1 |
|
---|
2 | M$ModelName = "Sextet_Diquarks";
|
---|
3 |
|
---|
4 | (*
|
---|
5 |
|
---|
6 | The convention and notations follow 0909.2666
|
---|
7 | We also allow for non intergeneration couplings between quarks.
|
---|
8 | The mixing matrices are however implemented in general, and put diagonal via the independent
|
---|
9 | restriction file
|
---|
10 |
|
---|
11 | MFV.rst
|
---|
12 |
|
---|
13 | The new particles are
|
---|
14 |
|
---|
15 | six1 = (6, 1, 1/3)
|
---|
16 | six2 = (6, 1, -2/3)
|
---|
17 | six3 = (6, 1, 4/3)
|
---|
18 |
|
---|
19 | *)
|
---|
20 |
|
---|
21 | M$Information = {Authors -> {"C. Duhr"},
|
---|
22 | Version -> "1.0",
|
---|
23 | Date -> "27. 10. 2010",
|
---|
24 | Institutions -> {"IPPP, Durham"},
|
---|
25 | Emails -> {"claude.duhr@durham.ac.uk"}};
|
---|
26 |
|
---|
27 | IndexRange[Index[Sextet]] = Range[6];
|
---|
28 | IndexStyle[ Sextet, u];
|
---|
29 |
|
---|
30 | AddGaugeRepresentation[SU3C -> {T6, Sextet}];
|
---|
31 |
|
---|
32 | (* Coupling matrices are symmetric *)
|
---|
33 |
|
---|
34 |
|
---|
35 | SetAttributes[LQQR, Orderless];
|
---|
36 | SetAttributes[LUDL, Orderless];
|
---|
37 | SetAttributes[LUUL, Orderless];
|
---|
38 | SetAttributes[LDDL, Orderless];
|
---|
39 |
|
---|
40 | M$Parameters = {
|
---|
41 |
|
---|
42 | LQQRR == {Indices -> {Index[Generation], Index[Generation]},
|
---|
43 | Value -> {LQQRR[1,1] -> 0.1,
|
---|
44 | LQQRR[2,2] -> 0.1,
|
---|
45 | LQQRR[3,3] -> 0.1,
|
---|
46 | LQQRR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
|
---|
47 | InteractionOrder -> {QCD, 1},
|
---|
48 | ParameterType -> External,
|
---|
49 | ComplexParameter -> False
|
---|
50 | },
|
---|
51 |
|
---|
52 | LQQRI == {Indices -> {Index[Generation], Index[Generation]},
|
---|
53 | Value -> {LQQRI[_,_] -> 0},
|
---|
54 | InteractionOrder -> {QCD, 1},
|
---|
55 | ParameterType -> External,
|
---|
56 | ComplexParameter -> False
|
---|
57 | },
|
---|
58 |
|
---|
59 | LUDLR == {Indices -> {Index[Generation], Index[Generation]},
|
---|
60 | Value -> {LUDLR[1,1] -> 0.1,
|
---|
61 | LUDLR[2,2] -> 0.1,
|
---|
62 | LUDLR[3,3] -> 0.1,
|
---|
63 | LUDLR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
|
---|
64 | InteractionOrder -> {QCD, 1},
|
---|
65 | ParameterType -> External,
|
---|
66 | ComplexParameter -> False
|
---|
67 | },
|
---|
68 |
|
---|
69 | LUDLI == {Indices -> {Index[Generation], Index[Generation]},
|
---|
70 | Value -> {LUDLI[_,_] -> 0},
|
---|
71 | InteractionOrder -> {QCD, 1},
|
---|
72 | ParameterType -> External,
|
---|
73 | ComplexParameter -> False
|
---|
74 | },
|
---|
75 |
|
---|
76 | LUULR == {Indices -> {Index[Generation], Index[Generation]},
|
---|
77 | Value -> {LUULR[1,1] -> 0.1,
|
---|
78 | LUULR[2,2] -> 0.1,
|
---|
79 | LUULR[3,3] -> 0.1,
|
---|
80 | LUULR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
|
---|
81 | InteractionOrder -> {QCD, 1},
|
---|
82 | ParameterType -> External,
|
---|
83 | ComplexParameter -> False
|
---|
84 | },
|
---|
85 |
|
---|
86 | LUULI == {Indices -> {Index[Generation], Index[Generation]},
|
---|
87 | Value -> {LUULI[_,_] -> 0},
|
---|
88 | InteractionOrder -> {QCD, 1},
|
---|
89 | ParameterType -> External,
|
---|
90 | ComplexParameter -> False
|
---|
91 | },
|
---|
92 |
|
---|
93 | LDDLR == {Indices -> {Index[Generation], Index[Generation]},
|
---|
94 | Value -> {LDDLR[1,1] -> 0.1,
|
---|
95 | LDDLR[2,2] -> 0.1,
|
---|
96 | LDDLR[3,3] -> 0.1,
|
---|
97 | LDDLR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
|
---|
98 | InteractionOrder -> {QCD, 1},
|
---|
99 | ParameterType -> External,
|
---|
100 | ComplexParameter -> False
|
---|
101 | },
|
---|
102 |
|
---|
103 | LDDLI == {Indices -> {Index[Generation], Index[Generation]},
|
---|
104 | Value -> {LDDLI[_,_] -> 0},
|
---|
105 | InteractionOrder -> {QCD, 1},
|
---|
106 | ParameterType -> External,
|
---|
107 | ComplexParameter -> False
|
---|
108 | },
|
---|
109 |
|
---|
110 | LHS1 == {InteractionOrder -> {QED, 2},
|
---|
111 | Value -> 0.1,
|
---|
112 | ParameterType -> External
|
---|
113 | },
|
---|
114 |
|
---|
115 | LHS2 == {InteractionOrder -> {QED, 2},
|
---|
116 | Value -> 0.1,
|
---|
117 | ParameterType -> External
|
---|
118 | },
|
---|
119 |
|
---|
120 | LHS3 == {InteractionOrder -> {QED, 2},
|
---|
121 | Value -> 0.1,
|
---|
122 | ParameterType -> External
|
---|
123 | },
|
---|
124 |
|
---|
125 | LSS11 == {InteractionOrder -> {QCD, 2},
|
---|
126 | Value -> 0.1,
|
---|
127 | ParameterType -> External
|
---|
128 | },
|
---|
129 |
|
---|
130 | LSS121 == {InteractionOrder -> {QCD, 2},
|
---|
131 | Value -> 0.1,
|
---|
132 | ParameterType -> External
|
---|
133 | },
|
---|
134 |
|
---|
135 | LSS122 == {InteractionOrder -> {QCD, 2},
|
---|
136 | Value -> 0.1,
|
---|
137 | ParameterType -> External
|
---|
138 | },
|
---|
139 |
|
---|
140 | LSS131 == {InteractionOrder -> {QCD, 2},
|
---|
141 | Value -> 0.1,
|
---|
142 | ParameterType -> External
|
---|
143 | },
|
---|
144 |
|
---|
145 | LSS132 == {InteractionOrder -> {QCD, 2},
|
---|
146 | Value -> 0.1,
|
---|
147 | ParameterType -> External
|
---|
148 | },
|
---|
149 |
|
---|
150 | LSS22 == {InteractionOrder -> {QCD, 2},
|
---|
151 | Value -> 0.1,
|
---|
152 | ParameterType -> External
|
---|
153 | },
|
---|
154 |
|
---|
155 | LSS231== {InteractionOrder -> {QCD, 2},
|
---|
156 | Value -> 0.1,
|
---|
157 | ParameterType -> External
|
---|
158 | },
|
---|
159 |
|
---|
160 | LSS232 == {InteractionOrder -> {QCD, 2},
|
---|
161 | Value -> 0.1,
|
---|
162 | ParameterType -> External
|
---|
163 | },
|
---|
164 |
|
---|
165 | LSS33 == {InteractionOrder -> {QCD, 2},
|
---|
166 | Value -> 0.1,
|
---|
167 | ParameterType -> External
|
---|
168 | },
|
---|
169 |
|
---|
170 | (* Internal parameters *)
|
---|
171 |
|
---|
172 | LQQR == {Indices -> {Index[Generation], Index[Generation]},
|
---|
173 | Value -> {LQQR[i_,j_] :> LQQRR[i,j] + I LQQRI[i,j]},
|
---|
174 | InteractionOrder -> {QCD, 1},
|
---|
175 | ComplexParameter -> True
|
---|
176 | },
|
---|
177 |
|
---|
178 | LUDL == {Indices -> {Index[Generation], Index[Generation]},
|
---|
179 | Value -> {LUDL[i_,j_] :> LUDLR[i,j] + I LUDLI[i,j]},
|
---|
180 | InteractionOrder -> {QCD, 1},
|
---|
181 | ComplexParameter -> True
|
---|
182 | },
|
---|
183 |
|
---|
184 | LUUL == {Indices -> {Index[Generation], Index[Generation]},
|
---|
185 | Value -> {LUUL[i_,j_] :> LUULR[i,j] + I LUULI[i,j]},
|
---|
186 | InteractionOrder -> {QCD, 1},
|
---|
187 | ComplexParameter -> True
|
---|
188 | },
|
---|
189 |
|
---|
190 | LDDL == {Indices -> {Index[Generation], Index[Generation]},
|
---|
191 | Value -> {LDDL[i_,j_] :> LDDLR[i,j] + I LDDLI[i,j]},
|
---|
192 | InteractionOrder -> {QCD, 1},
|
---|
193 | ComplexParameter -> True
|
---|
194 | }
|
---|
195 | };
|
---|
196 |
|
---|
197 | M$ClassesDescription = {
|
---|
198 |
|
---|
199 | S[100] == {
|
---|
200 | ClassName -> six1,
|
---|
201 | SelfConjugate -> False,
|
---|
202 | Indices -> {Index[Sextet]},
|
---|
203 | Mass -> {MSIX1, 500},
|
---|
204 | Width -> {WSIX1, 4.4108},
|
---|
205 | QuantumNumbers -> {Q -> 1/3, Y -> 1/3}
|
---|
206 | },
|
---|
207 |
|
---|
208 | S[200] == {
|
---|
209 | ClassName -> six2,
|
---|
210 | SelfConjugate -> False,
|
---|
211 | Indices -> {Index[Sextet]},
|
---|
212 | Mass -> {MSIX2, 500},
|
---|
213 | Width -> {WSIX2, 4.7740},
|
---|
214 | QuantumNumbers -> {Q -> -2/3, Y -> -2/3}
|
---|
215 | },
|
---|
216 |
|
---|
217 | S[300] == {
|
---|
218 | ClassName -> six3,
|
---|
219 | SelfConjugate -> False,
|
---|
220 | Indices -> {Index[Sextet]},
|
---|
221 | Mass -> {MSIX3, 500},
|
---|
222 | Width -> {WSIX3, 4.0647},
|
---|
223 | QuantumNumbers -> {Q -> 4/3, Y -> 4/3}
|
---|
224 | }
|
---|
225 | };
|
---|
226 |
|
---|
227 |
|
---|
228 | (* the Lagrangian *)
|
---|
229 |
|
---|
230 |
|
---|
231 | LSextetKin := DC[six1bar[k], mu]DC[six1[k],mu] - MSIX1^2 six1bar[k]six1[k] +
|
---|
232 | DC[six2bar[k], mu]DC[six2[k],mu] - MSIX2^2 six2bar[k]six2[k] +
|
---|
233 | DC[six3bar[k], mu]DC[six3[k],mu] - MSIX2^2 six3bar[k]six3[k];
|
---|
234 |
|
---|
235 | LD11 := 2 Sqrt[2] (K6bar[k,i,j] six1[k] LQQR[n,m] ProjP[s,r] dqbar[s,n,i].CC[uq][r,m,j] +
|
---|
236 | K6bar[k,i,j] six1[k] LUDL[n,m] ProjM[s,r] dqbar[s,n,i].CC[uq][r,m,j]);
|
---|
237 |
|
---|
238 | LD1 := LD11 + HC[LD11];
|
---|
239 |
|
---|
240 | LD21 := 2 Sqrt[2] K6bar[k,i,j] six2[k] LDDL[n,m] ProjM[s,r] dqbar[s,n,i].CC[dq][r,m,j];
|
---|
241 |
|
---|
242 | LD2 := LD21 + HC[LD21];
|
---|
243 |
|
---|
244 | LD31 := 2 Sqrt[2] K6bar[k,i,j] six3[k] LUUL[n,m] ProjM[s,r] uqbar[s,n,i].CC[uq][r,m,j];
|
---|
245 |
|
---|
246 | LD3 := LD31 + HC[LD31];
|
---|
247 |
|
---|
248 | LD := LD1 + LD2 + LD3;
|
---|
249 |
|
---|
250 | LPot := ExpandIndices[LHS1 Phibar[ii] Phi[ii] six1bar[k]six1[k] +
|
---|
251 | LHS2 Phibar[ii] Phi[ii] six2bar[k]six2[k] +
|
---|
252 | LHS3 Phibar[ii] Phi[ii] six3bar[k]six3[k] +
|
---|
253 | LSS11 six1bar[k1]six1[k1]six1bar[k2]six1[k2] +
|
---|
254 | LSS121 six1bar[k1]six1[k1]six2bar[k2]six2[k2] +
|
---|
255 | LSS122 six1bar[k1]six1[k2]six2bar[k2]six2[k1] +
|
---|
256 | LSS131 six1bar[k1]six1[k1]six3bar[k2]six3[k2] +
|
---|
257 | LSS132 six1bar[k1]six1[k2]six3bar[k2]six3[k1] +
|
---|
258 | LSS22 six2bar[k1]six2[k1]six2bar[k2]six2[k2] +
|
---|
259 | LSS231 six2bar[k1]six2[k1]six3bar[k2]six3[k2] +
|
---|
260 | LSS232 six2bar[k1]six2[k2]six3bar[k2]six3[k1] +
|
---|
261 | LSS33 six3bar[k1]six3[k1]six3bar[k2]six3[k2], FlavorExpand->{SU2W,SU2D}];
|
---|
262 |
|
---|
263 | LSextet := LSextetKin + LD1 + LD2 + LD3 + LPot;
|
---|
264 |
|
---|
265 |
|
---|
266 |
|
---|
267 |
|
---|
268 |
|
---|
269 |
|
---|