TypeIISeesaw: type_ii_ih.fr

File type_ii_ih.fr, 13.0 KB (added by Benjamin Fuks, 5 years ago)

version 1.1

Line 
1(* ****************************************************************** *)
2(* ***** ***** *)
3(* ***** FeynRules model file supplementing the reduced SM ***** *)
4(* ***** with a type-II see-saw ***** *)
5(* ***** ***** *)
6(* ***** Author: Benjamin Fuks ***** *)
7(* ***** ***** *)
8(* ****************************************************************** *)
9
10(* ************************** *)
11(* ***** Setup ***** *)
12(* ************************** *)
13M$ModelName = "TypeII_IH";
14M$Information = { Authors -> {"B. Fuks"}, Version -> "1.1", Date -> "18.11.2019" };
15FeynmanGauge = True;
16
17
18(* ************************** *)
19(* ***** Change log ***** *)
20(* ************************** *)
21
22(* 08.11.19 - v1.0: first version *)
23(* 18.11.19 - v1.1: Changing the name of the LH block for vevD (cannot be vevd too) *)
24
25
26(* ************************** *)
27(* **** Particle classes **** *)
28(* ************************** *)
29M$ClassesDescription = {
30(* Fermions: physical fields *)
31 F[1] == {
32 ClassName -> vi, ClassMembers -> {v1,v2,v3}, Indices -> {Index[Generation]}, FlavorIndex -> Generation,
33 SelfConjugate -> True, Mass -> {Mvi, {Mv1, Internal}, {Mv2, Internal}, {Mv3, 0.05*^-9} }, Width -> 0,
34 PDG -> {12,14,16}
35 },
36
37 (* Fermions: unphysical fields *)
38 F[11] == {
39 ClassName -> LL, Unphysical -> True, Indices -> {Index[SU2D], Index[Generation]}, FlavorIndex -> SU2D,
40 SelfConjugate -> False, QuantumNumbers -> {Y->-1/2},
41 Definitions -> {
42 LL[sp1_,1,ff_] :> Module[{sp2,ff2}, PMNS[ff,ff2] ProjM[sp1,sp2] vi[sp2,ff2]],
43 LL[sp1_,2,ff_] :> Module[{sp2}, ProjM[sp1,sp2] l[sp2,ff]]
44 }
45 },
46
47 (* Higgs: unphysical scalars *)
48 S[11] == {
49 ClassName -> Phi, Unphysical -> True, Indices -> {Index[SU2D]}, FlavorIndex -> SU2D,
50 SelfConjugate -> False, QuantumNumbers -> {Y -> 1/2},
51 Definitions -> {
52 Phi[1] -> vev/Sqrt[vev^2+2*vevD^2] GP - Sqrt[2] vevD/Sqrt[vev^2+2*vevD^2] DP,
53 Phi[2] -> 1/Sqrt[2](vev + cxi H - sxi D0 + I vev/Sqrt[vev^2+4*vevD^2] G0 - 2 I vevD/Sqrt[vev^2+4*vevD^2] chi)
54 }
55 },
56 S[12] == {
57 ClassName -> hatD, Unphysical -> True, Indices-> {Index[SU2W]}, FlavorIndex->SU2W,
58 SelfConjugate -> False, QuantumNumbers -> {Y->1},
59 Definitions -> {
60 hatD[1] -> 1/2 (vevD + sxi*H + cxi*D0 + 2 I vevD/Sqrt[vev^2+4*vevD^2] G0 + I vev/Sqrt[vev^2+4*vevD^2] chi) \
61 + 1/Sqrt[2] DPP,
62 hatD[2] -> -I/2 (vevD + sxi*H + cxi*D0 + 2 I vevD/Sqrt[vev^2+4*vevD^2] G0 + I vev/Sqrt[vev^2+4*vevD^2] chi) \
63 + I/Sqrt[2] DPP,
64 hatD[3] -> Sqrt[2] vevD/Sqrt[vev^2+2*vevD^2] GP + vev/Sqrt[vev^2+2*vevD^2] DP
65 }
66 },
67
68 (* Higgs: physical scalars *)
69 S[4] == {
70 ClassName -> D0, SelfConjugate -> True, Mass -> {MD0, 500.}, Width -> {WD0, 1.017718*^-5}, PDG -> 44
71 },
72 S[5] == {
73 ClassName -> DP, SelfConjugate -> False, Mass -> {MDP, 503.}, Width -> {WDP, 1.017090*^-5}, PDG -> 38,
74 ParticleName -> "D+", AntiParticleName -> "D-", QuantumNumbers -> {Q->1}
75 },
76 S[6] == {
77 ClassName -> DPP, SelfConjugate -> False, Mass -> {MDPP,502.}, Width -> {WDPP,1.011029*^-5}, PDG -> 61,
78 ParticleName -> "D++", AntiParticleName -> "D--", QuantumNumbers -> {Q->2}
79 },
80 S[7] == {
81 ClassName -> chi, SelfConjugate -> True, Mass -> {Mchi,Internal}, Width -> {Wchi,1.017817*^-5}, PDG -> 62
82 }
83};
84
85
86(* ************************** *)
87(* ***** Parameters ***** *)
88(* ************************** *)
89M$Parameters = {
90 (* PMNS matrix *)
91 th12 == {
92 ParameterType -> External, Value -> 0.59, TeX -> Subscript[\[Theta], 12],
93 BlockName -> PMNS, OrderBlock -> 1, Description -> "Solar mixing angle - theta12"
94 },
95 th23 == {
96 ParameterType -> External, Value -> 0.87, TeX -> Subscript[\[Theta], 23],
97 BlockName -> PMNS, OrderBlock -> 2, Description -> "Atmospheric mixing angle - theta23"
98 },
99 th13 == {
100 ParameterType -> External, Value -> 0.15, TeX -> Subscript[\[Theta], 13],
101 BlockName -> PMNS, OrderBlock -> 3, Description -> "Reactor mixing angle - theta_13"
102 },
103 delCP == {
104 ParameterType -> External, Value -> 0 (* 3.8 *), TeX -> Subscript[\[Delta], CP],
105 BlockName -> PMNS, OrderBlock -> 4, Description -> "Leptonic Dirac CP phase"
106 },
107 phiM1 == {
108 ParameterType -> External, Value -> 0.0, TeX -> Subscript[\[Phi], 1],
109 BlockName -> PMNS, OrderBlock -> 5, Description -> "1st Majorana CP phase"
110 },
111 phiM2 == {
112 ParameterType -> External, Value -> 0.0, TeX -> Subscript[\[Phi], 2],
113 BlockName -> PMNS, OrderBlock -> 6, Description -> "2nd Majorana CP phase"
114 },
115
116 (* Neutrino mass differences *)
117 dmsq21 == {
118 ParameterType -> External, Value -> 7.39*^-23, TeX -> Subsuperscript["\[CapitalDelta]m",21,2],
119 BlockName -> MNU, OrderBlock -> 2, Description -> "Solar mass splitting squared"
120 },
121 dmsq32 == {
122 ParameterType -> External, Value -> -2.5*^-21, TeX -> Subsuperscript["\[CapitalDelta]m",32,2],
123 BlockName -> MNU, OrderBlock -> 3, Description -> "Atmospheric mass splitting squared"
124 },
125
126 (* PMNS mixing matrix defined from oscillation data *)
127 PMNS == {
128 ParameterType -> Internal, Indices -> {Index[Generation],Index[Generation]}, TeX -> Superscript[V, PMNS],
129 ComplexParameter -> True,
130 Value -> {
131 PMNS[1,1] -> Cos[th12]*Cos[th13],
132 PMNS[1,2] -> Cos[th13]*Sin[th12]*Exp[I/2 phiM1],
133 PMNS[1,3] -> Sin[th13]*Exp[I (phiM2/2 - delCP)],
134 PMNS[2,1] -> -Cos[th23]*Sin[th12] - Cos[th12]*Sin[th13]*Sin[th23]*Exp[I delCP],
135 PMNS[2,2] -> (Cos[th12]*Cos[th23] - Sin[th12]*Sin[th13]*Sin[th23]*Exp[I delCP])*Exp[I/2 phiM1],
136 PMNS[2,3] -> Cos[th13]*Sin[th23]*Exp[I/2 phiM2],
137 PMNS[3,1] -> Sin[th12]*Sin[th23] - Cos[th12]*Cos[th23]*Sin[th13]*Exp[I delCP],
138 PMNS[3,2] -> (-Cos[th23]*Sin[th12]*Sin[th13]*Exp[I delCP] - Cos[th12]*Sin[th23])*Exp[I/2 phiM1],
139 PMNS[3,3] -> Cos[th13]*Cos[th23]*Exp[I/2 phiM2]
140 }
141 },
142
143 (* Higgs sector: external parameters *)
144 lamHD1 == {
145 ParameterType -> External, Value -> 0.10, InteractionOrder -> {QED,2},
146 BlockName -> QUARTICS, OrderBlock -> 1, TeX -> Subscript[\[Lambda], "h\[CapitalDelta]1"]
147 },
148 lamD1 == {
149 ParameterType -> External, Value -> 0.11, InteractionOrder -> {QED,2},
150 BlockName -> QUARTICS, OrderBlock -> 2, TeX -> Subscript[\[Lambda], "\[CapitalDelta]1"]
151 },
152 vevD == {
153 ParameterType -> External, Value -> 1.0*^-7, InteractionOrder -> { QED,-1},
154 BlockName -> VEVDELTA, OrderBlock -> 1, TeX -> Subscript[v,\[CapitalDelta]]
155 },
156
157 (* Neutrino masses and Yukawas *)
158 Mv1 == { ParameterType -> Internal, Value -> Sqrt[Mv3^2 - dmsq32 - dmsq21], TeX -> Subscript[m, "\[Nu]1"] },
159 Mv2 == { ParameterType -> Internal, Value -> Sqrt[Mv3^2 - dmsq21], TeX -> Subscript[m, "\[Nu]2"] },
160 yDL == {
161 ParameterType -> Internal, Indices -> {Index[Generation], Index[Generation]},
162 InteractionOrder -> {QED, 1}, TeX -> Subscript[Y, \[CapitalDelta]], ComplexParameter -> True,
163 Value -> {
164 yDL[1,1] -> Conjugate[PMNS[1,1]*PMNS[1,1]*Mv1+PMNS[1,2]*PMNS[1,2]*Mv2+PMNS[1,3]*PMNS[1,3]*Mv3]/(Sqrt[2]*vevD),
165 yDL[1,2] -> Conjugate[PMNS[1,1]*PMNS[2,1]*Mv1+PMNS[1,2]*PMNS[2,2]*Mv2+PMNS[1,3]*PMNS[2,3]*Mv3]/(Sqrt[2]*vevD),
166 yDL[1,3] -> Conjugate[PMNS[1,1]*PMNS[3,1]*Mv1+PMNS[1,2]*PMNS[3,2]*Mv2+PMNS[1,3]*PMNS[3,3]*Mv3]/(Sqrt[2]*vevD),
167
168 yDL[2,1] -> Conjugate[PMNS[2,1]*PMNS[1,1]*Mv1+PMNS[2,2]*PMNS[1,2]*Mv2+PMNS[2,3]*PMNS[1,3]*Mv3]/(Sqrt[2]*vevD),
169 yDL[2,2] -> Conjugate[PMNS[2,1]*PMNS[2,1]*Mv1+PMNS[2,2]*PMNS[2,2]*Mv2+PMNS[2,3]*PMNS[2,3]*Mv3]/(Sqrt[2]*vevD),
170 yDL[2,3] -> Conjugate[PMNS[2,1]*PMNS[3,1]*Mv1+PMNS[2,2]*PMNS[3,2]*Mv2+PMNS[2,3]*PMNS[3,3]*Mv3]/(Sqrt[2]*vevD),
171
172 yDL[3,1] -> Conjugate[PMNS[3,1]*PMNS[1,1]*Mv1+PMNS[3,2]*PMNS[1,2]*Mv2+PMNS[3,3]*PMNS[1,3]*Mv3]/(Sqrt[2]*vevD),
173 yDL[3,2] -> Conjugate[PMNS[3,1]*PMNS[2,1]*Mv1+PMNS[3,2]*PMNS[2,2]*Mv2+PMNS[3,3]*PMNS[2,3]*Mv3]/(Sqrt[2]*vevD),
174 yDL[3,3] -> Conjugate[PMNS[3,1]*PMNS[3,1]*Mv1+PMNS[3,2]*PMNS[3,2]*Mv2+PMNS[3,3]*PMNS[3,3]*Mv3]/(Sqrt[2]*vevD)
175 }
176 },
177
178 (* Higgs sector: internal parameters *)
179 mD2 == {
180 ParameterType -> Internal, Value -> MDPP^2 - lamHD1/2*vev^2 - lamD1*vevD^2,
181 TeX -> Subsuperscript[m,\[CapitalDelta],2]
182 },
183 lamHD2 == {
184 ParameterType -> Internal, TeX -> Subscript[ \[Lambda], "h\[CapitalDelta]2"], InteractionOrder -> {QED,2},
185 Value -> 2*(lamD1 - lamHD1 - (2*MDP^2)/(vev^2 + 2*vevD^2) -
186 (MD0^2 - 8*MDP^2 + 4*MDPP^2 + MH^2 + (lamD1 - lamHD1)*vev^2)/(vev^2 + 4*vevD^2)) -
187 Sqrt[(-4*MD0^2*vev^6 + 24*MDP^2*vev^6 - 16*MDPP^2*vev^6 - 4*MH^2*vev^6 - 16*MD0^2*vev^4*vevD^2 +
188 80*MDP^2*vev^4*vevD^2 - 64*MDPP^2*vev^4*vevD^2 - 16*MH^2*vev^4*vevD^2 + 16*lamD1*vev^6*vevD^2 -
189 16*lamHD1*vev^6*vevD^2 - 16*MD0^2*vev^2*vevD^4 + 64*MDP^2*vev^2*vevD^4 - 64*MDPP^2*vev^2*vevD^4 -
190 16*MH^2*vev^2*vevD^4 + 64*lamD1*vev^4*vevD^4 - 64*lamHD1*vev^4*vevD^4 + 64*lamD1*vev^2*vevD^6 -
191 64*lamHD1*vev^2*vevD^6)^2 - 4*(-vev^8 - 8*vev^6*vevD^2 - 20*vev^4*vevD^4 - 16*vev^2*vevD^6)*
192 (48*MD0^2*MDP^2*vev^4 - 144*MDP^4*vev^4 - 32*MD0^2*MDPP^2*vev^4 + 192*MDP^2*MDPP^2*vev^4 -
193 64*MDPP^4*vev^4 - 16*MD0^2*MH^2*vev^4 + 48*MDP^2*MH^2*vev^4 - 32*MDPP^2*MH^2*vev^4 +
194 96*MD0^2*MDP^2*vev^2*vevD^2 - 64*MDP^4*vev^2*vevD^2 - 128*MD0^2*MDPP^2*vev^2*vevD^2 +
195 384*MDP^2*MDPP^2*vev^2*vevD^2 - 256*MDPP^4*vev^2*vevD^2 - 64*MD0^2*MH^2*vev^2*vevD^2 +
196 96*MDP^2*MH^2*vev^2*vevD^2 - 128*MDPP^2*MH^2*vev^2*vevD^2 + 32*lamD1*MD0^2*vev^4*vevD^2 -
197 192*lamD1*MDP^2*vev^4*vevD^2 + 64*lamHD1*MDP^2*vev^4*vevD^2 + 128*lamD1*MDPP^2*vev^4*vevD^2 +
198 32*lamD1*MH^2*vev^4*vevD^2 - 16*lamHD1^2*vev^6*vevD^2 - 128*MD0^2*MDPP^2*vevD^4 - 256*MDPP^4*vevD^4 -
199 64*MD0^2*MH^2*vevD^4 - 128*MDPP^2*MH^2*vevD^4 + 128*lamD1*MD0^2*vev^2*vevD^4 -
200 384*lamD1*MDP^2*vev^2*vevD^4 + 128*lamHD1*MDP^2*vev^2*vevD^4 + 512*lamD1*MDPP^2*vev^2*vevD^4 +
201 128*lamD1*MH^2*vev^2*vevD^4 - 64*lamD1^2*vev^4*vevD^4 - 64*lamHD1^2*vev^4*vevD^4 +
202 128*lamD1*MD0^2*vevD^6 + 512*lamD1*MDPP^2*vevD^6 + 128*lamD1*MH^2*vevD^6 - 256*lamD1^2*vev^2*vevD^6 -
203 64*lamHD1^2*vev^2*vevD^6 - 256*lamD1^2*vevD^8)]/(2*(vev^2 + 4*vevD^2)*(vev^3 + 2*vev*vevD^2)^2)
204 },
205 lamD2 == {
206 ParameterType -> Internal, TeX -> Subscript[\[Lambda], "\[CapitalDelta]2"], InteractionOrder -> {QED,2},
207 Value -> vev^2*MDP^2/(vevD^2(vev^2+2vevD^2)) - MDPP^2/vevD^2 - vev^2 lamHD2/(4 vevD^2)
208 },
209 muHD == {
210 ParameterType -> Internal, TeX -> Subscript[\[Mu], "h\[CapitalDelta]"], InteractionOrder -> {QED,2},
211 Value -> Sqrt[2]*vevD*(1/vev^2*(mD2+(lamHD1+lamHD2)/2*vev^2) + (lamD1+lamD2)*vevD^2/vev^2)
212 },
213 lamH == {
214 ParameterType -> Internal, TeX -> Subscript[\[Lambda],H], InteractionOrder -> {QED,2},
215 Value -> MH^2/(2*vev^2) + 1/2 vevD^2/(vev^2 + 2 vevD^2) (-4*MDP^2 + (2*lamHD1+lamHD2)*(vev^2+2*vevD^2))^2/(12*MDP^2*vev^2-(vev^2+2*vevD^2)*(8*MDPP^2+4*MH^2+lamHD2*vev^2 - 8*lamD1*vevD^2))
216 },
217 muH2 == {
218 ParameterType -> Internal, TeX -> Superscript[Subscript[\[Mu],H],2],
219 Value -> lamH*vev^2 - vevD^2/(2 vev^2)*((lamHD1+lamHD2)*vev^2+4*mD2) - 2 vevD^4/vev^2*(lamD1+lamD2)
220 },
221
222 (* Internal masses and mixings *)
223 Mchi == {
224 ParameterType -> Internal, TeX -> Subscript[M,\[Chi]],
225 Value -> Sqrt[(vev^2+4 vevD^2)/vev^2 (MDPP^2 + lamHD2 vev^2/2 + lamD2 vevD^2)]
226 },
227 t2xi == {
228 ParameterType -> Internal, TeX -> Subscript[t,"2\[Xi]"],
229 Value -> (4*vev*vevD*(-4*MDP^2 + (2*lamHD1 + lamHD2)*(vev^2 + 2*vevD^2)))/
230 (-12*MDP^2*vev^2 + (vev^2 + 2*vevD^2)*(8*MDPP^2 + (8*lamH + lamHD2)*vev^2 - 8*lamD1*vevD^2))
231 },
232 cxi == {
233 ParameterType -> Internal, TeX -> Subscript[c,\[Xi]],
234 Value -> Cos[1/2 ArcTan[t2xi]]
235 },
236 sxi == {
237 ParameterType -> Internal, TeX -> Subscript[s,\[Xi]],
238 Value -> Sin[1/2 ArcTan[t2xi]]
239 }
240
241};
242
243
244(* ************************** *)
245(* ***** Lagrangian ***** *)
246(* ************************** *)
247LScalar := \
248 DC[Phibar[ii],mu] DC[Phi[ii],mu] + DC[hatDbar[ii],mu] DC[hatD[ii],mu] \
249 + muH2 Phibar[ii] Phi[ii] \
250 - mD2 hatDbar[ii] hatD[ii] \
251 - lamH Phibar[ii] Phi[ii] Phibar[jj] Phi[jj] \
252 - lamD1 hatDbar[ii] hatD[ii] hatDbar[jj] hatD[jj] \
253 - lamD2 (hatDbar[ii] hatD[ii] hatDbar[jj] hatD[jj] - 1/2 hatDbar[ii] hatD[jj] hatDbar[ii] hatD[jj]) \
254 - lamHD1 Phibar[ii] Phi[ii] hatD[jj] hatDbar[jj] \
255 - lamHD2/2 (hatD[ii] hatDbar[ii] Phibar[jj] Phi[jj] + I Eps[ii,jj,mm] PauliSigma[mm,ip,jp] Phibar[ip] Phi[jp]
256 hatD[ii] hatDbar[jj] ) \
257 + muHD/Sqrt[2] Phibar[ii] hatD[mm] PauliSigma[mm,ii,jj] Phibar[jp] Eps[jj,jp] \
258 + muHD/Sqrt[2] Phi[jj] hatDbar[mm] PauliSigma[mm,ii,jj] Phi[jp] Eps[ii,jp];
259
260LYukawa := Block[{yuk},
261 yuk:=
262 - yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] Phi[ii] \
263 - yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] Phi[ii] \
264 - Sum[yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] Phibar[jj] Eps[ii, jj],{ii,2},{jj,2}] \
265 - Sum[yDL[ff1, ff2]/Sqrt[2] Eps[ip,ii] CC[LLbar][sp, ii, ff1].LL[sp, jj, ff2] hatD[mm] PauliSigma[mm,ip,jj],
266 {ii,2},{ip,2},{jj,2},{mm,3}];
267 yuk+HC[yuk]
268 ];
269
270LType2:= {LGauge, LFermions, LScalar, LYukawa, LGhost};
271