
|
---|
71 | },
|
---|
72 | S[5] == {
|
---|
73 | ClassName -> DP, SelfConjugate -> False, Mass -> {MDP, 503.}, Width -> {WDP, 1.017090*^-5}, PDG -> 38,
|
---|
74 | ParticleName -> "D+", AntiParticleName -> "D-", QuantumNumbers -> {Q->1}
|
---|
75 | },
|
---|
76 | S[6] == {
|
---|
77 | ClassName -> DPP, SelfConjugate -> False, Mass -> {MDPP,502.}, Width -> {WDPP,1.011029*^-5}, PDG -> 61,
|
---|
78 | ParticleName -> "D++", AntiParticleName -> "D--", QuantumNumbers -> {Q->2}
|
---|
79 | },
|
---|
80 | S[7] == {
|
---|
81 | ClassName -> chi, SelfConjugate -> True, Mass -> {Mchi,Internal}, Width -> {Wchi,1.017817*^-5}, PDG -> 62
|
---|
82 | }
|
---|
83 | };
|
---|
84 |
|
---|
85 |
|
---|
86 | (* ************************** *)
|
---|
87 | (* ***** Parameters ***** *)
|
---|
88 | (* ************************** *)
|
---|
89 | M$Parameters = {
|
---|
90 | (* PMNS matrix *)
|
---|
91 | th12 == {
|
---|
92 | ParameterType -> External, Value -> 0.59, TeX -> Subscript[\[Theta], 12],
|
---|
93 | BlockName -> PMNS, OrderBlock -> 1, Description -> "Solar mixing angle - theta12"
|
---|
94 | },
|
---|
95 | th23 == {
|
---|
96 | ParameterType -> External, Value -> 0.87, TeX -> Subscript[\[Theta], 23],
|
---|
97 | BlockName -> PMNS, OrderBlock -> 2, Description -> "Atmospheric mixing angle - theta23"
|
---|
98 | },
|
---|
99 | th13 == {
|
---|
100 | ParameterType -> External, Value -> 0.15, TeX -> Subscript[\[Theta], 13],
|
---|
101 | BlockName -> PMNS, OrderBlock -> 3, Description -> "Reactor mixing angle - theta_13"
|
---|
102 | },
|
---|
103 | delCP == {
|
---|
104 | ParameterType -> External, Value -> 0 (* 3.8 *), TeX -> Subscript[\[Delta], CP],
|
---|
105 | BlockName -> PMNS, OrderBlock -> 4, Description -> "Leptonic Dirac CP phase"
|
---|
106 | },
|
---|
107 | phiM1 == {
|
---|
108 | ParameterType -> External, Value -> 0.0, TeX -> Subscript[\[Phi], 1],
|
---|
109 | BlockName -> PMNS, OrderBlock -> 5, Description -> "1st Majorana CP phase"
|
---|
110 | },
|
---|
111 | phiM2 == {
|
---|
112 | ParameterType -> External, Value -> 0.0, TeX -> Subscript[\[Phi], 2],
|
---|
113 | BlockName -> PMNS, OrderBlock -> 6, Description -> "2nd Majorana CP phase"
|
---|
114 | },
|
---|
115 |
|
---|
116 | (* Neutrino mass differences *)
|
---|
117 | dmsq21 == {
|
---|
118 | ParameterType -> External, Value -> 7.39*^-23, TeX -> Subsuperscript["\[CapitalDelta]m",21,2],
|
---|
119 | BlockName -> MNU, OrderBlock -> 2, Description -> "Solar mass splitting squared"
|
---|
120 | },
|
---|
121 | dmsq32 == {
|
---|
122 | ParameterType -> External, Value -> -2.5*^-21, TeX -> Subsuperscript["\[CapitalDelta]m",32,2],
|
---|
123 | BlockName -> MNU, OrderBlock -> 3, Description -> "Atmospheric mass splitting squared"
|
---|
124 | },
|
---|
125 |
|
---|
126 | (* PMNS mixing matrix defined from oscillation data *)
|
---|
127 | PMNS == {
|
---|
128 | ParameterType -> Internal, Indices -> {Index[Generation],Index[Generation]}, TeX -> Superscript[V, PMNS],
|
---|
129 | ComplexParameter -> True,
|
---|
130 | Value -> {
|
---|
131 | PMNS[1,1] -> Cos[th12]*Cos[th13],
|
---|
132 | PMNS[1,2] -> Cos[th13]*Sin[th12]*Exp[I/2 phiM1],
|
---|
133 | PMNS[1,3] -> Sin[th13]*Exp[I (phiM2/2 - delCP)],
|
---|
134 | PMNS[2,1] -> -Cos[th23]*Sin[th12] - Cos[th12]*Sin[th13]*Sin[th23]*Exp[I delCP],
|
---|
135 | PMNS[2,2] -> (Cos[th12]*Cos[th23] - Sin[th12]*Sin[th13]*Sin[th23]*Exp[I delCP])*Exp[I/2 phiM1],
|
---|
136 | PMNS[2,3] -> Cos[th13]*Sin[th23]*Exp[I/2 phiM2],
|
---|
137 | PMNS[3,1] -> Sin[th12]*Sin[th23] - Cos[th12]*Cos[th23]*Sin[th13]*Exp[I delCP],
|
---|
138 | PMNS[3,2] -> (-Cos[th23]*Sin[th12]*Sin[th13]*Exp[I delCP] - Cos[th12]*Sin[th23])*Exp[I/2 phiM1],
|
---|
139 | PMNS[3,3] -> Cos[th13]*Cos[th23]*Exp[I/2 phiM2]
|
---|
140 | }
|
---|
141 | },
|
---|
142 |
|
---|
143 | (* Higgs sector: external parameters *)
|
---|
144 | lamHD1 == {
|
---|
145 | ParameterType -> External, Value -> 0.10, InteractionOrder -> {QED,2},
|
---|
146 | BlockName -> QUARTICS, OrderBlock -> 1, TeX -> Subscript[\[Lambda], "h\[CapitalDelta]1"]
|
---|
147 | },
|
---|
148 | lamD1 == {
|
---|
149 | ParameterType -> External, Value -> 0.11, InteractionOrder -> {QED,2},
|
---|
150 | BlockName -> QUARTICS, OrderBlock -> 2, TeX -> Subscript[\[Lambda], "\[CapitalDelta]1"]
|
---|
151 | },
|
---|
152 | vevD == {
|
---|
153 | ParameterType -> External, Value -> 1.0*^-7, InteractionOrder -> { QED,-1},
|
---|
154 | BlockName -> VEVDELTA, OrderBlock -> 1, TeX -> Subscript[v,\[CapitalDelta]]
|
---|
155 | },
|
---|
156 |
|
---|
157 | (* Neutrino masses and Yukawas *)
|
---|
158 | Mv1 == { ParameterType -> Internal, Value -> Sqrt[Mv3^2 - dmsq32 - dmsq21], TeX -> Subscript[m, "\[Nu]1"] },
|
---|
159 | Mv2 == { ParameterType -> Internal, Value -> Sqrt[Mv3^2 - dmsq21], TeX -> Subscript[m, "\[Nu]2"] },
|
---|
160 | yDL == {
|
---|
161 | ParameterType -> Internal, Indices -> {Index[Generation], Index[Generation]},
|
---|
162 | InteractionOrder -> {QED, 1}, TeX -> Subscript[Y, \[CapitalDelta]], ComplexParameter -> True,
|
---|
163 | Value -> {
|
---|
164 | yDL[1,1] -> Conjugate[PMNS[1,1]*PMNS[1,1]*Mv1+PMNS[1,2]*PMNS[1,2]*Mv2+PMNS[1,3]*PMNS[1,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
165 | yDL[1,2] -> Conjugate[PMNS[1,1]*PMNS[2,1]*Mv1+PMNS[1,2]*PMNS[2,2]*Mv2+PMNS[1,3]*PMNS[2,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
166 | yDL[1,3] -> Conjugate[PMNS[1,1]*PMNS[3,1]*Mv1+PMNS[1,2]*PMNS[3,2]*Mv2+PMNS[1,3]*PMNS[3,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
167 |
|
---|
168 | yDL[2,1] -> Conjugate[PMNS[2,1]*PMNS[1,1]*Mv1+PMNS[2,2]*PMNS[1,2]*Mv2+PMNS[2,3]*PMNS[1,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
169 | yDL[2,2] -> Conjugate[PMNS[2,1]*PMNS[2,1]*Mv1+PMNS[2,2]*PMNS[2,2]*Mv2+PMNS[2,3]*PMNS[2,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
170 | yDL[2,3] -> Conjugate[PMNS[2,1]*PMNS[3,1]*Mv1+PMNS[2,2]*PMNS[3,2]*Mv2+PMNS[2,3]*PMNS[3,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
171 |
|
---|
172 | yDL[3,1] -> Conjugate[PMNS[3,1]*PMNS[1,1]*Mv1+PMNS[3,2]*PMNS[1,2]*Mv2+PMNS[3,3]*PMNS[1,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
173 | yDL[3,2] -> Conjugate[PMNS[3,1]*PMNS[2,1]*Mv1+PMNS[3,2]*PMNS[2,2]*Mv2+PMNS[3,3]*PMNS[2,3]*Mv3]/(Sqrt[2]*vevD),
|
---|
174 | yDL[3,3] -> Conjugate[PMNS[3,1]*PMNS[3,1]*Mv1+PMNS[3,2]*PMNS[3,2]*Mv2+PMNS[3,3]*PMNS[3,3]*Mv3]/(Sqrt[2]*vevD)
|
---|
175 | }
|
---|
176 | },
|
---|
177 |
|
---|
178 | (* Higgs sector: internal parameters *)
|
---|
179 | mD2 == {
|
---|
180 | ParameterType -> Internal, Value -> MDPP^2 - lamHD1/2*vev^2 - lamD1*vevD^2,
|
---|
181 | TeX -> Subsuperscript[m,\[CapitalDelta],2]
|
---|
182 | },
|
---|
183 | lamHD2 == {
|
---|
184 | ParameterType -> Internal, TeX -> Subscript[ \[Lambda], "h\[CapitalDelta]2"], InteractionOrder -> {QED,2},
|
---|
185 | Value -> 2*(lamD1 - lamHD1 - (2*MDP^2)/(vev^2 + 2*vevD^2) -
|
---|
186 | (MD0^2 - 8*MDP^2 + 4*MDPP^2 + MH^2 + (lamD1 - lamHD1)*vev^2)/(vev^2 + 4*vevD^2)) -
|
---|
187 | Sqrt[(-4*MD0^2*vev^6 + 24*MDP^2*vev^6 - 16*MDPP^2*vev^6 - 4*MH^2*vev^6 - 16*MD0^2*vev^4*vevD^2 +
|
---|
188 | 80*MDP^2*vev^4*vevD^2 - 64*MDPP^2*vev^4*vevD^2 - 16*MH^2*vev^4*vevD^2 + 16*lamD1*vev^6*vevD^2 -
|
---|
189 | 16*lamHD1*vev^6*vevD^2 - 16*MD0^2*vev^2*vevD^4 + 64*MDP^2*vev^2*vevD^4 - 64*MDPP^2*vev^2*vevD^4 -
|
---|
190 | 16*MH^2*vev^2*vevD^4 + 64*lamD1*vev^4*vevD^4 - 64*lamHD1*vev^4*vevD^4 + 64*lamD1*vev^2*vevD^6 -
|
---|
191 | 64*lamHD1*vev^2*vevD^6)^2 - 4*(-vev^8 - 8*vev^6*vevD^2 - 20*vev^4*vevD^4 - 16*vev^2*vevD^6)*
|
---|
192 | (48*MD0^2*MDP^2*vev^4 - 144*MDP^4*vev^4 - 32*MD0^2*MDPP^2*vev^4 + 192*MDP^2*MDPP^2*vev^4 -
|
---|
193 | 64*MDPP^4*vev^4 - 16*MD0^2*MH^2*vev^4 + 48*MDP^2*MH^2*vev^4 - 32*MDPP^2*MH^2*vev^4 +
|
---|
194 | 96*MD0^2*MDP^2*vev^2*vevD^2 - 64*MDP^4*vev^2*vevD^2 - 128*MD0^2*MDPP^2*vev^2*vevD^2 +
|
---|
195 | 384*MDP^2*MDPP^2*vev^2*vevD^2 - 256*MDPP^4*vev^2*vevD^2 - 64*MD0^2*MH^2*vev^2*vevD^2 +
|
---|
196 | 96*MDP^2*MH^2*vev^2*vevD^2 - 128*MDPP^2*MH^2*vev^2*vevD^2 + 32*lamD1*MD0^2*vev^4*vevD^2 -
|
---|
197 | 192*lamD1*MDP^2*vev^4*vevD^2 + 64*lamHD1*MDP^2*vev^4*vevD^2 + 128*lamD1*MDPP^2*vev^4*vevD^2 +
|
---|
198 | 32*lamD1*MH^2*vev^4*vevD^2 - 16*lamHD1^2*vev^6*vevD^2 - 128*MD0^2*MDPP^2*vevD^4 - 256*MDPP^4*vevD^4 -
|
---|
199 | 64*MD0^2*MH^2*vevD^4 - 128*MDPP^2*MH^2*vevD^4 + 128*lamD1*MD0^2*vev^2*vevD^4 -
|
---|
200 | 384*lamD1*MDP^2*vev^2*vevD^4 + 128*lamHD1*MDP^2*vev^2*vevD^4 + 512*lamD1*MDPP^2*vev^2*vevD^4 +
|
---|
201 | 128*lamD1*MH^2*vev^2*vevD^4 - 64*lamD1^2*vev^4*vevD^4 - 64*lamHD1^2*vev^4*vevD^4 +
|
---|
202 | 128*lamD1*MD0^2*vevD^6 + 512*lamD1*MDPP^2*vevD^6 + 128*lamD1*MH^2*vevD^6 - 256*lamD1^2*vev^2*vevD^6 -
|
---|
203 | 64*lamHD1^2*vev^2*vevD^6 - 256*lamD1^2*vevD^8)]/(2*(vev^2 + 4*vevD^2)*(vev^3 + 2*vev*vevD^2)^2)
|
---|
204 | },
|
---|
205 | lamD2 == {
|
---|
206 | ParameterType -> Internal, TeX -> Subscript[\[Lambda], "\[CapitalDelta]2"], InteractionOrder -> {QED,2},
|
---|
207 | Value -> vev^2*MDP^2/(vevD^2(vev^2+2vevD^2)) - MDPP^2/vevD^2 - vev^2 lamHD2/(4 vevD^2)
|
---|
208 | },
|
---|
209 | muHD == {
|
---|
210 | ParameterType -> Internal, TeX -> Subscript[\[Mu], "h\[CapitalDelta]"], InteractionOrder -> {QED,2},
|
---|
211 | Value -> Sqrt[2]*vevD*(1/vev^2*(mD2+(lamHD1+lamHD2)/2*vev^2) + (lamD1+lamD2)*vevD^2/vev^2)
|
---|
212 | },
|
---|
213 | lamH == {
|
---|
214 | ParameterType -> Internal, TeX -> Subscript[\[Lambda],H], InteractionOrder -> {QED,2},
|
---|
215 | Value -> MH^2/(2*vev^2) + 1/2 vevD^2/(vev^2 + 2 vevD^2) (-4*MDP^2 + (2*lamHD1+lamHD2)*(vev^2+2*vevD^2))^2/(12*MDP^2*vev^2-(vev^2+2*vevD^2)*(8*MDPP^2+4*MH^2+lamHD2*vev^2 - 8*lamD1*vevD^2))
|
---|
216 | },
|
---|
217 | muH2 == {
|
---|
218 | ParameterType -> Internal, TeX -> Superscript[Subscript[\[Mu],H],2],
|
---|
219 | Value -> lamH*vev^2 - vevD^2/(2 vev^2)*((lamHD1+lamHD2)*vev^2+4*mD2) - 2 vevD^4/vev^2*(lamD1+lamD2)
|
---|
220 | },
|
---|
221 |
|
---|
222 | (* Internal masses and mixings *)
|
---|
223 | Mchi == {
|
---|
224 | ParameterType -> Internal, TeX -> Subscript[M,\[Chi]],
|
---|
225 | Value -> Sqrt[(vev^2+4 vevD^2)/vev^2 (MDPP^2 + lamHD2 vev^2/2 + lamD2 vevD^2)]
|
---|
226 | },
|
---|
227 | t2xi == {
|
---|
228 | ParameterType -> Internal, TeX -> Subscript[t,"2\[Xi]"],
|
---|
229 | Value -> (4*vev*vevD*(-4*MDP^2 + (2*lamHD1 + lamHD2)*(vev^2 + 2*vevD^2)))/
|
---|
230 | (-12*MDP^2*vev^2 + (vev^2 + 2*vevD^2)*(8*MDPP^2 + (8*lamH + lamHD2)*vev^2 - 8*lamD1*vevD^2))
|
---|
231 | },
|
---|
232 | cxi == {
|
---|
233 | ParameterType -> Internal, TeX -> Subscript[c,\[Xi]],
|
---|
234 | Value -> Cos[1/2 ArcTan[t2xi]]
|
---|
235 | },
|
---|
236 | sxi == {
|
---|
237 | ParameterType -> Internal, TeX -> Subscript[s,\[Xi]],
|
---|
238 | Value -> Sin[1/2 ArcTan[t2xi]]
|
---|
239 | }
|
---|
240 |
|
---|
241 | };
|
---|
242 |
|
---|
243 |
|
---|
244 | (* ************************** *)
|
---|
245 | (* ***** Lagrangian ***** *)
|
---|
246 | (* ************************** *)
|
---|
247 | LScalar := \
|
---|
248 | DC[Phibar[ii],mu] DC[Phi[ii],mu] + DC[hatDbar[ii],mu] DC[hatD[ii],mu] \
|
---|
249 | + muH2 Phibar[ii] Phi[ii] \
|
---|
250 | - mD2 hatDbar[ii] hatD[ii] \
|
---|
251 | - lamH Phibar[ii] Phi[ii] Phibar[jj] Phi[jj] \
|
---|
252 | - lamD1 hatDbar[ii] hatD[ii] hatDbar[jj] hatD[jj] \
|
---|
253 | - lamD2 (hatDbar[ii] hatD[ii] hatDbar[jj] hatD[jj] - 1/2 hatDbar[ii] hatD[jj] hatDbar[ii] hatD[jj]) \
|
---|
254 | - lamHD1 Phibar[ii] Phi[ii] hatD[jj] hatDbar[jj] \
|
---|
255 | - lamHD2/2 (hatD[ii] hatDbar[ii] Phibar[jj] Phi[jj] + I Eps[ii,jj,mm] PauliSigma[mm,ip,jp] Phibar[ip] Phi[jp]
|
---|
256 | hatD[ii] hatDbar[jj] ) \
|
---|
257 | + muHD/Sqrt[2] Phibar[ii] hatD[mm] PauliSigma[mm,ii,jj] Phibar[jp] Eps[jj,jp] \
|
---|
258 | + muHD/Sqrt[2] Phi[jj] hatDbar[mm] PauliSigma[mm,ii,jj] Phi[jp] Eps[ii,jp];
|
---|
259 |
|
---|
260 | LYukawa := Block[{yuk},
|
---|
261 | yuk:=
|
---|
262 | - yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] Phi[ii] \
|
---|
263 | - yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] Phi[ii] \
|
---|
264 | - Sum[yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] Phibar[jj] Eps[ii, jj],{ii,2},{jj,2}] \
|
---|
265 | - Sum[yDL[ff1, ff2]/Sqrt[2] Eps[ip,ii] CC[LLbar][sp, ii, ff1].LL[sp, jj, ff2] hatD[mm] PauliSigma[mm,ip,jj],
|
---|
266 | {ii,2},{ip,2},{jj,2},{mm,3}];
|
---|
267 | yuk+HC[yuk]
|
---|
268 | ];
|
---|
269 |
|
---|
270 | LType2:= {LGauge, LFermions, LScalar, LYukawa, LGhost};
|
---|
271 |
|
---|