1 | (* Content-type: application/mathematica *)
|
---|
2 |
|
---|
3 | (*** Wolfram Notebook File ***)
|
---|
4 | (* http://www.wolfram.com/nb *)
|
---|
5 |
|
---|
6 | (* CreatedBy='Mathematica 6.0' *)
|
---|
7 |
|
---|
8 | (*CacheID: 234*)
|
---|
9 | (* Internal cache information:
|
---|
10 | NotebookFileLineBreakTest
|
---|
11 | NotebookFileLineBreakTest
|
---|
12 | NotebookDataPosition[ 145, 7]
|
---|
13 | NotebookDataLength[ 53857, 1259]
|
---|
14 | NotebookOptionsPosition[ 42465, 1070]
|
---|
15 | NotebookOutlinePosition[ 42824, 1086]
|
---|
16 | CellTagsIndexPosition[ 42781, 1083]
|
---|
17 | WindowFrame->Normal*)
|
---|
18 |
|
---|
19 | (* Beginning of Notebook Content *)
|
---|
20 | Notebook[{
|
---|
21 | Cell[BoxData[
|
---|
22 | RowBox[{"Quit", "[", "]"}]], "Input",
|
---|
23 | CellChangeTimes->{{3.4921467751527157`*^9, 3.492146776183146*^9}},
|
---|
24 | CellLabel->"In[5]:=",ExpressionUUID->"b688e269-f949-4f2c-a5f5-9de5f1b3267d"],
|
---|
25 |
|
---|
26 | Cell["\<\
|
---|
27 | Set the path below to the directory where you have saved your FeynRules \
|
---|
28 | implementation. The SLQrules model files should be copied to the \
|
---|
29 | FeynRules/Models folder. \
|
---|
30 | \>", "Text",
|
---|
31 | CellChangeTimes->{{3.8293161012026253`*^9,
|
---|
32 | 3.829316206154106*^9}},ExpressionUUID->"cc085fb5-11e0-443f-82b9-\
|
---|
33 | 5a2d42c2cd4e"],
|
---|
34 |
|
---|
35 | Cell[CellGroupData[{
|
---|
36 |
|
---|
37 | Cell[BoxData[
|
---|
38 | RowBox[{
|
---|
39 | RowBox[{"(*", " ",
|
---|
40 | RowBox[{"Set", " ", "FeynRules", " ", "directory"}], " ", "*)"}],
|
---|
41 | "\[IndentingNewLine]",
|
---|
42 | RowBox[{"$FeynRulesPath", "=",
|
---|
43 | RowBox[{
|
---|
44 | "SetDirectory", "[", "\"\<Path to FeynRules Directory\>\"",
|
---|
45 | "]"}]}]}]], "Input",
|
---|
46 | CellChangeTimes->{{3.41265862251538*^9, 3.412658649947229*^9}, {
|
---|
47 | 3.423415585782702*^9, 3.423415597189939*^9}, {3.4234163173467493`*^9,
|
---|
48 | 3.4234163227881193`*^9}, {3.824041146193656*^9, 3.824041156479109*^9}, {
|
---|
49 | 3.824041534241042*^9, 3.8240415358834047`*^9}, {3.829315966709292*^9,
|
---|
50 | 3.829315973088203*^9}, {3.829316093603538*^9, 3.829316121068947*^9}, {
|
---|
51 | 3.829316252537716*^9,
|
---|
52 | 3.829316271037689*^9}},ExpressionUUID->"a0323c9b-4a85-486b-8893-\
|
---|
53 | 6aa74c98675c"],
|
---|
54 |
|
---|
55 | Cell[BoxData["\<\"/Users/lucschnell/Documents/1_Professional/2_Research/\
|
---|
56 | Leptoquarks/Programs/FeynRules\"\>"], "Output",
|
---|
57 | CellChangeTimes->{
|
---|
58 | 3.824041276015606*^9, 3.824041536506091*^9, 3.82404471440839*^9,
|
---|
59 | 3.824045297317604*^9, 3.8240571506871233`*^9, 3.824064326099588*^9,
|
---|
60 | 3.824098742621635*^9, 3.824182745382193*^9, 3.82423484343575*^9,
|
---|
61 | 3.824236184800187*^9, 3.824268178735614*^9, 3.824354225326749*^9,
|
---|
62 | 3.824354260561392*^9, 3.824355162520421*^9, 3.824355379752717*^9,
|
---|
63 | 3.824355454390402*^9, 3.824355624298005*^9, 3.824357212395342*^9,
|
---|
64 | 3.8243575410305347`*^9, 3.824358009570897*^9, 3.824358254127935*^9,
|
---|
65 | 3.824358963473782*^9, 3.824359035740633*^9, 3.824359281730833*^9,
|
---|
66 | 3.824359614667735*^9, 3.824359711201326*^9, 3.824359863465746*^9,
|
---|
67 | 3.824359991120324*^9, 3.824360133096759*^9, 3.824360228750105*^9,
|
---|
68 | 3.824361528523671*^9, 3.824362934091097*^9, 3.824365315063634*^9,
|
---|
69 | 3.8255956022501297`*^9, 3.825601247696376*^9, 3.825679118221678*^9, {
|
---|
70 | 3.825680987236108*^9, 3.825681007169289*^9}, 3.825682804956047*^9,
|
---|
71 | 3.825683397526623*^9, 3.827494019223563*^9, 3.827494082859811*^9, {
|
---|
72 | 3.827494214330522*^9, 3.827494230532794*^9}, 3.827494339415818*^9, {
|
---|
73 | 3.827669874748681*^9, 3.8276698859112577`*^9}, 3.827670137439913*^9,
|
---|
74 | 3.8278139526611958`*^9, 3.827919730435388*^9, 3.827920869210717*^9,
|
---|
75 | 3.827945016664694*^9, 3.827945403745391*^9, 3.827946209263035*^9,
|
---|
76 | 3.8292134705786333`*^9, 3.8292136593540573`*^9, 3.82921372975644*^9,
|
---|
77 | 3.829213774877451*^9, 3.829215352198167*^9, 3.829216647811808*^9,
|
---|
78 | 3.829216914814681*^9, 3.82921696259793*^9, 3.82921706508517*^9,
|
---|
79 | 3.829217095271017*^9, {3.829221845826315*^9, 3.8292218595398493`*^9},
|
---|
80 | 3.829222668617875*^9, 3.829223218909478*^9, 3.8292234184978323`*^9, {
|
---|
81 | 3.829224009831073*^9, 3.8292240322873907`*^9}, 3.829278576304615*^9,
|
---|
82 | 3.8292816902873363`*^9, 3.8292823949671783`*^9, 3.829282590364706*^9,
|
---|
83 | 3.82928313447091*^9, 3.829283213664649*^9, 3.829283614593829*^9,
|
---|
84 | 3.829283943589849*^9, 3.8292854455996447`*^9, 3.829286016119626*^9,
|
---|
85 | 3.829286188564973*^9, 3.829289800150597*^9, 3.829299628718691*^9,
|
---|
86 | 3.8293067733712273`*^9, 3.829306815083362*^9, {3.829314222831798*^9,
|
---|
87 | 3.829314247031918*^9}, 3.82931429676742*^9},
|
---|
88 | CellLabel->"Out[1]=",ExpressionUUID->"6943a034-02dc-441c-8676-f99c07faee4c"]
|
---|
89 | }, Open ]],
|
---|
90 |
|
---|
91 | Cell[BoxData[
|
---|
92 | RowBox[{
|
---|
93 | RowBox[{"(*", " ",
|
---|
94 | RowBox[{"Start", " ", "FeynRules"}], " ", "*)"}], "\[IndentingNewLine]",
|
---|
95 | RowBox[{"<<", "FeynRules`"}]}]], "Input",
|
---|
96 | CellChangeTimes->{{3.547535564344927*^9, 3.547535564971527*^9}, {
|
---|
97 | 3.829215352409328*^9, 3.829215353022368*^9}, {3.829316242496313*^9,
|
---|
98 | 3.8293162501538897`*^9}},ExpressionUUID->"dae72e58-5763-4788-8c5b-\
|
---|
99 | 617b4aebb651"],
|
---|
100 |
|
---|
101 | Cell[BoxData[
|
---|
102 | RowBox[{
|
---|
103 | RowBox[{"(*", " ",
|
---|
104 | RowBox[{
|
---|
105 | "Go", " ", "to", " ", "the", " ", "folder", " ", "with", " ", "the", " ",
|
---|
106 | "model", " ", "files"}], " ", "*)"}], "\[IndentingNewLine]",
|
---|
107 | RowBox[{
|
---|
108 | RowBox[{"SetDirectory", "[",
|
---|
109 | RowBox[{"FileNameJoin", "[",
|
---|
110 | RowBox[{"{",
|
---|
111 | RowBox[{"$FeynRulesPath", ",", "\"\</Models/SLQrules\>\""}], "}"}],
|
---|
112 | "]"}], "]"}], ";"}]}]], "Input",
|
---|
113 | CellChangeTimes->{{3.419073170860696*^9, 3.419073182827229*^9}, {
|
---|
114 | 3.8240448310556507`*^9, 3.824044831925971*^9}, {3.82559549018281*^9,
|
---|
115 | 3.82559549164345*^9}, {3.825601225986663*^9, 3.8256012277193832`*^9}, {
|
---|
116 | 3.8256809809229183`*^9, 3.8256809816585493`*^9}, {3.827670131714067*^9,
|
---|
117 | 3.8276701332051477`*^9}, {3.82794541668818*^9, 3.827945418608961*^9}, {
|
---|
118 | 3.8293159825583143`*^9, 3.829315984735235*^9}, {3.8293160571309958`*^9,
|
---|
119 | 3.829316080216296*^9}, {3.82931622921854*^9,
|
---|
120 | 3.829316239927464*^9}},ExpressionUUID->"bc43008c-6c7d-4f5d-a2ab-\
|
---|
121 | eebcf254e2c2"],
|
---|
122 |
|
---|
123 | Cell[CellGroupData[{
|
---|
124 |
|
---|
125 | Cell["SLQrules", "Title",
|
---|
126 | CellChangeTimes->{{3.829213477932085*^9,
|
---|
127 | 3.8292134848452187`*^9}},ExpressionUUID->"636beac9-9f31-4b31-b755-\
|
---|
128 | 3eb42ffd478e"],
|
---|
129 |
|
---|
130 | Cell["We first load the SLQrules model file", "Text",
|
---|
131 | CellChangeTimes->{{3.829213491013583*^9, 3.8292134958236094`*^9}, {
|
---|
132 | 3.8292139391898603`*^9,
|
---|
133 | 3.829213940096726*^9}},ExpressionUUID->"ec7f2af5-77dc-482c-8fb4-\
|
---|
134 | 9b08b7dd505e"],
|
---|
135 |
|
---|
136 | Cell[BoxData[
|
---|
137 | RowBox[{
|
---|
138 | RowBox[{"(*", " ",
|
---|
139 | RowBox[{"Load", " ", "SLQrules", " ", "model", " ", "files"}], " ", "*)"}],
|
---|
140 | "\[IndentingNewLine]",
|
---|
141 | RowBox[{"LoadModel", "[",
|
---|
142 | RowBox[{"\"\<SM.fr\>\"", ",", " ", "\"\<SLQrules.fr\>\""}],
|
---|
143 | "]"}]}]], "Input",
|
---|
144 | CellChangeTimes->{{3.4022069973481913`*^9, 3.402207011768662*^9},
|
---|
145 | 3.4022081212072697`*^9, {3.402208250379383*^9, 3.402208254043104*^9},
|
---|
146 | 3.4027466057480917`*^9, {3.403240270135737*^9, 3.403240277228945*^9},
|
---|
147 | 3.403266503388291*^9, {3.403267649630335*^9, 3.40326765417397*^9}, {
|
---|
148 | 3.403269919787421*^9, 3.403269921965273*^9}, {3.403347551273425*^9,
|
---|
149 | 3.403347555049163*^9}, 3.4044490490588417`*^9, {3.411744339876704*^9,
|
---|
150 | 3.411744340012457*^9}, {3.4121886924550533`*^9, 3.412188699157571*^9},
|
---|
151 | 3.412188808811866*^9, 3.4121888580521603`*^9, {3.412450464077868*^9,
|
---|
152 | 3.412450464378695*^9}, {3.413715097460478*^9, 3.41371509757642*^9}, {
|
---|
153 | 3.41440825334604*^9, 3.414408254159686*^9}, {3.41862573831756*^9,
|
---|
154 | 3.4186257392223186`*^9}, {3.4190731862389174`*^9, 3.419073187003003*^9}, {
|
---|
155 | 3.419073336802393*^9, 3.4190733374513063`*^9}, {3.4190828041801767`*^9,
|
---|
156 | 3.4190828048079023`*^9}, 3.542453089813714*^9, 3.547534567644828*^9, {
|
---|
157 | 3.824044834456298*^9, 3.824044841489407*^9}, {3.8256810168118763`*^9,
|
---|
158 | 3.825681017983603*^9}, {3.827494032667945*^9, 3.827494033737157*^9}, {
|
---|
159 | 3.827494072635581*^9, 3.82749407295212*^9}, {3.829316274052966*^9,
|
---|
160 | 3.829316280266274*^9}},ExpressionUUID->"59631497-ebc3-49fd-8e92-\
|
---|
161 | ad2825080560"],
|
---|
162 |
|
---|
163 | Cell["\<\
|
---|
164 | If desired, load restrictions for the Standard Model (massless quarks or \
|
---|
165 | diagonal CKM matrix). \
|
---|
166 | \>", "Text",
|
---|
167 | CellChangeTimes->{{3.8293162889667587`*^9,
|
---|
168 | 3.82931630980239*^9}},ExpressionUUID->"20fa5ed0-b235-4319-9812-\
|
---|
169 | 14fdf3322a3d"],
|
---|
170 |
|
---|
171 | Cell[BoxData[
|
---|
172 | RowBox[{"LoadRestriction", "[",
|
---|
173 | RowBox[{"\"\<Massless.rst\>\"", ",", "\"\<DiagonalCKM.rst\>\""}],
|
---|
174 | "]"}]], "Input",
|
---|
175 | CellChangeTimes->{{3.547535575308606*^9, 3.547535589236651*^9}},
|
---|
176 | CellLabel->"In[5]:=",ExpressionUUID->"98c0dab1-7ec3-42cb-bfa0-b73e6f421115"],
|
---|
177 |
|
---|
178 | Cell[BoxData[""], "Input",
|
---|
179 | CellChangeTimes->{{3.8256828182017593`*^9,
|
---|
180 | 3.8256828194373198`*^9}},ExpressionUUID->"8fc83e3e-26a7-4176-ae65-\
|
---|
181 | 36575f4b3800"],
|
---|
182 |
|
---|
183 | Cell[CellGroupData[{
|
---|
184 |
|
---|
185 | Cell["Lagrangians", "Section",
|
---|
186 | CellChangeTimes->{{3.411910065227421*^9, 3.411910071535137*^9}, {
|
---|
187 | 3.8292138213999968`*^9,
|
---|
188 | 3.829213827817354*^9}},ExpressionUUID->"71117ab3-5427-49a8-a834-\
|
---|
189 | 7937a1026b1a"],
|
---|
190 |
|
---|
191 | Cell[CellGroupData[{
|
---|
192 |
|
---|
193 | Cell["SM Lagrangian", "Subsection",
|
---|
194 | CellChangeTimes->{{3.8292138408429813`*^9,
|
---|
195 | 3.829213843125578*^9}},ExpressionUUID->"0b8321e7-8717-49ad-900e-\
|
---|
196 | 3e223b1eeaf1"],
|
---|
197 |
|
---|
198 | Cell["Feynman gauge can be obtained by putting", "Text",
|
---|
199 | CellChangeTimes->{{3.411910440565042*^9, 3.411910480762147*^9},
|
---|
200 | 3.82921385777501*^9},ExpressionUUID->"fec50e9b-5370-4937-b93e-\
|
---|
201 | a86a29374477"],
|
---|
202 |
|
---|
203 | Cell[BoxData[
|
---|
204 | RowBox[{
|
---|
205 | RowBox[{"FeynmanGauge", "=", "True"}], ";"}]], "Input",
|
---|
206 | CellChangeTimes->{{3.411910487433539*^9, 3.4119104927114267`*^9}},
|
---|
207 | CellLabel->"In[5]:=",ExpressionUUID->"a0d827a7-58f8-445a-aa08-d7b0f9121b1c"],
|
---|
208 |
|
---|
209 | Cell["The full SM Lagrangian in Feynman gauge can be accessed via", "Text",
|
---|
210 | CellChangeTimes->{{3.411910016771447*^9, 3.411910062087528*^9}, {
|
---|
211 | 3.411910094087652*^9, 3.411910096590087*^9}, {3.411910215381351*^9,
|
---|
212 | 3.4119102162371798`*^9}, {3.411910436148773*^9, 3.411910437013105*^9}, {
|
---|
213 | 3.829213878208436*^9, 3.8292138811513443`*^9}, {3.829316316641335*^9,
|
---|
214 | 3.829316321414187*^9}},ExpressionUUID->"362c7424-cc6f-41da-abaf-\
|
---|
215 | 236dd1d84159"],
|
---|
216 |
|
---|
217 | Cell[BoxData["LSM"], "Input",
|
---|
218 | CellChangeTimes->{{3.411910106011015*^9,
|
---|
219 | 3.411910106351081*^9}},ExpressionUUID->"946efd16-a954-4caa-818d-\
|
---|
220 | 8587b2eddc42"],
|
---|
221 |
|
---|
222 | Cell[CellGroupData[{
|
---|
223 |
|
---|
224 | Cell["Gauge sector", "Subsubsection",
|
---|
225 | CellChangeTimes->{{3.4119102216473637`*^9,
|
---|
226 | 3.411910224608881*^9}},ExpressionUUID->"5cffddb4-ac7e-4684-851f-\
|
---|
227 | 5715248647ab"],
|
---|
228 |
|
---|
229 | Cell["\<\
|
---|
230 | The part of the SM Lagrangian representing the gauge sector can be accessed \
|
---|
231 | via\
|
---|
232 | \>", "Text",
|
---|
233 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
234 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.8292138869966307`*^9,
|
---|
235 | 3.829213888218061*^9}},ExpressionUUID->"9ae9c6af-ebbd-46eb-9f5d-\
|
---|
236 | dbf5a17db985"],
|
---|
237 |
|
---|
238 | Cell[BoxData["LGauge"], "Input",
|
---|
239 | CellChangeTimes->{{3.411910181169772*^9,
|
---|
240 | 3.411910184667088*^9}},ExpressionUUID->"9a57df20-3954-4969-8615-\
|
---|
241 | e8120a673950"]
|
---|
242 | }, Open ]],
|
---|
243 |
|
---|
244 | Cell[CellGroupData[{
|
---|
245 |
|
---|
246 | Cell["Scalar sector", "Subsubsection",
|
---|
247 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
248 | 3.411910274288354*^9,
|
---|
249 | 3.41191027703699*^9}},ExpressionUUID->"3eafaea8-6c94-4d58-8cd8-\
|
---|
250 | 09a6ddd8d65a"],
|
---|
251 |
|
---|
252 | Cell["\<\
|
---|
253 | The part of the SM Lagrangian representing the scalar sector can be accessed \
|
---|
254 | via\
|
---|
255 | \>", "Text",
|
---|
256 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
257 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.41191028690167*^9,
|
---|
258 | 3.411910287709094*^9}, {3.829213891846693*^9,
|
---|
259 | 3.829213893296216*^9}},ExpressionUUID->"8f7e06ed-6571-4ca8-8418-\
|
---|
260 | df93504a99ea"],
|
---|
261 |
|
---|
262 | Cell[BoxData["LHiggs"], "Input",
|
---|
263 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
264 | 3.411910290186841*^9,
|
---|
265 | 3.411910292005392*^9}},ExpressionUUID->"7a7a5c35-31cc-40c5-be4d-\
|
---|
266 | 57d41d1af96e"]
|
---|
267 | }, Open ]],
|
---|
268 |
|
---|
269 | Cell[CellGroupData[{
|
---|
270 |
|
---|
271 | Cell["Fermion sector", "Subsubsection",
|
---|
272 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
273 | 3.4119103528868923`*^9,
|
---|
274 | 3.411910357404933*^9}},ExpressionUUID->"d31b98ea-8680-4e4a-8792-\
|
---|
275 | 10636cf834c2"],
|
---|
276 |
|
---|
277 | Cell["\<\
|
---|
278 | The part of the SM Lagrangian representing the fermion sector can be accessed \
|
---|
279 | via\
|
---|
280 | \>", "Text",
|
---|
281 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
282 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.4119103873434134`*^9,
|
---|
283 | 3.411910388077118*^9}, {3.829213894881374*^9,
|
---|
284 | 3.8292138957248487`*^9}},ExpressionUUID->"f38ace0f-c0f8-4c44-89c9-\
|
---|
285 | 6c8548d14f8d"],
|
---|
286 |
|
---|
287 | Cell[BoxData["LFermions"], "Input",
|
---|
288 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
289 | 3.411910379677638*^9,
|
---|
290 | 3.4119103807255*^9}},ExpressionUUID->"47f1aea6-01a0-4e7a-a624-cc213bad8bd3"]
|
---|
291 | }, Open ]],
|
---|
292 |
|
---|
293 | Cell[CellGroupData[{
|
---|
294 |
|
---|
295 | Cell["Yukawa sector", "Subsubsection",
|
---|
296 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
297 | 3.411910393742139*^9,
|
---|
298 | 3.411910394852953*^9}},ExpressionUUID->"8c8d5553-dc94-4d38-bd21-\
|
---|
299 | 4815416e8dc5"],
|
---|
300 |
|
---|
301 | Cell["\<\
|
---|
302 | The part of the SM Lagrangian representing the Yukawa sector can be accessed \
|
---|
303 | via\
|
---|
304 | \>", "Text",
|
---|
305 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
306 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
|
---|
307 | 3.411910400421185*^9}, {3.82921389905284*^9,
|
---|
308 | 3.829213899710991*^9}},ExpressionUUID->"8b4d77a9-0455-49eb-82c6-\
|
---|
309 | 58a23e959ed8"],
|
---|
310 |
|
---|
311 | Cell[BoxData["LYukawa"], "Input",
|
---|
312 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
313 | 3.4119104032372026`*^9,
|
---|
314 | 3.411910404165523*^9}},ExpressionUUID->"cf8cf460-2a00-4a0e-84fc-\
|
---|
315 | af9f2bd7543b"]
|
---|
316 | }, Open ]],
|
---|
317 |
|
---|
318 | Cell[CellGroupData[{
|
---|
319 |
|
---|
320 | Cell["Ghost sector", "Subsubsection",
|
---|
321 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
322 | 3.411910393742139*^9, 3.411910394852953*^9}, {3.4119106057673063`*^9,
|
---|
323 | 3.411910606397141*^9}},ExpressionUUID->"47080b0c-0bcf-4ee8-a446-\
|
---|
324 | 2df3de49516f"],
|
---|
325 |
|
---|
326 | Cell["\<\
|
---|
327 | The part of the SM Lagrangian representing the ghost sector can be accessed \
|
---|
328 | via\
|
---|
329 | \>", "Text",
|
---|
330 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
331 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
|
---|
332 | 3.411910400421185*^9}, {3.4119106110136833`*^9, 3.411910611661195*^9}, {
|
---|
333 | 3.829213903205504*^9,
|
---|
334 | 3.8292139066036873`*^9}},ExpressionUUID->"7cb35b1c-4379-4b20-9571-\
|
---|
335 | 79351621bd51"],
|
---|
336 |
|
---|
337 | Cell[BoxData["LGhost"], "Input",
|
---|
338 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
339 | 3.4119104032372026`*^9, 3.411910404165523*^9}, {3.411910615100849*^9,
|
---|
340 | 3.411910615781582*^9}},ExpressionUUID->"eae7cde0-46d1-4e5d-bdf5-\
|
---|
341 | f16a6d620f38"]
|
---|
342 | }, Open ]]
|
---|
343 | }, Open ]],
|
---|
344 |
|
---|
345 | Cell[CellGroupData[{
|
---|
346 |
|
---|
347 | Cell["LQ Lagrangian", "Subsection",
|
---|
348 | CellChangeTimes->{{3.8292138408429813`*^9, 3.829213843125578*^9}, {
|
---|
349 | 3.829213930405251*^9,
|
---|
350 | 3.8292139304845552`*^9}},ExpressionUUID->"da621b90-69a3-4897-962a-\
|
---|
351 | 63ccff7abedb"],
|
---|
352 |
|
---|
353 | Cell["Feynman gauge can be obtained by putting", "Text",
|
---|
354 | CellChangeTimes->{{3.411910440565042*^9, 3.411910480762147*^9},
|
---|
355 | 3.82921385777501*^9},ExpressionUUID->"f4114b7b-307b-42ec-9c66-\
|
---|
356 | 8aee0c11c4ba"],
|
---|
357 |
|
---|
358 | Cell[BoxData[
|
---|
359 | RowBox[{
|
---|
360 | RowBox[{"FeynmanGauge", "=", "True"}], ";"}]], "Input",
|
---|
361 | CellChangeTimes->{{3.411910487433539*^9, 3.4119104927114267`*^9}},
|
---|
362 | CellLabel->"In[5]:=",ExpressionUUID->"66f57e38-268c-48ec-9c6e-bce19710483e"],
|
---|
363 |
|
---|
364 | Cell["The full LQ Lagrangian can be accessed immediatly via", "Text",
|
---|
365 | CellChangeTimes->{{3.411910016771447*^9, 3.411910062087528*^9}, {
|
---|
366 | 3.411910094087652*^9, 3.411910096590087*^9}, {3.411910215381351*^9,
|
---|
367 | 3.4119102162371798`*^9}, {3.411910436148773*^9, 3.411910437013105*^9}, {
|
---|
368 | 3.829213878208436*^9, 3.8292138811513443`*^9}, {3.82921394955385*^9,
|
---|
369 | 3.829213953111702*^9}},ExpressionUUID->"9313027b-7d84-4a0d-a4bf-\
|
---|
370 | 7b6b30f3f04f"],
|
---|
371 |
|
---|
372 | Cell[BoxData["LQall"], "Input",
|
---|
373 | CellChangeTimes->{{3.411910106011015*^9, 3.411910106351081*^9}, {
|
---|
374 | 3.8292139666688957`*^9, 3.8292139680565643`*^9}},
|
---|
375 | CellLabel->"In[12]:=",ExpressionUUID->"cdf50274-7d0a-42a5-9682-0e1bb29814b8"],
|
---|
376 |
|
---|
377 | Cell[CellGroupData[{
|
---|
378 |
|
---|
379 | Cell["LQ Masses and Higgs interactions", "Subsubsection",
|
---|
380 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
381 | 3.82921397583722*^9, 3.829213989566875*^9}, {3.829214031302685*^9,
|
---|
382 | 3.829214044275934*^9}, {3.829214089282106*^9, 3.829214093864045*^9}, {
|
---|
383 | 3.829214164109655*^9,
|
---|
384 | 3.829214164221888*^9}},ExpressionUUID->"ffbe693b-e14d-433f-a0d7-\
|
---|
385 | 73149956ae7c"],
|
---|
386 |
|
---|
387 | Cell["\<\
|
---|
388 | The part of the LQ Lagrangian representing the LQ masses and the Higgs \
|
---|
389 | interactions can be accessed via\
|
---|
390 | \>", "Text",
|
---|
391 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
392 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.8292138869966307`*^9,
|
---|
393 | 3.829213888218061*^9}, {3.8292139940361443`*^9, 3.829214016313081*^9}, {
|
---|
394 | 3.829214098964518*^9,
|
---|
395 | 3.8292141007132893`*^9}},ExpressionUUID->"a4a32daa-f7ed-4078-9550-\
|
---|
396 | 78fce0c5587e"],
|
---|
397 |
|
---|
398 | Cell[BoxData["LQ2Phi"], "Input",
|
---|
399 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
400 | 3.829214020951765*^9, 3.829214022806567*^9}},
|
---|
401 | CellLabel->"In[7]:=",ExpressionUUID->"559657cc-14b7-4dd5-8a6e-40cddf1604ed"]
|
---|
402 | }, Open ]],
|
---|
403 |
|
---|
404 | Cell[CellGroupData[{
|
---|
405 |
|
---|
406 | Cell["Kinetic terms and Interactions with SM gauge bosons", "Subsubsection",
|
---|
407 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
408 | 3.4119103528868923`*^9, 3.411910357404933*^9}, {3.8292141538076887`*^9,
|
---|
409 | 3.829214161942341*^9}},ExpressionUUID->"34ecf012-8d72-4b2d-83a6-\
|
---|
410 | 7f9bf807588d"],
|
---|
411 |
|
---|
412 | Cell["\<\
|
---|
413 | The part of the SM Lagrangian representing the fermion sector can be accessed \
|
---|
414 | via\
|
---|
415 | \>", "Text",
|
---|
416 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
417 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.4119103873434134`*^9,
|
---|
418 | 3.411910388077118*^9}, {3.829213894881374*^9,
|
---|
419 | 3.8292138957248487`*^9}},ExpressionUUID->"30ab6780-22ed-4b99-a36d-\
|
---|
420 | 7e293fa331f9"],
|
---|
421 |
|
---|
422 | Cell[BoxData["LQkin"], "Input",
|
---|
423 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
424 | 3.411910379677638*^9, 3.4119103807255*^9}, {3.829214169569601*^9,
|
---|
425 | 3.829214171563943*^9}},
|
---|
426 | CellLabel->"In[13]:=",ExpressionUUID->"2efcb5cc-f9ce-4d1d-b377-7a0e6349b355"]
|
---|
427 | }, Open ]],
|
---|
428 |
|
---|
429 | Cell[CellGroupData[{
|
---|
430 |
|
---|
431 | Cell["Interactions with SM fermions", "Subsubsection",
|
---|
432 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
433 | 3.411910274288354*^9, 3.41191027703699*^9}, {3.8292140265344057`*^9,
|
---|
434 | 3.829214070743135*^9}, {3.82921410696392*^9,
|
---|
435 | 3.829214111971612*^9}},ExpressionUUID->"ff7ac885-a08e-491b-a3ae-\
|
---|
436 | eb0790a46c83"],
|
---|
437 |
|
---|
438 | Cell["\<\
|
---|
439 | The part of the LQ Lagrangian representing the interactions with SM fermions \
|
---|
440 | can be accessed via\
|
---|
441 | \>", "Text",
|
---|
442 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
443 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.41191028690167*^9,
|
---|
444 | 3.411910287709094*^9}, {3.829213891846693*^9, 3.829213893296216*^9}, {
|
---|
445 | 3.829214060049488*^9, 3.829214069150332*^9}, {3.829214114867771*^9,
|
---|
446 | 3.829214124155758*^9}, {3.8292142363587112`*^9,
|
---|
447 | 3.8292142466839647`*^9}},ExpressionUUID->"0f0d84de-7860-4b36-b1dd-\
|
---|
448 | 6a304223a18d"],
|
---|
449 |
|
---|
450 | Cell[BoxData["LQf"], "Input",
|
---|
451 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
452 | 3.411910290186841*^9, 3.411910292005392*^9}, {3.829214131967423*^9,
|
---|
453 | 3.829214133183989*^9}},
|
---|
454 | CellLabel->"In[5]:=",ExpressionUUID->"135c07ba-8634-4ec7-8890-342e991d26c9"]
|
---|
455 | }, Open ]],
|
---|
456 |
|
---|
457 | Cell[CellGroupData[{
|
---|
458 |
|
---|
459 | Cell["Triple LQ interactions", "Subsubsection",
|
---|
460 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
461 | 3.411910393742139*^9, 3.411910394852953*^9}, {3.829214205276751*^9,
|
---|
462 | 3.829214210077593*^9}},ExpressionUUID->"6b82c53e-1e2e-4d88-9027-\
|
---|
463 | 1adf8a738b8d"],
|
---|
464 |
|
---|
465 | Cell["\<\
|
---|
466 | The part of the LQ Lagrangian representing triple LQ interactions can be \
|
---|
467 | accessed via\
|
---|
468 | \>", "Text",
|
---|
469 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
470 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
|
---|
471 | 3.411910400421185*^9}, {3.82921389905284*^9, 3.829213899710991*^9}, {
|
---|
472 | 3.829214212356224*^9,
|
---|
473 | 3.829214249462933*^9}},ExpressionUUID->"9abf76e4-0185-408a-b6fa-\
|
---|
474 | 99751dd34319"],
|
---|
475 |
|
---|
476 | Cell[BoxData["LQ3Phi"], "Input",
|
---|
477 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
478 | 3.4119104032372026`*^9, 3.411910404165523*^9}, {3.829214252514374*^9,
|
---|
479 | 3.8292142549553967`*^9}},
|
---|
480 | CellLabel->"In[15]:=",ExpressionUUID->"25e9fdb3-aff5-4c3d-8d1a-0ac21f4abebf"]
|
---|
481 | }, Open ]],
|
---|
482 |
|
---|
483 | Cell[CellGroupData[{
|
---|
484 |
|
---|
485 | Cell["Quartic LQ interactions", "Subsubsection",
|
---|
486 | CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
|
---|
487 | 3.411910393742139*^9, 3.411910394852953*^9}, {3.4119106057673063`*^9,
|
---|
488 | 3.411910606397141*^9}, {3.82921425818183*^9,
|
---|
489 | 3.829214261323247*^9}},ExpressionUUID->"c56432fd-208b-48c4-90d0-\
|
---|
490 | d3a27e7967fb"],
|
---|
491 |
|
---|
492 | Cell["\<\
|
---|
493 | The part of the SM Lagrangian representing quartic LQ interactions can be \
|
---|
494 | accessed via\
|
---|
495 | \>", "Text",
|
---|
496 | CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
|
---|
497 | 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
|
---|
498 | 3.411910400421185*^9}, {3.4119106110136833`*^9, 3.411910611661195*^9}, {
|
---|
499 | 3.829213903205504*^9, 3.8292139066036873`*^9}, {3.829214265259676*^9,
|
---|
500 | 3.829214271054419*^9}},ExpressionUUID->"c9e42b9f-de8a-4af6-b7ed-\
|
---|
501 | 791c3380584d"],
|
---|
502 |
|
---|
503 | Cell[BoxData["LQ4Phi"], "Input",
|
---|
504 | CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
|
---|
505 | 3.4119104032372026`*^9, 3.411910404165523*^9}, {3.411910615100849*^9,
|
---|
506 | 3.411910615781582*^9}, {3.829214272760263*^9, 3.829214275239265*^9}},
|
---|
507 | CellLabel->"In[16]:=",ExpressionUUID->"1f8a0d35-3850-4f81-9708-cffd36eccefd"]
|
---|
508 | }, Open ]]
|
---|
509 | }, Open ]]
|
---|
510 | }, Open ]],
|
---|
511 |
|
---|
512 | Cell[CellGroupData[{
|
---|
513 |
|
---|
514 | Cell["Feynman Rules", "Section",
|
---|
515 | CellChangeTimes->{{3.411910637332127*^9, 3.41191064360071*^9}, {
|
---|
516 | 3.829215512432562*^9,
|
---|
517 | 3.82921551599513*^9}},ExpressionUUID->"471a0c6b-9483-4245-887d-\
|
---|
518 | 249a8d3d0b73"],
|
---|
519 |
|
---|
520 | Cell["\<\
|
---|
521 | We will now calculate explicitly the Feynman rules in Feynman gauge.\
|
---|
522 | \>", "Text",
|
---|
523 | CellChangeTimes->{{3.41191064804084*^9, 3.411910672936666*^9}, {
|
---|
524 | 3.8292157506565847`*^9,
|
---|
525 | 3.829215758967825*^9}},ExpressionUUID->"0f40813c-84bf-432a-99b9-\
|
---|
526 | 0841fec4eef2"],
|
---|
527 |
|
---|
528 | Cell[BoxData[
|
---|
529 | RowBox[{
|
---|
530 | RowBox[{"FeynmanGauge", "=", "True"}], ";"}]], "Input",
|
---|
531 | CellChangeTimes->{{3.411910674121689*^9, 3.4119106799564953`*^9}},
|
---|
532 | CellLabel->"In[7]:=",ExpressionUUID->"a6068651-d72a-450a-87a7-0677a1f638ca"],
|
---|
533 |
|
---|
534 | Cell[CellGroupData[{
|
---|
535 |
|
---|
536 | Cell["SM Feynman rules", "Subsection",
|
---|
537 | CellChangeTimes->{{3.8292155280837584`*^9,
|
---|
538 | 3.829215536797113*^9}},ExpressionUUID->"b81c1c3d-aa3a-465f-92d4-\
|
---|
539 | 2f92000a1bea"],
|
---|
540 |
|
---|
541 | Cell[CellGroupData[{
|
---|
542 |
|
---|
543 | Cell["Gauge sector", "Subsubsection",
|
---|
544 | CellChangeTimes->{{3.411910690443768*^9,
|
---|
545 | 3.411910692233274*^9}},ExpressionUUID->"ac747c10-9899-4bff-8bb5-\
|
---|
546 | 9d2f8aad49f5"],
|
---|
547 |
|
---|
548 | Cell[BoxData[
|
---|
549 | RowBox[{
|
---|
550 | RowBox[{"vertsGauge", "=",
|
---|
551 | RowBox[{"FeynmanRules", "[",
|
---|
552 | RowBox[{"LGauge", ",",
|
---|
553 | RowBox[{"FlavorExpand", "\[Rule]", "SU2W"}]}], "]"}]}], ";"}]], "Input",
|
---|
554 | CellChangeTimes->{
|
---|
555 | 3.40274690437012*^9, {3.402746954727231*^9, 3.4027469691642714`*^9}, {
|
---|
556 | 3.4032592998045692`*^9, 3.403259304564069*^9}, 3.403267976055098*^9, {
|
---|
557 | 3.411910705212987*^9, 3.411910705553741*^9}, {3.423415993272615*^9,
|
---|
558 | 3.42341600147605*^9}},ExpressionUUID->"afb79007-63a3-4990-9bff-\
|
---|
559 | ef936e220465"]
|
---|
560 | }, Open ]],
|
---|
561 |
|
---|
562 | Cell[CellGroupData[{
|
---|
563 |
|
---|
564 | Cell["Higgs Sector", "Subsubsection",
|
---|
565 | CellChangeTimes->{
|
---|
566 | 3.404470070069872*^9},ExpressionUUID->"515e1996-dba5-4064-af2d-\
|
---|
567 | 255d3b248e24"],
|
---|
568 |
|
---|
569 | Cell[BoxData[
|
---|
570 | RowBox[{
|
---|
571 | RowBox[{"vertsHiggs", "=",
|
---|
572 | RowBox[{"FeynmanRules", "[", "LHiggs", "]"}]}], ";"}]], "Input",
|
---|
573 | CellChangeTimes->{{3.411910728609757*^9, 3.41191072908109*^9}, {
|
---|
574 | 3.423416009086747*^9, 3.423416012982971*^9},
|
---|
575 | 3.423416065626593*^9},ExpressionUUID->"19578d72-431c-4540-b8a7-\
|
---|
576 | a97cf3728e5a"]
|
---|
577 | }, Open ]],
|
---|
578 |
|
---|
579 | Cell[CellGroupData[{
|
---|
580 |
|
---|
581 | Cell["Matter sector", "Subsubsection",ExpressionUUID->"ddf45544-8d02-498c-a923-444d8932005e"],
|
---|
582 |
|
---|
583 | Cell[BoxData[
|
---|
584 | RowBox[{
|
---|
585 | RowBox[{"vertsFermions", "=",
|
---|
586 | RowBox[{"FeynmanRules", "[", "LFermions", "]"}]}], ";"}]], "Input",
|
---|
587 | CellChangeTimes->{{3.402205118991502*^9, 3.4022051228508387`*^9},
|
---|
588 | 3.402747846432675*^9, {3.4032613449872217`*^9, 3.403261349245253*^9}, {
|
---|
589 | 3.403266977133403*^9, 3.4032669793125563`*^9}, {3.411910788644576*^9,
|
---|
590 | 3.411910789233307*^9}, {3.423416034294303*^9,
|
---|
591 | 3.423416042739814*^9}},ExpressionUUID->"3c2d48ed-c05a-43df-aa5a-\
|
---|
592 | 6b5f8bab816d"]
|
---|
593 | }, Open ]],
|
---|
594 |
|
---|
595 | Cell[CellGroupData[{
|
---|
596 |
|
---|
597 | Cell["Yukawa sector", "Subsubsection",ExpressionUUID->"12af6344-1008-465d-ae43-f6174b690f45"],
|
---|
598 |
|
---|
599 | Cell[BoxData[
|
---|
600 | RowBox[{
|
---|
601 | RowBox[{"vertsYukawa", "=",
|
---|
602 | RowBox[{"FeynmanRules", "[",
|
---|
603 | RowBox[{"LYukawa", ",",
|
---|
604 | RowBox[{"FlavorExpand", "\[Rule]", "True"}]}], "]"}]}], ";"}]], "Input",
|
---|
605 | CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
|
---|
606 | 3.411910826105542*^9, 3.411910826777452*^9}, {3.423416089772278*^9,
|
---|
607 | 3.423416095643961*^9}},ExpressionUUID->"12692998-1fcb-47f8-aab8-\
|
---|
608 | 5ef606351ed9"]
|
---|
609 | }, Open ]],
|
---|
610 |
|
---|
611 | Cell[CellGroupData[{
|
---|
612 |
|
---|
613 | Cell["LGhost sector", "Subsubsection",
|
---|
614 | CellChangeTimes->{{3.411910849714159*^9,
|
---|
615 | 3.411910851088325*^9}},ExpressionUUID->"dec6e064-d31c-48e0-abce-\
|
---|
616 | be014f4d50d3"],
|
---|
617 |
|
---|
618 | Cell[BoxData[
|
---|
619 | RowBox[{
|
---|
620 | RowBox[{"vertsGhosts", "=",
|
---|
621 | RowBox[{"FeynmanRules", "[",
|
---|
622 | RowBox[{"LGhost", ",",
|
---|
623 | RowBox[{"FlavorExpand", "\[Rule]", "SU2W"}]}], "]"}]}], ";"}]], "Input",
|
---|
624 | CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
|
---|
625 | 3.411910826105542*^9, 3.411910826777452*^9}, {3.411910857580064*^9,
|
---|
626 | 3.411910870001601*^9}, 3.415256462464088*^9, {3.423416107236608*^9,
|
---|
627 | 3.423416112835993*^9}},ExpressionUUID->"5af83643-4663-48bb-bd12-\
|
---|
628 | 48a7dd54dd2a"]
|
---|
629 | }, Open ]]
|
---|
630 | }, Open ]],
|
---|
631 |
|
---|
632 | Cell[CellGroupData[{
|
---|
633 |
|
---|
634 | Cell["LQ Feynman rules", "Subsection",
|
---|
635 | CellChangeTimes->{{3.8292155280837584`*^9, 3.829215536797113*^9}, {
|
---|
636 | 3.829215591759852*^9,
|
---|
637 | 3.829215592307922*^9}},ExpressionUUID->"49241856-d642-4ab9-bcc6-\
|
---|
638 | fe7841b8eadd"],
|
---|
639 |
|
---|
640 | Cell[CellGroupData[{
|
---|
641 |
|
---|
642 | Cell["LQ masses and Higgs interactions", "Subsubsection",
|
---|
643 | CellChangeTimes->{{3.411910690443768*^9, 3.411910692233274*^9}, {
|
---|
644 | 3.829215595056684*^9, 3.829215607595992*^9}, {3.829215646849041*^9,
|
---|
645 | 3.8292156474183273`*^9}},ExpressionUUID->"84961d68-3069-4352-b3bb-\
|
---|
646 | 31e8070b7fd5"],
|
---|
647 |
|
---|
648 | Cell[BoxData[
|
---|
649 | RowBox[{
|
---|
650 | RowBox[{"vertsLQ2Phi", "=",
|
---|
651 | RowBox[{"FeynmanRules", "[", "LQ2Phi", "]"}]}], ";"}]], "Input",
|
---|
652 | CellChangeTimes->{
|
---|
653 | 3.40274690437012*^9, {3.402746954727231*^9, 3.4027469691642714`*^9}, {
|
---|
654 | 3.4032592998045692`*^9, 3.403259304564069*^9}, 3.403267976055098*^9, {
|
---|
655 | 3.411910705212987*^9, 3.411910705553741*^9}, {3.423415993272615*^9,
|
---|
656 | 3.42341600147605*^9}, {3.829215610913702*^9, 3.829215636565795*^9}},
|
---|
657 | CellLabel->"In[8]:=",ExpressionUUID->"3fddd0ee-a2fe-4128-bd2d-f1334eedcd38"]
|
---|
658 | }, Open ]],
|
---|
659 |
|
---|
660 | Cell[CellGroupData[{
|
---|
661 |
|
---|
662 | Cell["Kinetic terms and interactions with SM gauge bosons", "Subsubsection",
|
---|
663 | CellChangeTimes->{
|
---|
664 | 3.404470070069872*^9, {3.82921564035389*^9,
|
---|
665 | 3.829215653771513*^9}},ExpressionUUID->"98f6ddfb-9422-4710-adcb-\
|
---|
666 | eac0c5e06a0d"],
|
---|
667 |
|
---|
668 | Cell[BoxData[
|
---|
669 | RowBox[{
|
---|
670 | RowBox[{"vertsLQkin", "=",
|
---|
671 | RowBox[{"FeynmanRules", "[", "LQkin", "]"}]}], ";"}]], "Input",
|
---|
672 | CellChangeTimes->{{3.411910728609757*^9, 3.41191072908109*^9}, {
|
---|
673 | 3.423416009086747*^9, 3.423416012982971*^9}, 3.423416065626593*^9, {
|
---|
674 | 3.82921565538326*^9,
|
---|
675 | 3.829215661726709*^9}},ExpressionUUID->"24723dda-7ad7-47f6-a68e-\
|
---|
676 | 4c8311a495da"]
|
---|
677 | }, Open ]],
|
---|
678 |
|
---|
679 | Cell[CellGroupData[{
|
---|
680 |
|
---|
681 | Cell["Interactions with SM fermions", "Subsubsection",
|
---|
682 | CellChangeTimes->{{3.829215664935898*^9,
|
---|
683 | 3.82921566790796*^9}},ExpressionUUID->"c6c3d1d4-4c33-4bcd-a9c8-\
|
---|
684 | 2638c18b6ddc"],
|
---|
685 |
|
---|
686 | Cell[BoxData[
|
---|
687 | RowBox[{
|
---|
688 | RowBox[{"vertsLQf", "=",
|
---|
689 | RowBox[{"FeynmanRules", "[", "LQf", "]"}]}], ";"}]], "Input",
|
---|
690 | CellChangeTimes->{{3.402205118991502*^9, 3.4022051228508387`*^9},
|
---|
691 | 3.402747846432675*^9, {3.4032613449872217`*^9, 3.403261349245253*^9}, {
|
---|
692 | 3.403266977133403*^9, 3.4032669793125563`*^9}, {3.411910788644576*^9,
|
---|
693 | 3.411910789233307*^9}, {3.423416034294303*^9, 3.423416042739814*^9}, {
|
---|
694 | 3.829215669415489*^9, 3.829215673536475*^9}},
|
---|
695 | CellLabel->"In[6]:=",ExpressionUUID->"b6b52221-2242-4d9d-86f0-81112b5262bb"]
|
---|
696 | }, Open ]],
|
---|
697 |
|
---|
698 | Cell[CellGroupData[{
|
---|
699 |
|
---|
700 | Cell["Triple LQ interactions", "Subsubsection",
|
---|
701 | CellChangeTimes->{{3.829215678751444*^9,
|
---|
702 | 3.8292156839336977`*^9}},ExpressionUUID->"03a7a6aa-9b8b-4edd-9cd7-\
|
---|
703 | 06102c52b791"],
|
---|
704 |
|
---|
705 | Cell[BoxData[
|
---|
706 | RowBox[{
|
---|
707 | RowBox[{"vertsLQ3Phi", "=",
|
---|
708 | RowBox[{"FeynmanRules", "[", "LQ3Phi", "]"}]}], ";"}]], "Input",
|
---|
709 | CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
|
---|
710 | 3.411910826105542*^9, 3.411910826777452*^9}, {3.423416089772278*^9,
|
---|
711 | 3.423416095643961*^9}, {3.8292156855173798`*^9,
|
---|
712 | 3.829215696598853*^9}},ExpressionUUID->"ba674f08-fb85-4e91-b0e0-\
|
---|
713 | 87c4e25c5977"]
|
---|
714 | }, Open ]],
|
---|
715 |
|
---|
716 | Cell[CellGroupData[{
|
---|
717 |
|
---|
718 | Cell["Quartic LQ interactions", "Subsubsection",
|
---|
719 | CellChangeTimes->{{3.411910849714159*^9, 3.411910851088325*^9}, {
|
---|
720 | 3.82921577096142*^9,
|
---|
721 | 3.829215773753146*^9}},ExpressionUUID->"0304a94a-5a32-4bbb-af6e-\
|
---|
722 | 6454e3188bdf"],
|
---|
723 |
|
---|
724 | Cell[BoxData[
|
---|
725 | RowBox[{
|
---|
726 | RowBox[{"vertsLQ4Phi", "=",
|
---|
727 | RowBox[{"FeynmanRules", "[", "LQ4Phi", "]"}]}], ";"}]], "Input",
|
---|
728 | CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
|
---|
729 | 3.411910826105542*^9, 3.411910826777452*^9}, {3.411910857580064*^9,
|
---|
730 | 3.411910870001601*^9}, 3.415256462464088*^9, {3.423416107236608*^9,
|
---|
731 | 3.423416112835993*^9}, {3.8292156993492327`*^9, 3.829215710508623*^9}, {
|
---|
732 | 3.829289791816822*^9, 3.829289824554365*^9}, {3.8292973820259123`*^9,
|
---|
733 | 3.829297383199526*^9}},ExpressionUUID->"d650c38b-5ce3-4036-83af-\
|
---|
734 | db25787dd434"]
|
---|
735 | }, Open ]]
|
---|
736 | }, Open ]]
|
---|
737 | }, Open ]],
|
---|
738 |
|
---|
739 | Cell[CellGroupData[{
|
---|
740 |
|
---|
741 | Cell["Output to FeynArts and MadGraph (LO)", "Section",
|
---|
742 | CellChangeTimes->{
|
---|
743 | 3.411910944409371*^9, {3.412185514054689*^9, 3.412185517014236*^9}, {
|
---|
744 | 3.829317434673444*^9, 3.829317439013938*^9}, {3.829317736774302*^9,
|
---|
745 | 3.829317737707015*^9}},ExpressionUUID->"fca25d07-b476-4934-be9c-\
|
---|
746 | 000257845077"],
|
---|
747 |
|
---|
748 | Cell[CellGroupData[{
|
---|
749 |
|
---|
750 | Cell["FeynArts output", "Subsection",
|
---|
751 | CellChangeTimes->{{3.411911000132907*^9,
|
---|
752 | 3.411911005135379*^9}},ExpressionUUID->"767f1460-6bb0-4011-815f-\
|
---|
753 | b0e2a89bc978"],
|
---|
754 |
|
---|
755 | Cell["\<\
|
---|
756 | The FeynArts output can be obtained via the commands below. FeynArts supports \
|
---|
757 | Feynman gauge.\
|
---|
758 | \>", "Text",
|
---|
759 | CellChangeTimes->{{3.4121854851672792`*^9, 3.412185494183435*^9}, {
|
---|
760 | 3.829317345260894*^9,
|
---|
761 | 3.829317371330112*^9}},ExpressionUUID->"fe1f6866-04ec-47fa-bd3d-\
|
---|
762 | 3a225d460d63"],
|
---|
763 |
|
---|
764 | Cell[BoxData[{
|
---|
765 | RowBox[{
|
---|
766 | RowBox[{"FeynmanGauge", " ", "=", " ", "True"}],
|
---|
767 | ";"}], "\[IndentingNewLine]",
|
---|
768 | RowBox[{"WriteFeynArtsOutput", "[",
|
---|
769 | RowBox[{
|
---|
770 | RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
|
---|
771 | RowBox[{"Output", "\[Rule]", "\"\<SLQrules-FA\>\""}]}], "]"}]}], "Input",
|
---|
772 | CellChangeTimes->{{3.411911018354619*^9, 3.4119110196967573`*^9}, {
|
---|
773 | 3.412185470680571*^9, 3.412185506240796*^9}, {3.4234161971513453`*^9,
|
---|
774 | 3.423416209716672*^9}, {3.829216185775022*^9, 3.829216215466721*^9}, {
|
---|
775 | 3.8292172624502296`*^9, 3.829217263668345*^9}, 3.829307863874927*^9, {
|
---|
776 | 3.8293079648676643`*^9, 3.829307973887467*^9}, {3.829317339954515*^9,
|
---|
777 | 3.829317341602551*^9},
|
---|
778 | 3.829317374406982*^9},ExpressionUUID->"c5883ed3-34ce-4193-bec0-\
|
---|
779 | 173de87e6e36"]
|
---|
780 | }, Open ]],
|
---|
781 |
|
---|
782 | Cell[CellGroupData[{
|
---|
783 |
|
---|
784 | Cell["MadGraph output (LO)", "Subsection",
|
---|
785 | CellChangeTimes->{{3.4119110460271273`*^9, 3.411911049405038*^9}, {
|
---|
786 | 3.411911150323291*^9, 3.4119111515122623`*^9}, {3.5074389822322817`*^9,
|
---|
787 | 3.507438983565652*^9}, {3.507439158477231*^9, 3.507439159035309*^9}, {
|
---|
788 | 3.82921599622618*^9, 3.829215998252964*^9}, {3.8293177326702642`*^9,
|
---|
789 | 3.829317734640527*^9}},ExpressionUUID->"8e432d9c-e319-4320-9c94-\
|
---|
790 | 2272b0378390"],
|
---|
791 |
|
---|
792 | Cell[BoxData[
|
---|
793 | RowBox[{"WriteUFO", "[",
|
---|
794 | RowBox[{
|
---|
795 | RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
|
---|
796 | RowBox[{"Output", "\[Rule]", "\"\<SLQrules-UFO\>\""}]}], "]"}]], "Input",
|
---|
797 | CellChangeTimes->{
|
---|
798 | 3.412185367693318*^9, 3.412185407947097*^9, {3.5074391727475023`*^9,
|
---|
799 | 3.5074391804929533`*^9}, {3.829217380837536*^9, 3.829217387763755*^9},
|
---|
800 | 3.829217445398571*^9, {3.829286056748787*^9, 3.829286057755117*^9}},
|
---|
801 | CellLabel->"In[5]:=",ExpressionUUID->"205795bd-604d-406b-a84b-171a43be6b72"]
|
---|
802 | }, Open ]]
|
---|
803 | }, Open ]],
|
---|
804 |
|
---|
805 | Cell[CellGroupData[{
|
---|
806 |
|
---|
807 | Cell["Further Outputs (not tested)", "Section",
|
---|
808 | CellChangeTimes->{
|
---|
809 | 3.411910944409371*^9, {3.412185514054689*^9, 3.412185517014236*^9}, {
|
---|
810 | 3.829317442109345*^9, 3.829317447752201*^9}, {3.829317491763179*^9,
|
---|
811 | 3.829317495376507*^9}, {3.829317716032243*^9,
|
---|
812 | 3.829317721229558*^9}},ExpressionUUID->"ca174a26-f0af-49fc-ae37-\
|
---|
813 | 6b00eb4e769d"],
|
---|
814 |
|
---|
815 | Cell[CellGroupData[{
|
---|
816 |
|
---|
817 | Cell["MadGraph output (NLO)", "Subsection",
|
---|
818 | CellChangeTimes->{{3.606568224887179*^9, 3.606568225228436*^9}, {
|
---|
819 | 3.606568338418679*^9, 3.606568340840477*^9}, {3.829215990329516*^9,
|
---|
820 | 3.8292159946774683`*^9}, {3.8293177401679363`*^9,
|
---|
821 | 3.829317741160136*^9}},ExpressionUUID->"d0bc5a0a-612d-445f-95bc-\
|
---|
822 | 6e8966c109ba"],
|
---|
823 |
|
---|
824 | Cell[BoxData[
|
---|
825 | RowBox[{"(*",
|
---|
826 | RowBox[{
|
---|
827 | "Renormalization", " ", "and", " ", "output", " ", "to", " ", "FA"}],
|
---|
828 | "*)"}]], "Input",
|
---|
829 | CellChangeTimes->{{3.606568280586434*^9, 3.606568289181669*^9}, {
|
---|
830 | 3.606568347601158*^9,
|
---|
831 | 3.606568356208818*^9}},ExpressionUUID->"1b930662-f8b2-452a-b56d-\
|
---|
832 | c9bfc9ac6898"],
|
---|
833 |
|
---|
834 | Cell[BoxData[{
|
---|
835 | RowBox[{
|
---|
836 | RowBox[{"Lren", "=",
|
---|
837 | RowBox[{"OnShellRenormalization", "[",
|
---|
838 | RowBox[{
|
---|
839 | RowBox[{"LSM", "+", "LQall"}], ",",
|
---|
840 | RowBox[{"QCDOnly", "\[Rule]", "True"}], ",",
|
---|
841 | RowBox[{"FlavorMixing", "\[Rule]", "False"}]}], "]"}]}],
|
---|
842 | ";"}], "\[IndentingNewLine]",
|
---|
843 | RowBox[{
|
---|
844 | RowBox[{
|
---|
845 | "SetDirectory", "[", "\"\<Path to FeynArts/Models directory\>\"", "]"}],
|
---|
846 | ";"}], "\[IndentingNewLine]",
|
---|
847 | RowBox[{"WriteFeynArtsOutput", "[",
|
---|
848 | RowBox[{"Lren", ",",
|
---|
849 | RowBox[{"Output", "\[Rule]", "\"\<SLQrulesRen\>\""}], ",",
|
---|
850 | RowBox[{"GenericFile", "\[Rule]", "False"}]}], "]"}]}], "Input",
|
---|
851 | CellChangeTimes->{{3.606568250159355*^9, 3.6065682552288523`*^9}, {
|
---|
852 | 3.6065683087252502`*^9, 3.6065683093453608`*^9}, {3.6065684035728207`*^9,
|
---|
853 | 3.606568404147846*^9}, {3.824044900202484*^9, 3.824044916247203*^9}, {
|
---|
854 | 3.824057173692593*^9, 3.824057191173675*^9}, {3.8240643178993683`*^9,
|
---|
855 | 3.8240643203718367`*^9}, {3.824182772031001*^9, 3.8241827723487883`*^9}, {
|
---|
856 | 3.824234854932047*^9, 3.82423488016323*^9}, 3.824236197413455*^9, {
|
---|
857 | 3.824236502199308*^9, 3.824236510665146*^9}, {3.824354237724072*^9,
|
---|
858 | 3.824354241903737*^9}, {3.829215795500759*^9, 3.829215823334786*^9}, {
|
---|
859 | 3.8293174787545557`*^9,
|
---|
860 | 3.8293175145510273`*^9}},ExpressionUUID->"10263708-39b4-4c83-b08e-\
|
---|
861 | 4b581e608878"],
|
---|
862 |
|
---|
863 | Cell[BoxData[
|
---|
864 | RowBox[{"(*",
|
---|
865 | RowBox[{"Computation", " ", "of", " ", "the", " ", "Counterterms"}],
|
---|
866 | "*)"}]], "Input",
|
---|
867 | CellChangeTimes->{{3.606568413917823*^9,
|
---|
868 | 3.6065684261433983`*^9}},ExpressionUUID->"0d1d00bd-baf4-4ab7-a054-\
|
---|
869 | ae49de279dbe"],
|
---|
870 |
|
---|
871 | Cell[BoxData[
|
---|
872 | RowBox[{"Quit", "[", "]"}]], "Input",
|
---|
873 | CellChangeTimes->{{3.606568433162343*^9, 3.606568438694559*^9}},
|
---|
874 | CellLabel->"In[9]:=",ExpressionUUID->"505b1b1d-f468-4132-8776-c8a5ee50b352"],
|
---|
875 |
|
---|
876 | Cell[BoxData[{
|
---|
877 | RowBox[{
|
---|
878 | RowBox[{"SetDirectory", "[", "\"\<Path to FeynArts directory\>\"", "]"}],
|
---|
879 | ";"}], "\[IndentingNewLine]",
|
---|
880 | RowBox[{"<<", " ", "FeynArts`"}], "\[IndentingNewLine]",
|
---|
881 | RowBox[{
|
---|
882 | RowBox[{"SetDirectory", "[", "\"\<Path to FeynRules directory\>\"", "]"}],
|
---|
883 | ";"}], "\[IndentingNewLine]",
|
---|
884 | RowBox[{"<<", " ", "NLOCT`"}]}], "Input",
|
---|
885 | CellChangeTimes->{{3.6065684720815067`*^9, 3.6065685038224916`*^9}, {
|
---|
886 | 3.824041543853984*^9, 3.824041551195013*^9}, {3.824041608979226*^9,
|
---|
887 | 3.824041618200704*^9}, {3.829317531324136*^9,
|
---|
888 | 3.829317547921916*^9}},ExpressionUUID->"eca1ebb2-3ca1-4381-929c-\
|
---|
889 | a5b452dfd06e"],
|
---|
890 |
|
---|
891 | Cell[BoxData[
|
---|
892 | RowBox[{
|
---|
893 | RowBox[{"WriteCT", "[",
|
---|
894 | RowBox[{"\"\<SLQrulesRen/SLQrulesRen\>\"", ",", "\"\<Lorentz\>\"", ",",
|
---|
895 | RowBox[{"Output", " ", "\[Rule]", " ", "\"\<SLQrulesRen\>\""}], ",",
|
---|
896 | RowBox[{"LabelInternal", "\[Rule]", "True"}], ",",
|
---|
897 | RowBox[{"QCDOnly", "\[Rule]", "True"}], ",",
|
---|
898 | RowBox[{"KeptIndices", "\[Rule]",
|
---|
899 | RowBox[{"{", "}"}]}], ",",
|
---|
900 | RowBox[{"ZeroMom", "\[Rule]",
|
---|
901 | RowBox[{"{",
|
---|
902 | RowBox[{"{",
|
---|
903 | RowBox[{"aS", ",",
|
---|
904 | RowBox[{"{",
|
---|
905 | RowBox[{
|
---|
906 | RowBox[{"F", "[", "7", "]"}], ",",
|
---|
907 | RowBox[{"V", "[", "4", "]"}], ",",
|
---|
908 | RowBox[{"-",
|
---|
909 | RowBox[{"F", "[", "7", "]"}]}]}], "}"}], ",", "0"}], "}"}],
|
---|
910 | "}"}]}], ",",
|
---|
911 | RowBox[{"ComplexMass", "\[Rule]", "False"}]}], "]"}], "//",
|
---|
912 | "Timing"}]], "Input",
|
---|
913 | CellChangeTimes->{{3.606569782037321*^9, 3.606569798425932*^9}, {
|
---|
914 | 3.8240420245848017`*^9, 3.824042040296957*^9}, {3.8240449896101923`*^9,
|
---|
915 | 3.824044993658993*^9}, {3.824045028657148*^9, 3.824045039727353*^9}, {
|
---|
916 | 3.824354477405341*^9, 3.824354485351205*^9}, {3.829215847112258*^9,
|
---|
917 | 3.829215862665469*^9}},ExpressionUUID->"f8201996-ff3d-42c2-8024-\
|
---|
918 | c52d0c306c3b"],
|
---|
919 |
|
---|
920 | Cell[BoxData[
|
---|
921 | RowBox[{"(*",
|
---|
922 | RowBox[{"Copy", " ", "the", " ", "file", " ",
|
---|
923 | RowBox[{"SLQrulesRen", ".", "nlo"}], " ", "to", " ", "the", " ",
|
---|
924 | RowBox[{"FeynRules", "/", "SLQrules"}], " ",
|
---|
925 | RowBox[{"folder", ".", " ", "Quit"}], " ", "and", " ", "reload", " ",
|
---|
926 | "the", " ", "SLQrules", " ", "model", " ", "files", " ", "with", " ",
|
---|
927 | "restrictions", " ", "for", " ", "the", " ", "SM", " ", "if", " ",
|
---|
928 | "desired"}], " ", "*)"}]], "Input",
|
---|
929 | CellChangeTimes->{{3.6065685476941853`*^9, 3.6065685843784647`*^9}, {
|
---|
930 | 3.829317668291019*^9,
|
---|
931 | 3.829317696467911*^9}},ExpressionUUID->"cae44f65-224f-463f-bfbd-\
|
---|
932 | cd9b1ff1d695"],
|
---|
933 |
|
---|
934 | Cell[BoxData[{
|
---|
935 | RowBox[{
|
---|
936 | RowBox[{
|
---|
937 | "SetDirectory", "[", "\"\<Path to FeynRules/Models/SLQrules\>\"", "]"}],
|
---|
938 | ";"}], "\[IndentingNewLine]",
|
---|
939 | RowBox[{
|
---|
940 | RowBox[{"Get", "[", "\"\<SLQrulesRen.nlo\>\"", "]"}], ";"}]}], "Input",
|
---|
941 | CellChangeTimes->{{3.824044699095984*^9, 3.8240447048338137`*^9}, {
|
---|
942 | 3.824045265459449*^9, 3.824045267232279*^9}, {3.824045325867647*^9,
|
---|
943 | 3.82404532675732*^9}, {3.824355155397867*^9, 3.824355156347355*^9}, {
|
---|
944 | 3.825595584381959*^9, 3.825595585533291*^9}, {3.8256012988199673`*^9,
|
---|
945 | 3.825601300549666*^9}, {3.825681031976363*^9, 3.825681032621423*^9}, {
|
---|
946 | 3.825682168873169*^9, 3.825682169885099*^9}, {3.827670159771389*^9,
|
---|
947 | 3.8276701617811728`*^9}, {3.827945438276372*^9, 3.8279454403812037`*^9}, {
|
---|
948 | 3.829215916308983*^9, 3.829215920362095*^9}, {3.829317625534028*^9,
|
---|
949 | 3.829317633229519*^9}},ExpressionUUID->"7d96f046-6569-4843-8a38-\
|
---|
950 | ba116e454853"],
|
---|
951 |
|
---|
952 | Cell[BoxData[
|
---|
953 | RowBox[{"WriteUFO", "[",
|
---|
954 | RowBox[{
|
---|
955 | RowBox[{"LSM", "+", "LQall"}], ",",
|
---|
956 | RowBox[{"UVCounterterms", "\[Rule]", "UV$vertlist"}], ",",
|
---|
957 | RowBox[{"R2Vertices", "\[Rule]", "R2$vertlist"}], ",",
|
---|
958 | RowBox[{"Output", "\[Rule]", "\"\<SLQrulesNLO\>\""}]}], "]"}]], "Input",
|
---|
959 | CellChangeTimes->{{3.60656864069383*^9, 3.606568704839243*^9}, {
|
---|
960 | 3.824045312263064*^9, 3.8240453134089203`*^9}, {3.8240454130852003`*^9,
|
---|
961 | 3.824045426446526*^9}, {3.824355288930069*^9, 3.8243552972465687`*^9}, {
|
---|
962 | 3.824355340557374*^9, 3.824355349973928*^9}, {3.824358280104438*^9,
|
---|
963 | 3.824358280481341*^9}, {3.824359272193449*^9, 3.8243592775346327`*^9}, {
|
---|
964 | 3.824359609008649*^9, 3.8243596399406023`*^9}, {3.824359840665352*^9,
|
---|
965 | 3.8243598553660316`*^9}, {3.8243599723283367`*^9, 3.824359985320318*^9}, {
|
---|
966 | 3.82436012447043*^9, 3.824360127029685*^9}, {3.8243602196467*^9,
|
---|
967 | 3.8243602240451307`*^9}, {3.825595534914063*^9, 3.825595537548952*^9}, {
|
---|
968 | 3.8255958328196907`*^9, 3.825595835369465*^9}, {3.8256012634782963`*^9,
|
---|
969 | 3.825601281027199*^9}, {3.825679142330309*^9, 3.825679152757854*^9}, {
|
---|
970 | 3.825679191045094*^9, 3.825679203887518*^9}, {3.8274941549563828`*^9,
|
---|
971 | 3.827494162852319*^9}, {3.8274942624154797`*^9, 3.827494273001966*^9}, {
|
---|
972 | 3.82766990372858*^9, 3.827669907226015*^9}, {3.8276699786111526`*^9,
|
---|
973 | 3.827669978993259*^9}, {3.827814032748253*^9, 3.8278140348941183`*^9}, {
|
---|
974 | 3.827814512387393*^9, 3.827814512881673*^9}, {3.827919768541841*^9,
|
---|
975 | 3.827919806432831*^9}, {3.827920896712434*^9, 3.827920899521324*^9}, {
|
---|
976 | 3.827945037947239*^9, 3.827945083454887*^9}, 3.827947833042583*^9, {
|
---|
977 | 3.829215930833584*^9, 3.8292159388741913`*^9}, {3.829217574433614*^9,
|
---|
978 | 3.829217585539023*^9}},ExpressionUUID->"3d0fdecb-e60f-45b1-a607-\
|
---|
979 | a8c1085436fb"]
|
---|
980 | }, Open ]],
|
---|
981 |
|
---|
982 | Cell[CellGroupData[{
|
---|
983 |
|
---|
984 | Cell["Sherpa output", "Subsection",
|
---|
985 | CellChangeTimes->{{3.4119110460271273`*^9,
|
---|
986 | 3.411911049405038*^9}},ExpressionUUID->"4c0a9dc9-9112-4554-bd1b-\
|
---|
987 | 67d12c33904e"],
|
---|
988 |
|
---|
989 | Cell["The Sherpa output for the SM can be obtained via", "Text",
|
---|
990 | CellChangeTimes->{{3.411910955110715*^9, 3.4119109690877657`*^9}, {
|
---|
991 | 3.411911059590749*^9,
|
---|
992 | 3.4119110601885567`*^9}},ExpressionUUID->"7c0ba6c8-b6ed-4845-9fcc-\
|
---|
993 | 02a5ff82e30a"],
|
---|
994 |
|
---|
995 | Cell[BoxData[{
|
---|
996 | RowBox[{
|
---|
997 | RowBox[{"FeynmanGauge", "=", "False"}], ";"}], "\[IndentingNewLine]",
|
---|
998 | RowBox[{"WriteSHOutput", "[",
|
---|
999 | RowBox[{
|
---|
1000 | RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
|
---|
1001 | RowBox[{"Output", "\[Rule]", "\"\<SLQrules-SH\>\""}]}], "]"}]}], "Input",
|
---|
1002 | CellChangeTimes->{{3.4119110943383636`*^9, 3.41191110054212*^9}, {
|
---|
1003 | 3.412185455856553*^9, 3.412185456628922*^9}, {3.4143156544792233`*^9,
|
---|
1004 | 3.414315668290971*^9}, {3.423416222700699*^9, 3.423416235756197*^9}, {
|
---|
1005 | 3.829217327434263*^9, 3.8292173381259527`*^9},
|
---|
1006 | 3.829317703385848*^9},ExpressionUUID->"97cdf914-d42a-4560-b2cb-\
|
---|
1007 | 1dfa13df3e7b"]
|
---|
1008 | }, Open ]],
|
---|
1009 |
|
---|
1010 | Cell[CellGroupData[{
|
---|
1011 |
|
---|
1012 | Cell["CalcHep output", "Subsection",
|
---|
1013 | CellChangeTimes->{{3.4119110460271273`*^9, 3.411911049405038*^9}, {
|
---|
1014 | 3.411911150323291*^9,
|
---|
1015 | 3.4119111515122623`*^9}},ExpressionUUID->"3b727f9f-0b16-4ae0-9263-\
|
---|
1016 | 81de78091dd4"],
|
---|
1017 |
|
---|
1018 | Cell["CalcHep also supports the Feynman gauge", "Text",
|
---|
1019 | CellChangeTimes->{{3.4121853722243843`*^9,
|
---|
1020 | 3.412185380407339*^9}},ExpressionUUID->"e1e11052-6536-44ca-80b9-\
|
---|
1021 | 75bb5ecb0b2c"],
|
---|
1022 |
|
---|
1023 | Cell[BoxData[{
|
---|
1024 | RowBox[{
|
---|
1025 | RowBox[{"FeynmanGauge", "=", "True"}], ";"}], "\[IndentingNewLine]",
|
---|
1026 | RowBox[{
|
---|
1027 | RowBox[{"WriteCHOutput", "[",
|
---|
1028 | RowBox[{
|
---|
1029 | RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
|
---|
1030 | RowBox[{"Output", "\[Rule]", "\"\<SLQrules-CH\>\""}]}], "]"}],
|
---|
1031 | ";"}]}], "Input",
|
---|
1032 | CellChangeTimes->{{3.4119110943383636`*^9, 3.41191110054212*^9}, {
|
---|
1033 | 3.412185409690489*^9, 3.4121854275198507`*^9}, {3.412450479942018*^9,
|
---|
1034 | 3.4124504817138367`*^9}, {3.8292173423167677`*^9, 3.829217351323717*^9},
|
---|
1035 | 3.829317706602*^9},ExpressionUUID->"a32f6603-0269-48f5-a793-e363bafdb2c3"]
|
---|
1036 | }, Open ]],
|
---|
1037 |
|
---|
1038 | Cell[CellGroupData[{
|
---|
1039 |
|
---|
1040 | Cell["Whizard output", "Subsection",
|
---|
1041 | CellChangeTimes->{{3.4119110460271273`*^9, 3.411911049405038*^9}, {
|
---|
1042 | 3.411911150323291*^9, 3.4119111515122623`*^9}, {3.5074389822322817`*^9,
|
---|
1043 | 3.507438983565652*^9}},ExpressionUUID->"9a745412-8fb2-4156-96ba-\
|
---|
1044 | 33af491dcac1"],
|
---|
1045 |
|
---|
1046 | Cell["Whizard also supports the Feynman gauge", "Text",
|
---|
1047 | CellChangeTimes->{{3.4121853722243843`*^9, 3.412185380407339*^9}, {
|
---|
1048 | 3.507438990997637*^9,
|
---|
1049 | 3.507438992828805*^9}},ExpressionUUID->"027bfaf0-314e-43ca-a852-\
|
---|
1050 | b3c5e1452206"],
|
---|
1051 |
|
---|
1052 | Cell[BoxData[{
|
---|
1053 | RowBox[{
|
---|
1054 | RowBox[{"FeynmanGauge", "=", "True"}], ";"}], "\[IndentingNewLine]",
|
---|
1055 | RowBox[{
|
---|
1056 | RowBox[{"WriteWOOutput", "[",
|
---|
1057 | RowBox[{
|
---|
1058 | RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
|
---|
1059 | RowBox[{"Output", "\[Rule]", "\"\<SLQrules-WO\>\""}]}], "]"}],
|
---|
1060 | ";"}]}], "Input",
|
---|
1061 | CellChangeTimes->{{3.4119110943383636`*^9, 3.41191110054212*^9}, {
|
---|
1062 | 3.412185409690489*^9, 3.4121854275198507`*^9}, {3.412450479942018*^9,
|
---|
1063 | 3.4124504817138367`*^9}, {3.507438986168689*^9, 3.507438987383316*^9}, {
|
---|
1064 | 3.8292173561928368`*^9, 3.829217373570979*^9},
|
---|
1065 | 3.829317707730329*^9},ExpressionUUID->"6c2a3c74-62aa-4fe9-b83f-\
|
---|
1066 | 4d625737535f"]
|
---|
1067 | }, Open ]]
|
---|
1068 | }, Open ]]
|
---|
1069 | }, Open ]]
|
---|
1070 | },
|
---|
1071 | WindowSize->{1066, 682},
|
---|
1072 | WindowMargins->{{29, Automatic}, {Automatic, 15}},
|
---|
1073 | ShowSelection->True,
|
---|
1074 | FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)",
|
---|
1075 | StyleDefinitions->"Default.nb"
|
---|
1076 | ]
|
---|
1077 | (* End of Notebook Content *)
|
---|
1078 |
|
---|
1079 | (* Internal cache information *)
|
---|
1080 | (*CellTagsOutline
|
---|
1081 | CellTagsIndex->{}
|
---|
1082 | *)
|
---|
1083 | (*CellTagsIndex
|
---|
1084 | CellTagsIndex->{}
|
---|
1085 | *)
|
---|
1086 | (*NotebookFileOutline
|
---|
1087 | Notebook[{
|
---|
1088 | Cell[545, 20, 198, 3, 30, "Input",ExpressionUUID->"b688e269-f949-4f2c-a5f5-9de5f1b3267d"],
|
---|
1089 | Cell[746, 25, 318, 7, 58, "Text",ExpressionUUID->"cc085fb5-11e0-443f-82b9-5a2d42c2cd4e"],
|
---|
1090 | Cell[CellGroupData[{
|
---|
1091 | Cell[1089, 36, 744, 16, 52, "Input",ExpressionUUID->"a0323c9b-4a85-486b-8893-6aa74c98675c"],
|
---|
1092 | Cell[1836, 54, 2329, 33, 34, "Output",ExpressionUUID->"6943a034-02dc-441c-8676-f99c07faee4c"]
|
---|
1093 | }, Open ]],
|
---|
1094 | Cell[4180, 90, 389, 8, 52, "Input",ExpressionUUID->"dae72e58-5763-4788-8c5b-617b4aebb651"],
|
---|
1095 | Cell[4572, 100, 979, 20, 52, "Input",ExpressionUUID->"bc43008c-6c7d-4f5d-a2ab-eebcf254e2c2"],
|
---|
1096 | Cell[CellGroupData[{
|
---|
1097 | Cell[5576, 124, 153, 3, 98, "Title",ExpressionUUID->"636beac9-9f31-4b31-b755-3eb42ffd478e"],
|
---|
1098 | Cell[5732, 129, 232, 4, 35, "Text",ExpressionUUID->"ec7f2af5-77dc-482c-8fb4-9b08b7dd505e"],
|
---|
1099 | Cell[5967, 135, 1522, 25, 52, "Input",ExpressionUUID->"59631497-ebc3-49fd-8e92-ad2825080560"],
|
---|
1100 | Cell[7492, 162, 248, 6, 35, "Text",ExpressionUUID->"20fa5ed0-b235-4319-9812-14fdf3322a3d"],
|
---|
1101 | Cell[7743, 170, 279, 5, 30, "Input",ExpressionUUID->"98c0dab1-7ec3-42cb-bfa0-b73e6f421115"],
|
---|
1102 | Cell[8025, 177, 156, 3, 30, "Input",ExpressionUUID->"8fc83e3e-26a7-4176-ae65-36575f4b3800"],
|
---|
1103 | Cell[CellGroupData[{
|
---|
1104 | Cell[8206, 184, 207, 4, 67, "Section",ExpressionUUID->"71117ab3-5427-49a8-a834-7937a1026b1a"],
|
---|
1105 | Cell[CellGroupData[{
|
---|
1106 | Cell[8438, 192, 163, 3, 54, "Subsection",ExpressionUUID->"0b8321e7-8717-49ad-900e-3e223b1eeaf1"],
|
---|
1107 | Cell[8604, 197, 204, 3, 35, "Text",ExpressionUUID->"fec50e9b-5370-4937-b93e-a86a29374477"],
|
---|
1108 | Cell[8811, 202, 227, 4, 30, "Input",ExpressionUUID->"a0d827a7-58f8-445a-aa08-d7b0f9121b1c"],
|
---|
1109 | Cell[9041, 208, 445, 6, 35, "Text",ExpressionUUID->"362c7424-cc6f-41da-abaf-236dd1d84159"],
|
---|
1110 | Cell[9489, 216, 155, 3, 30, "Input",ExpressionUUID->"946efd16-a954-4caa-818d-8587b2eddc42"],
|
---|
1111 | Cell[CellGroupData[{
|
---|
1112 | Cell[9669, 223, 165, 3, 45, "Subsubsection",ExpressionUUID->"5cffddb4-ac7e-4684-851f-5715248647ab"],
|
---|
1113 | Cell[9837, 228, 332, 7, 35, "Text",ExpressionUUID->"9ae9c6af-ebbd-46eb-9f5d-dbf5a17db985"],
|
---|
1114 | Cell[10172, 237, 158, 3, 30, "Input",ExpressionUUID->"9a57df20-3954-4969-8615-e8120a673950"]
|
---|
1115 | }, Open ]],
|
---|
1116 | Cell[CellGroupData[{
|
---|
1117 | Cell[10367, 245, 214, 4, 45, "Subsubsection",ExpressionUUID->"3eafaea8-6c94-4d58-8cd8-09a6ddd8d65a"],
|
---|
1118 | Cell[10584, 251, 379, 8, 35, "Text",ExpressionUUID->"8f7e06ed-6571-4ca8-8418-df93504a99ea"],
|
---|
1119 | Cell[10966, 261, 207, 4, 30, "Input",ExpressionUUID->"7a7a5c35-31cc-40c5-be4d-57d41d1af96e"]
|
---|
1120 | }, Open ]],
|
---|
1121 | Cell[CellGroupData[{
|
---|
1122 | Cell[11210, 270, 218, 4, 45, "Subsubsection",ExpressionUUID->"d31b98ea-8680-4e4a-8792-10636cf834c2"],
|
---|
1123 | Cell[11431, 276, 385, 8, 35, "Text",ExpressionUUID->"f38ace0f-c0f8-4c44-89c9-6c8548d14f8d"],
|
---|
1124 | Cell[11819, 286, 206, 3, 30, "Input",ExpressionUUID->"47f1aea6-01a0-4e7a-a624-cc213bad8bd3"]
|
---|
1125 | }, Open ]],
|
---|
1126 | Cell[CellGroupData[{
|
---|
1127 | Cell[12062, 294, 215, 4, 45, "Subsubsection",ExpressionUUID->"8c8d5553-dc94-4d38-bd21-4815416e8dc5"],
|
---|
1128 | Cell[12280, 300, 379, 8, 35, "Text",ExpressionUUID->"8b4d77a9-0455-49eb-82c6-58a23e959ed8"],
|
---|
1129 | Cell[12662, 310, 210, 4, 30, "Input",ExpressionUUID->"cf8cf460-2a00-4a0e-84fc-af9f2bd7543b"]
|
---|
1130 | }, Open ]],
|
---|
1131 | Cell[CellGroupData[{
|
---|
1132 | Cell[12909, 319, 262, 4, 45, "Subsubsection",ExpressionUUID->"47080b0c-0bcf-4ee8-a446-2df3de49516f"],
|
---|
1133 | Cell[13174, 325, 432, 9, 35, "Text",ExpressionUUID->"7cb35b1c-4379-4b20-9571-79351621bd51"],
|
---|
1134 | Cell[13609, 336, 255, 4, 30, "Input",ExpressionUUID->"eae7cde0-46d1-4e5d-bdf5-f16a6d620f38"]
|
---|
1135 | }, Open ]]
|
---|
1136 | }, Open ]],
|
---|
1137 | Cell[CellGroupData[{
|
---|
1138 | Cell[13913, 346, 214, 4, 54, "Subsection",ExpressionUUID->"da621b90-69a3-4897-962a-63ccff7abedb"],
|
---|
1139 | Cell[14130, 352, 204, 3, 35, "Text",ExpressionUUID->"f4114b7b-307b-42ec-9c66-8aee0c11c4ba"],
|
---|
1140 | Cell[14337, 357, 227, 4, 30, "Input",ExpressionUUID->"66f57e38-268c-48ec-9c6e-bce19710483e"],
|
---|
1141 | Cell[14567, 363, 437, 6, 35, "Text",ExpressionUUID->"9313027b-7d84-4a0d-a4bf-7b6b30f3f04f"],
|
---|
1142 | Cell[15007, 371, 229, 3, 30, "Input",ExpressionUUID->"cdf50274-7d0a-42a5-9682-0e1bb29814b8"],
|
---|
1143 | Cell[CellGroupData[{
|
---|
1144 | Cell[15261, 378, 377, 6, 45, "Subsubsection",ExpressionUUID->"ffbe693b-e14d-433f-a0d7-73149956ae7c"],
|
---|
1145 | Cell[15641, 386, 458, 9, 35, "Text",ExpressionUUID->"a4a32daa-f7ed-4078-9550-78fce0c5587e"],
|
---|
1146 | Cell[16102, 397, 225, 3, 30, "Input",ExpressionUUID->"559657cc-14b7-4dd5-8a6e-40cddf1604ed"]
|
---|
1147 | }, Open ]],
|
---|
1148 | Cell[CellGroupData[{
|
---|
1149 | Cell[16364, 405, 303, 4, 45, "Subsubsection",ExpressionUUID->"34ecf012-8d72-4b2d-83a6-7f9bf807588d"],
|
---|
1150 | Cell[16670, 411, 385, 8, 35, "Text",ExpressionUUID->"30ab6780-22ed-4b99-a36d-7e293fa331f9"],
|
---|
1151 | Cell[17058, 421, 272, 4, 30, "Input",ExpressionUUID->"2efcb5cc-f9ce-4d1d-b377-7a0e6349b355"]
|
---|
1152 | }, Open ]],
|
---|
1153 | Cell[CellGroupData[{
|
---|
1154 | Cell[17367, 430, 326, 5, 45, "Subsubsection",ExpressionUUID->"ff7ac885-a08e-491b-a3ae-eb0790a46c83"],
|
---|
1155 | Cell[17696, 437, 543, 10, 35, "Text",ExpressionUUID->"0f0d84de-7860-4b36-b1dd-6a304223a18d"],
|
---|
1156 | Cell[18242, 449, 271, 4, 30, "Input",ExpressionUUID->"135c07ba-8634-4ec7-8890-342e991d26c9"]
|
---|
1157 | }, Open ]],
|
---|
1158 | Cell[CellGroupData[{
|
---|
1159 | Cell[18550, 458, 270, 4, 45, "Subsubsection",ExpressionUUID->"6b82c53e-1e2e-4d88-9027-1adf8a738b8d"],
|
---|
1160 | Cell[18823, 464, 433, 9, 35, "Text",ExpressionUUID->"9abf76e4-0185-408a-b6fa-99751dd34319"],
|
---|
1161 | Cell[19259, 475, 279, 4, 30, "Input",ExpressionUUID->"25e9fdb3-aff5-4c3d-8d1a-0ac21f4abebf"]
|
---|
1162 | }, Open ]],
|
---|
1163 | Cell[CellGroupData[{
|
---|
1164 | Cell[19575, 484, 321, 5, 45, "Subsubsection",ExpressionUUID->"c56432fd-208b-48c4-90d0-d3a27e7967fb"],
|
---|
1165 | Cell[19899, 491, 485, 9, 35, "Text",ExpressionUUID->"c9e42b9f-de8a-4af6-b7ed-791c3380584d"],
|
---|
1166 | Cell[20387, 502, 323, 4, 30, "Input",ExpressionUUID->"1f8a0d35-3850-4f81-9708-cffd36eccefd"]
|
---|
1167 | }, Open ]]
|
---|
1168 | }, Open ]]
|
---|
1169 | }, Open ]],
|
---|
1170 | Cell[CellGroupData[{
|
---|
1171 | Cell[20771, 513, 205, 4, 67, "Section",ExpressionUUID->"471a0c6b-9483-4245-887d-249a8d3d0b73"],
|
---|
1172 | Cell[20979, 519, 268, 6, 35, "Text",ExpressionUUID->"0f40813c-84bf-432a-99b9-0841fec4eef2"],
|
---|
1173 | Cell[21250, 527, 227, 4, 30, "Input",ExpressionUUID->"a6068651-d72a-450a-87a7-0677a1f638ca"],
|
---|
1174 | Cell[CellGroupData[{
|
---|
1175 | Cell[21502, 535, 166, 3, 54, "Subsection",ExpressionUUID->"b81c1c3d-aa3a-465f-92d4-2f92000a1bea"],
|
---|
1176 | Cell[CellGroupData[{
|
---|
1177 | Cell[21693, 542, 163, 3, 45, "Subsubsection",ExpressionUUID->"ac747c10-9899-4bff-8bb5-9d2f8aad49f5"],
|
---|
1178 | Cell[21859, 547, 514, 11, 30, "Input",ExpressionUUID->"afb79007-63a3-4990-9bff-ef936e220465"]
|
---|
1179 | }, Open ]],
|
---|
1180 | Cell[CellGroupData[{
|
---|
1181 | Cell[22410, 563, 139, 3, 45, "Subsubsection",ExpressionUUID->"515e1996-dba5-4064-af2d-255d3b248e24"],
|
---|
1182 | Cell[22552, 568, 319, 7, 30, "Input",ExpressionUUID->"19578d72-431c-4540-b8a7-a97cf3728e5a"]
|
---|
1183 | }, Open ]],
|
---|
1184 | Cell[CellGroupData[{
|
---|
1185 | Cell[22908, 580, 93, 0, 45, "Subsubsection",ExpressionUUID->"ddf45544-8d02-498c-a923-444d8932005e"],
|
---|
1186 | Cell[23004, 582, 478, 9, 30, "Input",ExpressionUUID->"3c2d48ed-c05a-43df-aa5a-6b5f8bab816d"]
|
---|
1187 | }, Open ]],
|
---|
1188 | Cell[CellGroupData[{
|
---|
1189 | Cell[23519, 596, 93, 0, 45, "Subsubsection",ExpressionUUID->"12af6344-1008-465d-ae43-f6174b690f45"],
|
---|
1190 | Cell[23615, 598, 417, 9, 30, "Input",ExpressionUUID->"12692998-1fcb-47f8-aab8-5ef606351ed9"]
|
---|
1191 | }, Open ]],
|
---|
1192 | Cell[CellGroupData[{
|
---|
1193 | Cell[24069, 612, 164, 3, 45, "Subsubsection",ExpressionUUID->"dec6e064-d31c-48e0-abce-be014f4d50d3"],
|
---|
1194 | Cell[24236, 617, 490, 10, 30, "Input",ExpressionUUID->"5af83643-4663-48bb-bd12-48a7dd54dd2a"]
|
---|
1195 | }, Open ]]
|
---|
1196 | }, Open ]],
|
---|
1197 | Cell[CellGroupData[{
|
---|
1198 | Cell[24775, 633, 215, 4, 54, "Subsection",ExpressionUUID->"49241856-d642-4ab9-bcc6-fe7841b8eadd"],
|
---|
1199 | Cell[CellGroupData[{
|
---|
1200 | Cell[25015, 641, 280, 4, 45, "Subsubsection",ExpressionUUID->"84961d68-3069-4352-b3bb-31e8070b7fd5"],
|
---|
1201 | Cell[25298, 647, 511, 9, 30, "Input",ExpressionUUID->"3fddd0ee-a2fe-4128-bd2d-f1334eedcd38"]
|
---|
1202 | }, Open ]],
|
---|
1203 | Cell[CellGroupData[{
|
---|
1204 | Cell[25846, 661, 227, 4, 45, "Subsubsection",ExpressionUUID->"98f6ddfb-9422-4710-adcb-eac0c5e06a0d"],
|
---|
1205 | Cell[26076, 667, 367, 8, 30, "Input",ExpressionUUID->"24723dda-7ad7-47f6-a68e-4c8311a495da"]
|
---|
1206 | }, Open ]],
|
---|
1207 | Cell[CellGroupData[{
|
---|
1208 | Cell[26480, 680, 179, 3, 45, "Subsubsection",ExpressionUUID->"c6c3d1d4-4c33-4bcd-a9c8-2638c18b6ddc"],
|
---|
1209 | Cell[26662, 685, 534, 9, 30, "Input",ExpressionUUID->"b6b52221-2242-4d9d-86f0-81112b5262bb"]
|
---|
1210 | }, Open ]],
|
---|
1211 | Cell[CellGroupData[{
|
---|
1212 | Cell[27233, 699, 175, 3, 45, "Subsubsection",ExpressionUUID->"03a7a6aa-9b8b-4edd-9cd7-06102c52b791"],
|
---|
1213 | Cell[27411, 704, 396, 8, 30, "Input",ExpressionUUID->"ba674f08-fb85-4e91-b0e0-87c4e25c5977"]
|
---|
1214 | }, Open ]],
|
---|
1215 | Cell[CellGroupData[{
|
---|
1216 | Cell[27844, 717, 222, 4, 45, "Subsubsection",ExpressionUUID->"0304a94a-5a32-4bbb-af6e-6454e3188bdf"],
|
---|
1217 | Cell[28069, 723, 569, 10, 30, "Input",ExpressionUUID->"d650c38b-5ce3-4036-83af-db25787dd434"]
|
---|
1218 | }, Open ]]
|
---|
1219 | }, Open ]]
|
---|
1220 | }, Open ]],
|
---|
1221 | Cell[CellGroupData[{
|
---|
1222 | Cell[28699, 740, 303, 5, 67, "Section",ExpressionUUID->"fca25d07-b476-4934-be9c-000257845077"],
|
---|
1223 | Cell[CellGroupData[{
|
---|
1224 | Cell[29027, 749, 163, 3, 54, "Subsection",ExpressionUUID->"767f1460-6bb0-4011-815f-b0e2a89bc978"],
|
---|
1225 | Cell[29193, 754, 295, 7, 35, "Text",ExpressionUUID->"fe1f6866-04ec-47fa-bd3d-3a225d460d63"],
|
---|
1226 | Cell[29491, 763, 760, 15, 52, "Input",ExpressionUUID->"c5883ed3-34ce-4193-bec0-173de87e6e36"]
|
---|
1227 | }, Open ]],
|
---|
1228 | Cell[CellGroupData[{
|
---|
1229 | Cell[30288, 783, 414, 6, 54, "Subsection",ExpressionUUID->"8e432d9c-e319-4320-9c94-2272b0378390"],
|
---|
1230 | Cell[30705, 791, 495, 9, 30, "Input",ExpressionUUID->"205795bd-604d-406b-a84b-171a43be6b72"]
|
---|
1231 | }, Open ]]
|
---|
1232 | }, Open ]],
|
---|
1233 | Cell[CellGroupData[{
|
---|
1234 | Cell[31249, 806, 345, 6, 67, "Section",ExpressionUUID->"ca174a26-f0af-49fc-ae37-6b00eb4e769d"],
|
---|
1235 | Cell[CellGroupData[{
|
---|
1236 | Cell[31619, 816, 317, 5, 54, "Subsection",ExpressionUUID->"d0bc5a0a-612d-445f-95bc-6e8966c109ba"],
|
---|
1237 | Cell[31939, 823, 308, 8, 30, "Input",ExpressionUUID->"1b930662-f8b2-452a-b56d-c9bfc9ac6898"],
|
---|
1238 | Cell[32250, 833, 1320, 27, 73, "Input",ExpressionUUID->"10263708-39b4-4c83-b08e-4b581e608878"],
|
---|
1239 | Cell[33573, 862, 249, 6, 30, "Input",ExpressionUUID->"0d1d00bd-baf4-4ab7-a054-ae49de279dbe"],
|
---|
1240 | Cell[33825, 870, 196, 3, 30, "Input",ExpressionUUID->"505b1b1d-f468-4132-8776-c8a5ee50b352"],
|
---|
1241 | Cell[34024, 875, 631, 13, 94, "Input",ExpressionUUID->"eca1ebb2-3ca1-4381-929c-a5b452dfd06e"],
|
---|
1242 | Cell[34658, 890, 1186, 27, 52, "Input",ExpressionUUID->"f8201996-ff3d-42c2-8024-c52d0c306c3b"],
|
---|
1243 | Cell[35847, 919, 633, 12, 52, "Input",ExpressionUUID->"cae44f65-224f-463f-bfbd-cd9b1ff1d695"],
|
---|
1244 | Cell[36483, 933, 888, 16, 52, "Input",ExpressionUUID->"7d96f046-6569-4843-8a38-ba116e454853"],
|
---|
1245 | Cell[37374, 951, 1777, 27, 30, "Input",ExpressionUUID->"3d0fdecb-e60f-45b1-a607-a8c1085436fb"]
|
---|
1246 | }, Open ]],
|
---|
1247 | Cell[CellGroupData[{
|
---|
1248 | Cell[39188, 983, 163, 3, 54, "Subsection",ExpressionUUID->"4c0a9dc9-9112-4554-bd1b-67d12c33904e"],
|
---|
1249 | Cell[39354, 988, 243, 4, 35, "Text",ExpressionUUID->"7c0ba6c8-b6ed-4845-9fcc-02a5ff82e30a"],
|
---|
1250 | Cell[39600, 994, 617, 12, 52, "Input",ExpressionUUID->"97cdf914-d42a-4560-b2cb-1dfa13df3e7b"]
|
---|
1251 | }, Open ]],
|
---|
1252 | Cell[CellGroupData[{
|
---|
1253 | Cell[40254, 1011, 215, 4, 54, "Subsection",ExpressionUUID->"3b727f9f-0b16-4ae0-9263-81de78091dd4"],
|
---|
1254 | Cell[40472, 1017, 183, 3, 35, "Text",ExpressionUUID->"e1e11052-6536-44ca-80b9-75bb5ecb0b2c"],
|
---|
1255 | Cell[40658, 1022, 587, 12, 52, "Input",ExpressionUUID->"a32f6603-0269-48f5-a793-e363bafdb2c3"]
|
---|
1256 | }, Open ]],
|
---|
1257 | Cell[CellGroupData[{
|
---|
1258 | Cell[41282, 1039, 263, 4, 54, "Subsection",ExpressionUUID->"9a745412-8fb2-4156-96ba-33af491dcac1"],
|
---|
1259 | Cell[41548, 1045, 232, 4, 35, "Text",ExpressionUUID->"027bfaf0-314e-43ca-a852-b3c5e1452206"],
|
---|
1260 | Cell[41783, 1051, 642, 14, 52, "Input",ExpressionUUID->"6c2a3c74-62aa-4fe9-b83f-4d625737535f"]
|
---|
1261 | }, Open ]]
|
---|
1262 | }, Open ]]
|
---|
1263 | }, Open ]]
|
---|
1264 | }
|
---|
1265 | ]
|
---|
1266 | *)
|
---|
1267 |
|
---|