Sextets: SextetDiquarks.fr

File SextetDiquarks.fr, 7.9 KB (added by Benjamin Fuks, 12 years ago)

Model file

Line 
1
2M$ModelName = "Sextet_Diquarks";
3
4(*
5
6 The convention and notations follow 0909.2666
7 We also allow for non intergeneration couplings between quarks.
8 The mixing matrices are however implemented in general, and put diagonal via the independent
9 restriction file
10
11 MFV.rst
12
13 The new particles are
14
15 six1 = (6, 1, 1/3)
16 six2 = (6, 1, -2/3)
17 six3 = (6, 1, 4/3)
18
19*)
20
21M$Information = {Authors -> {"C. Duhr"},
22 Version -> "1.0",
23 Date -> "27. 10. 2010",
24 Institutions -> {"IPPP, Durham"},
25 Emails -> {"claude.duhr@durham.ac.uk"}};
26
27IndexRange[Index[Sextet]] = Range[6];
28IndexStyle[ Sextet, u];
29
30AddGaugeRepresentation[SU3C -> {T6, Sextet}];
31
32(* Coupling matrices are symmetric *)
33
34
35SetAttributes[LQQR, Orderless];
36SetAttributes[LUDL, Orderless];
37SetAttributes[LUUL, Orderless];
38SetAttributes[LDDL, Orderless];
39
40M$Parameters = {
41
42 LQQRR == {Indices -> {Index[Generation], Index[Generation]},
43 Value -> {LQQRR[1,1] -> 0.1,
44 LQQRR[2,2] -> 0.1,
45 LQQRR[3,3] -> 0.1,
46 LQQRR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
47 InteractionOrder -> {QCD, 1},
48 ParameterType -> External,
49 ComplexParameter -> False
50 },
51
52 LQQRI == {Indices -> {Index[Generation], Index[Generation]},
53 Value -> {LQQRI[_,_] -> 0},
54 InteractionOrder -> {QCD, 1},
55 ParameterType -> External,
56 ComplexParameter -> False
57 },
58
59 LUDLR == {Indices -> {Index[Generation], Index[Generation]},
60 Value -> {LUDLR[1,1] -> 0.1,
61 LUDLR[2,2] -> 0.1,
62 LUDLR[3,3] -> 0.1,
63 LUDLR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
64 InteractionOrder -> {QCD, 1},
65 ParameterType -> External,
66 ComplexParameter -> False
67 },
68
69 LUDLI == {Indices -> {Index[Generation], Index[Generation]},
70 Value -> {LUDLI[_,_] -> 0},
71 InteractionOrder -> {QCD, 1},
72 ParameterType -> External,
73 ComplexParameter -> False
74 },
75
76 LUULR == {Indices -> {Index[Generation], Index[Generation]},
77 Value -> {LUULR[1,1] -> 0.1,
78 LUULR[2,2] -> 0.1,
79 LUULR[3,3] -> 0.1,
80 LUULR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
81 InteractionOrder -> {QCD, 1},
82 ParameterType -> External,
83 ComplexParameter -> False
84 },
85
86 LUULI == {Indices -> {Index[Generation], Index[Generation]},
87 Value -> {LUULI[_,_] -> 0},
88 InteractionOrder -> {QCD, 1},
89 ParameterType -> External,
90 ComplexParameter -> False
91 },
92
93 LDDLR == {Indices -> {Index[Generation], Index[Generation]},
94 Value -> {LDDLR[1,1] -> 0.1,
95 LDDLR[2,2] -> 0.1,
96 LDDLR[3,3] -> 0.1,
97 LDDLR[i_, j_] :> 0 /; NumericQ[i] && NumericQ[j] && (i !=j)},
98 InteractionOrder -> {QCD, 1},
99 ParameterType -> External,
100 ComplexParameter -> False
101 },
102
103 LDDLI == {Indices -> {Index[Generation], Index[Generation]},
104 Value -> {LDDLI[_,_] -> 0},
105 InteractionOrder -> {QCD, 1},
106 ParameterType -> External,
107 ComplexParameter -> False
108 },
109
110 LHS1 == {InteractionOrder -> {QED, 2},
111 Value -> 0.1,
112 ParameterType -> External
113 },
114
115 LHS2 == {InteractionOrder -> {QED, 2},
116 Value -> 0.1,
117 ParameterType -> External
118 },
119
120 LHS3 == {InteractionOrder -> {QED, 2},
121 Value -> 0.1,
122 ParameterType -> External
123 },
124
125 LSS11 == {InteractionOrder -> {QCD, 2},
126 Value -> 0.1,
127 ParameterType -> External
128 },
129
130 LSS121 == {InteractionOrder -> {QCD, 2},
131 Value -> 0.1,
132 ParameterType -> External
133 },
134
135 LSS122 == {InteractionOrder -> {QCD, 2},
136 Value -> 0.1,
137 ParameterType -> External
138 },
139
140 LSS131 == {InteractionOrder -> {QCD, 2},
141 Value -> 0.1,
142 ParameterType -> External
143 },
144
145 LSS132 == {InteractionOrder -> {QCD, 2},
146 Value -> 0.1,
147 ParameterType -> External
148 },
149
150 LSS22 == {InteractionOrder -> {QCD, 2},
151 Value -> 0.1,
152 ParameterType -> External
153 },
154
155 LSS231== {InteractionOrder -> {QCD, 2},
156 Value -> 0.1,
157 ParameterType -> External
158 },
159
160 LSS232 == {InteractionOrder -> {QCD, 2},
161 Value -> 0.1,
162 ParameterType -> External
163 },
164
165 LSS33 == {InteractionOrder -> {QCD, 2},
166 Value -> 0.1,
167 ParameterType -> External
168 },
169
170(* Internal parameters *)
171
172 LQQR == {Indices -> {Index[Generation], Index[Generation]},
173 Value -> {LQQR[i_,j_] :> LQQRR[i,j] + I LQQRI[i,j]},
174 InteractionOrder -> {QCD, 1},
175 ComplexParameter -> True
176 },
177
178 LUDL == {Indices -> {Index[Generation], Index[Generation]},
179 Value -> {LUDL[i_,j_] :> LUDLR[i,j] + I LUDLI[i,j]},
180 InteractionOrder -> {QCD, 1},
181 ComplexParameter -> True
182 },
183
184 LUUL == {Indices -> {Index[Generation], Index[Generation]},
185 Value -> {LUUL[i_,j_] :> LUULR[i,j] + I LUULI[i,j]},
186 InteractionOrder -> {QCD, 1},
187 ComplexParameter -> True
188 },
189
190 LDDL == {Indices -> {Index[Generation], Index[Generation]},
191 Value -> {LDDL[i_,j_] :> LDDLR[i,j] + I LDDLI[i,j]},
192 InteractionOrder -> {QCD, 1},
193 ComplexParameter -> True
194 }
195};
196
197M$ClassesDescription = {
198
199 S[100] == {
200 ClassName -> six1,
201 SelfConjugate -> False,
202 Indices -> {Index[Sextet]},
203 Mass -> {MSIX1, 500},
204 Width -> {WSIX1, 4.4108},
205 QuantumNumbers -> {Q -> 1/3, Y -> 1/3}
206 },
207
208 S[200] == {
209 ClassName -> six2,
210 SelfConjugate -> False,
211 Indices -> {Index[Sextet]},
212 Mass -> {MSIX2, 500},
213 Width -> {WSIX2, 4.7740},
214 QuantumNumbers -> {Q -> -2/3, Y -> -2/3}
215 },
216
217 S[300] == {
218 ClassName -> six3,
219 SelfConjugate -> False,
220 Indices -> {Index[Sextet]},
221 Mass -> {MSIX3, 500},
222 Width -> {WSIX3, 4.0647},
223 QuantumNumbers -> {Q -> 4/3, Y -> 4/3}
224 }
225};
226
227
228(* the Lagrangian *)
229
230
231LSextetKin := DC[six1bar[k], mu]DC[six1[k],mu] - MSIX1^2 six1bar[k]six1[k] +
232 DC[six2bar[k], mu]DC[six2[k],mu] - MSIX2^2 six2bar[k]six2[k] +
233 DC[six3bar[k], mu]DC[six3[k],mu] - MSIX2^2 six3bar[k]six3[k];
234
235LD11 := 2 Sqrt[2] (K6bar[k,i,j] six1[k] LQQR[n,m] ProjP[s,r] dqbar[s,n,i].CC[uq][r,m,j] +
236 K6bar[k,i,j] six1[k] LUDL[n,m] ProjM[s,r] dqbar[s,n,i].CC[uq][r,m,j]);
237
238LD1 := LD11 + HC[LD11];
239
240LD21 := 2 Sqrt[2] K6bar[k,i,j] six2[k] LDDL[n,m] ProjM[s,r] dqbar[s,n,i].CC[dq][r,m,j];
241
242LD2 := LD21 + HC[LD21];
243
244LD31 := 2 Sqrt[2] K6bar[k,i,j] six3[k] LUUL[n,m] ProjM[s,r] uqbar[s,n,i].CC[uq][r,m,j];
245
246LD3 := LD31 + HC[LD31];
247
248LD := LD1 + LD2 + LD3;
249
250LPot := ExpandIndices[LHS1 Phibar[ii] Phi[ii] six1bar[k]six1[k] +
251 LHS2 Phibar[ii] Phi[ii] six2bar[k]six2[k] +
252 LHS3 Phibar[ii] Phi[ii] six3bar[k]six3[k] +
253 LSS11 six1bar[k1]six1[k1]six1bar[k2]six1[k2] +
254 LSS121 six1bar[k1]six1[k1]six2bar[k2]six2[k2] +
255 LSS122 six1bar[k1]six1[k2]six2bar[k2]six2[k1] +
256 LSS131 six1bar[k1]six1[k1]six3bar[k2]six3[k2] +
257 LSS132 six1bar[k1]six1[k2]six3bar[k2]six3[k1] +
258 LSS22 six2bar[k1]six2[k1]six2bar[k2]six2[k2] +
259 LSS231 six2bar[k1]six2[k1]six3bar[k2]six3[k2] +
260 LSS232 six2bar[k1]six2[k2]six3bar[k2]six3[k1] +
261 LSS33 six3bar[k1]six3[k1]six3bar[k2]six3[k2], FlavorExpand->{SU2W,SU2D}];
262
263LSextet := LSextetKin + LD1 + LD2 + LD3 + LPot;
264
265
266
267
268
269