SLQrules: SLQrules.nb

File SLQrules.nb, 52.7 KB (added by LucSchnell, 3 years ago)
Line 
1(* Content-type: application/mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 6.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 145, 7]
13NotebookDataLength[ 53857, 1259]
14NotebookOptionsPosition[ 42465, 1070]
15NotebookOutlinePosition[ 42824, 1086]
16CellTagsIndexPosition[ 42781, 1083]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21Cell[BoxData[
22 RowBox[{"Quit", "[", "]"}]], "Input",
23 CellChangeTimes->{{3.4921467751527157`*^9, 3.492146776183146*^9}},
24 CellLabel->"In[5]:=",ExpressionUUID->"b688e269-f949-4f2c-a5f5-9de5f1b3267d"],
25
26Cell["\<\
27Set the path below to the directory where you have saved your FeynRules \
28implementation. The SLQrules model files should be copied to the \
29FeynRules/Models folder. \
30\>", "Text",
31 CellChangeTimes->{{3.8293161012026253`*^9,
32 3.829316206154106*^9}},ExpressionUUID->"cc085fb5-11e0-443f-82b9-\
335a2d42c2cd4e"],
34
35Cell[CellGroupData[{
36
37Cell[BoxData[
38 RowBox[{
39 RowBox[{"(*", " ",
40 RowBox[{"Set", " ", "FeynRules", " ", "directory"}], " ", "*)"}],
41 "\[IndentingNewLine]",
42 RowBox[{"$FeynRulesPath", "=",
43 RowBox[{
44 "SetDirectory", "[", "\"\<Path to FeynRules Directory\>\"",
45 "]"}]}]}]], "Input",
46 CellChangeTimes->{{3.41265862251538*^9, 3.412658649947229*^9}, {
47 3.423415585782702*^9, 3.423415597189939*^9}, {3.4234163173467493`*^9,
48 3.4234163227881193`*^9}, {3.824041146193656*^9, 3.824041156479109*^9}, {
49 3.824041534241042*^9, 3.8240415358834047`*^9}, {3.829315966709292*^9,
50 3.829315973088203*^9}, {3.829316093603538*^9, 3.829316121068947*^9}, {
51 3.829316252537716*^9,
52 3.829316271037689*^9}},ExpressionUUID->"a0323c9b-4a85-486b-8893-\
536aa74c98675c"],
54
55Cell[BoxData["\<\"/Users/lucschnell/Documents/1_Professional/2_Research/\
56Leptoquarks/Programs/FeynRules\"\>"], "Output",
57 CellChangeTimes->{
58 3.824041276015606*^9, 3.824041536506091*^9, 3.82404471440839*^9,
59 3.824045297317604*^9, 3.8240571506871233`*^9, 3.824064326099588*^9,
60 3.824098742621635*^9, 3.824182745382193*^9, 3.82423484343575*^9,
61 3.824236184800187*^9, 3.824268178735614*^9, 3.824354225326749*^9,
62 3.824354260561392*^9, 3.824355162520421*^9, 3.824355379752717*^9,
63 3.824355454390402*^9, 3.824355624298005*^9, 3.824357212395342*^9,
64 3.8243575410305347`*^9, 3.824358009570897*^9, 3.824358254127935*^9,
65 3.824358963473782*^9, 3.824359035740633*^9, 3.824359281730833*^9,
66 3.824359614667735*^9, 3.824359711201326*^9, 3.824359863465746*^9,
67 3.824359991120324*^9, 3.824360133096759*^9, 3.824360228750105*^9,
68 3.824361528523671*^9, 3.824362934091097*^9, 3.824365315063634*^9,
69 3.8255956022501297`*^9, 3.825601247696376*^9, 3.825679118221678*^9, {
70 3.825680987236108*^9, 3.825681007169289*^9}, 3.825682804956047*^9,
71 3.825683397526623*^9, 3.827494019223563*^9, 3.827494082859811*^9, {
72 3.827494214330522*^9, 3.827494230532794*^9}, 3.827494339415818*^9, {
73 3.827669874748681*^9, 3.8276698859112577`*^9}, 3.827670137439913*^9,
74 3.8278139526611958`*^9, 3.827919730435388*^9, 3.827920869210717*^9,
75 3.827945016664694*^9, 3.827945403745391*^9, 3.827946209263035*^9,
76 3.8292134705786333`*^9, 3.8292136593540573`*^9, 3.82921372975644*^9,
77 3.829213774877451*^9, 3.829215352198167*^9, 3.829216647811808*^9,
78 3.829216914814681*^9, 3.82921696259793*^9, 3.82921706508517*^9,
79 3.829217095271017*^9, {3.829221845826315*^9, 3.8292218595398493`*^9},
80 3.829222668617875*^9, 3.829223218909478*^9, 3.8292234184978323`*^9, {
81 3.829224009831073*^9, 3.8292240322873907`*^9}, 3.829278576304615*^9,
82 3.8292816902873363`*^9, 3.8292823949671783`*^9, 3.829282590364706*^9,
83 3.82928313447091*^9, 3.829283213664649*^9, 3.829283614593829*^9,
84 3.829283943589849*^9, 3.8292854455996447`*^9, 3.829286016119626*^9,
85 3.829286188564973*^9, 3.829289800150597*^9, 3.829299628718691*^9,
86 3.8293067733712273`*^9, 3.829306815083362*^9, {3.829314222831798*^9,
87 3.829314247031918*^9}, 3.82931429676742*^9},
88 CellLabel->"Out[1]=",ExpressionUUID->"6943a034-02dc-441c-8676-f99c07faee4c"]
89}, Open ]],
90
91Cell[BoxData[
92 RowBox[{
93 RowBox[{"(*", " ",
94 RowBox[{"Start", " ", "FeynRules"}], " ", "*)"}], "\[IndentingNewLine]",
95 RowBox[{"<<", "FeynRules`"}]}]], "Input",
96 CellChangeTimes->{{3.547535564344927*^9, 3.547535564971527*^9}, {
97 3.829215352409328*^9, 3.829215353022368*^9}, {3.829316242496313*^9,
98 3.8293162501538897`*^9}},ExpressionUUID->"dae72e58-5763-4788-8c5b-\
99617b4aebb651"],
100
101Cell[BoxData[
102 RowBox[{
103 RowBox[{"(*", " ",
104 RowBox[{
105 "Go", " ", "to", " ", "the", " ", "folder", " ", "with", " ", "the", " ",
106 "model", " ", "files"}], " ", "*)"}], "\[IndentingNewLine]",
107 RowBox[{
108 RowBox[{"SetDirectory", "[",
109 RowBox[{"FileNameJoin", "[",
110 RowBox[{"{",
111 RowBox[{"$FeynRulesPath", ",", "\"\</Models/SLQrules\>\""}], "}"}],
112 "]"}], "]"}], ";"}]}]], "Input",
113 CellChangeTimes->{{3.419073170860696*^9, 3.419073182827229*^9}, {
114 3.8240448310556507`*^9, 3.824044831925971*^9}, {3.82559549018281*^9,
115 3.82559549164345*^9}, {3.825601225986663*^9, 3.8256012277193832`*^9}, {
116 3.8256809809229183`*^9, 3.8256809816585493`*^9}, {3.827670131714067*^9,
117 3.8276701332051477`*^9}, {3.82794541668818*^9, 3.827945418608961*^9}, {
118 3.8293159825583143`*^9, 3.829315984735235*^9}, {3.8293160571309958`*^9,
119 3.829316080216296*^9}, {3.82931622921854*^9,
120 3.829316239927464*^9}},ExpressionUUID->"bc43008c-6c7d-4f5d-a2ab-\
121eebcf254e2c2"],
122
123Cell[CellGroupData[{
124
125Cell["SLQrules", "Title",
126 CellChangeTimes->{{3.829213477932085*^9,
127 3.8292134848452187`*^9}},ExpressionUUID->"636beac9-9f31-4b31-b755-\
1283eb42ffd478e"],
129
130Cell["We first load the SLQrules model file", "Text",
131 CellChangeTimes->{{3.829213491013583*^9, 3.8292134958236094`*^9}, {
132 3.8292139391898603`*^9,
133 3.829213940096726*^9}},ExpressionUUID->"ec7f2af5-77dc-482c-8fb4-\
1349b08b7dd505e"],
135
136Cell[BoxData[
137 RowBox[{
138 RowBox[{"(*", " ",
139 RowBox[{"Load", " ", "SLQrules", " ", "model", " ", "files"}], " ", "*)"}],
140 "\[IndentingNewLine]",
141 RowBox[{"LoadModel", "[",
142 RowBox[{"\"\<SM.fr\>\"", ",", " ", "\"\<SLQrules.fr\>\""}],
143 "]"}]}]], "Input",
144 CellChangeTimes->{{3.4022069973481913`*^9, 3.402207011768662*^9},
145 3.4022081212072697`*^9, {3.402208250379383*^9, 3.402208254043104*^9},
146 3.4027466057480917`*^9, {3.403240270135737*^9, 3.403240277228945*^9},
147 3.403266503388291*^9, {3.403267649630335*^9, 3.40326765417397*^9}, {
148 3.403269919787421*^9, 3.403269921965273*^9}, {3.403347551273425*^9,
149 3.403347555049163*^9}, 3.4044490490588417`*^9, {3.411744339876704*^9,
150 3.411744340012457*^9}, {3.4121886924550533`*^9, 3.412188699157571*^9},
151 3.412188808811866*^9, 3.4121888580521603`*^9, {3.412450464077868*^9,
152 3.412450464378695*^9}, {3.413715097460478*^9, 3.41371509757642*^9}, {
153 3.41440825334604*^9, 3.414408254159686*^9}, {3.41862573831756*^9,
154 3.4186257392223186`*^9}, {3.4190731862389174`*^9, 3.419073187003003*^9}, {
155 3.419073336802393*^9, 3.4190733374513063`*^9}, {3.4190828041801767`*^9,
156 3.4190828048079023`*^9}, 3.542453089813714*^9, 3.547534567644828*^9, {
157 3.824044834456298*^9, 3.824044841489407*^9}, {3.8256810168118763`*^9,
158 3.825681017983603*^9}, {3.827494032667945*^9, 3.827494033737157*^9}, {
159 3.827494072635581*^9, 3.82749407295212*^9}, {3.829316274052966*^9,
160 3.829316280266274*^9}},ExpressionUUID->"59631497-ebc3-49fd-8e92-\
161ad2825080560"],
162
163Cell["\<\
164If desired, load restrictions for the Standard Model (massless quarks or \
165diagonal CKM matrix). \
166\>", "Text",
167 CellChangeTimes->{{3.8293162889667587`*^9,
168 3.82931630980239*^9}},ExpressionUUID->"20fa5ed0-b235-4319-9812-\
16914fdf3322a3d"],
170
171Cell[BoxData[
172 RowBox[{"LoadRestriction", "[",
173 RowBox[{"\"\<Massless.rst\>\"", ",", "\"\<DiagonalCKM.rst\>\""}],
174 "]"}]], "Input",
175 CellChangeTimes->{{3.547535575308606*^9, 3.547535589236651*^9}},
176 CellLabel->"In[5]:=",ExpressionUUID->"98c0dab1-7ec3-42cb-bfa0-b73e6f421115"],
177
178Cell[BoxData[""], "Input",
179 CellChangeTimes->{{3.8256828182017593`*^9,
180 3.8256828194373198`*^9}},ExpressionUUID->"8fc83e3e-26a7-4176-ae65-\
18136575f4b3800"],
182
183Cell[CellGroupData[{
184
185Cell["Lagrangians", "Section",
186 CellChangeTimes->{{3.411910065227421*^9, 3.411910071535137*^9}, {
187 3.8292138213999968`*^9,
188 3.829213827817354*^9}},ExpressionUUID->"71117ab3-5427-49a8-a834-\
1897937a1026b1a"],
190
191Cell[CellGroupData[{
192
193Cell["SM Lagrangian", "Subsection",
194 CellChangeTimes->{{3.8292138408429813`*^9,
195 3.829213843125578*^9}},ExpressionUUID->"0b8321e7-8717-49ad-900e-\
1963e223b1eeaf1"],
197
198Cell["Feynman gauge can be obtained by putting", "Text",
199 CellChangeTimes->{{3.411910440565042*^9, 3.411910480762147*^9},
200 3.82921385777501*^9},ExpressionUUID->"fec50e9b-5370-4937-b93e-\
201a86a29374477"],
202
203Cell[BoxData[
204 RowBox[{
205 RowBox[{"FeynmanGauge", "=", "True"}], ";"}]], "Input",
206 CellChangeTimes->{{3.411910487433539*^9, 3.4119104927114267`*^9}},
207 CellLabel->"In[5]:=",ExpressionUUID->"a0d827a7-58f8-445a-aa08-d7b0f9121b1c"],
208
209Cell["The full SM Lagrangian in Feynman gauge can be accessed via", "Text",
210 CellChangeTimes->{{3.411910016771447*^9, 3.411910062087528*^9}, {
211 3.411910094087652*^9, 3.411910096590087*^9}, {3.411910215381351*^9,
212 3.4119102162371798`*^9}, {3.411910436148773*^9, 3.411910437013105*^9}, {
213 3.829213878208436*^9, 3.8292138811513443`*^9}, {3.829316316641335*^9,
214 3.829316321414187*^9}},ExpressionUUID->"362c7424-cc6f-41da-abaf-\
215236dd1d84159"],
216
217Cell[BoxData["LSM"], "Input",
218 CellChangeTimes->{{3.411910106011015*^9,
219 3.411910106351081*^9}},ExpressionUUID->"946efd16-a954-4caa-818d-\
2208587b2eddc42"],
221
222Cell[CellGroupData[{
223
224Cell["Gauge sector", "Subsubsection",
225 CellChangeTimes->{{3.4119102216473637`*^9,
226 3.411910224608881*^9}},ExpressionUUID->"5cffddb4-ac7e-4684-851f-\
2275715248647ab"],
228
229Cell["\<\
230The part of the SM Lagrangian representing the gauge sector can be accessed \
231via\
232\>", "Text",
233 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
234 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.8292138869966307`*^9,
235 3.829213888218061*^9}},ExpressionUUID->"9ae9c6af-ebbd-46eb-9f5d-\
236dbf5a17db985"],
237
238Cell[BoxData["LGauge"], "Input",
239 CellChangeTimes->{{3.411910181169772*^9,
240 3.411910184667088*^9}},ExpressionUUID->"9a57df20-3954-4969-8615-\
241e8120a673950"]
242}, Open ]],
243
244Cell[CellGroupData[{
245
246Cell["Scalar sector", "Subsubsection",
247 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
248 3.411910274288354*^9,
249 3.41191027703699*^9}},ExpressionUUID->"3eafaea8-6c94-4d58-8cd8-\
25009a6ddd8d65a"],
251
252Cell["\<\
253The part of the SM Lagrangian representing the scalar sector can be accessed \
254via\
255\>", "Text",
256 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
257 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.41191028690167*^9,
258 3.411910287709094*^9}, {3.829213891846693*^9,
259 3.829213893296216*^9}},ExpressionUUID->"8f7e06ed-6571-4ca8-8418-\
260df93504a99ea"],
261
262Cell[BoxData["LHiggs"], "Input",
263 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
264 3.411910290186841*^9,
265 3.411910292005392*^9}},ExpressionUUID->"7a7a5c35-31cc-40c5-be4d-\
26657d41d1af96e"]
267}, Open ]],
268
269Cell[CellGroupData[{
270
271Cell["Fermion sector", "Subsubsection",
272 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
273 3.4119103528868923`*^9,
274 3.411910357404933*^9}},ExpressionUUID->"d31b98ea-8680-4e4a-8792-\
27510636cf834c2"],
276
277Cell["\<\
278The part of the SM Lagrangian representing the fermion sector can be accessed \
279via\
280\>", "Text",
281 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
282 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.4119103873434134`*^9,
283 3.411910388077118*^9}, {3.829213894881374*^9,
284 3.8292138957248487`*^9}},ExpressionUUID->"f38ace0f-c0f8-4c44-89c9-\
2856c8548d14f8d"],
286
287Cell[BoxData["LFermions"], "Input",
288 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
289 3.411910379677638*^9,
290 3.4119103807255*^9}},ExpressionUUID->"47f1aea6-01a0-4e7a-a624-cc213bad8bd3"]
291}, Open ]],
292
293Cell[CellGroupData[{
294
295Cell["Yukawa sector", "Subsubsection",
296 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
297 3.411910393742139*^9,
298 3.411910394852953*^9}},ExpressionUUID->"8c8d5553-dc94-4d38-bd21-\
2994815416e8dc5"],
300
301Cell["\<\
302The part of the SM Lagrangian representing the Yukawa sector can be accessed \
303via\
304\>", "Text",
305 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
306 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
307 3.411910400421185*^9}, {3.82921389905284*^9,
308 3.829213899710991*^9}},ExpressionUUID->"8b4d77a9-0455-49eb-82c6-\
30958a23e959ed8"],
310
311Cell[BoxData["LYukawa"], "Input",
312 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
313 3.4119104032372026`*^9,
314 3.411910404165523*^9}},ExpressionUUID->"cf8cf460-2a00-4a0e-84fc-\
315af9f2bd7543b"]
316}, Open ]],
317
318Cell[CellGroupData[{
319
320Cell["Ghost sector", "Subsubsection",
321 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
322 3.411910393742139*^9, 3.411910394852953*^9}, {3.4119106057673063`*^9,
323 3.411910606397141*^9}},ExpressionUUID->"47080b0c-0bcf-4ee8-a446-\
3242df3de49516f"],
325
326Cell["\<\
327The part of the SM Lagrangian representing the ghost sector can be accessed \
328via\
329\>", "Text",
330 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
331 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
332 3.411910400421185*^9}, {3.4119106110136833`*^9, 3.411910611661195*^9}, {
333 3.829213903205504*^9,
334 3.8292139066036873`*^9}},ExpressionUUID->"7cb35b1c-4379-4b20-9571-\
33579351621bd51"],
336
337Cell[BoxData["LGhost"], "Input",
338 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
339 3.4119104032372026`*^9, 3.411910404165523*^9}, {3.411910615100849*^9,
340 3.411910615781582*^9}},ExpressionUUID->"eae7cde0-46d1-4e5d-bdf5-\
341f16a6d620f38"]
342}, Open ]]
343}, Open ]],
344
345Cell[CellGroupData[{
346
347Cell["LQ Lagrangian", "Subsection",
348 CellChangeTimes->{{3.8292138408429813`*^9, 3.829213843125578*^9}, {
349 3.829213930405251*^9,
350 3.8292139304845552`*^9}},ExpressionUUID->"da621b90-69a3-4897-962a-\
35163ccff7abedb"],
352
353Cell["Feynman gauge can be obtained by putting", "Text",
354 CellChangeTimes->{{3.411910440565042*^9, 3.411910480762147*^9},
355 3.82921385777501*^9},ExpressionUUID->"f4114b7b-307b-42ec-9c66-\
3568aee0c11c4ba"],
357
358Cell[BoxData[
359 RowBox[{
360 RowBox[{"FeynmanGauge", "=", "True"}], ";"}]], "Input",
361 CellChangeTimes->{{3.411910487433539*^9, 3.4119104927114267`*^9}},
362 CellLabel->"In[5]:=",ExpressionUUID->"66f57e38-268c-48ec-9c6e-bce19710483e"],
363
364Cell["The full LQ Lagrangian can be accessed immediatly via", "Text",
365 CellChangeTimes->{{3.411910016771447*^9, 3.411910062087528*^9}, {
366 3.411910094087652*^9, 3.411910096590087*^9}, {3.411910215381351*^9,
367 3.4119102162371798`*^9}, {3.411910436148773*^9, 3.411910437013105*^9}, {
368 3.829213878208436*^9, 3.8292138811513443`*^9}, {3.82921394955385*^9,
369 3.829213953111702*^9}},ExpressionUUID->"9313027b-7d84-4a0d-a4bf-\
3707b6b30f3f04f"],
371
372Cell[BoxData["LQall"], "Input",
373 CellChangeTimes->{{3.411910106011015*^9, 3.411910106351081*^9}, {
374 3.8292139666688957`*^9, 3.8292139680565643`*^9}},
375 CellLabel->"In[12]:=",ExpressionUUID->"cdf50274-7d0a-42a5-9682-0e1bb29814b8"],
376
377Cell[CellGroupData[{
378
379Cell["LQ Masses and Higgs interactions", "Subsubsection",
380 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
381 3.82921397583722*^9, 3.829213989566875*^9}, {3.829214031302685*^9,
382 3.829214044275934*^9}, {3.829214089282106*^9, 3.829214093864045*^9}, {
383 3.829214164109655*^9,
384 3.829214164221888*^9}},ExpressionUUID->"ffbe693b-e14d-433f-a0d7-\
38573149956ae7c"],
386
387Cell["\<\
388The part of the LQ Lagrangian representing the LQ masses and the Higgs \
389interactions can be accessed via\
390\>", "Text",
391 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
392 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.8292138869966307`*^9,
393 3.829213888218061*^9}, {3.8292139940361443`*^9, 3.829214016313081*^9}, {
394 3.829214098964518*^9,
395 3.8292141007132893`*^9}},ExpressionUUID->"a4a32daa-f7ed-4078-9550-\
39678fce0c5587e"],
397
398Cell[BoxData["LQ2Phi"], "Input",
399 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
400 3.829214020951765*^9, 3.829214022806567*^9}},
401 CellLabel->"In[7]:=",ExpressionUUID->"559657cc-14b7-4dd5-8a6e-40cddf1604ed"]
402}, Open ]],
403
404Cell[CellGroupData[{
405
406Cell["Kinetic terms and Interactions with SM gauge bosons", "Subsubsection",
407 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
408 3.4119103528868923`*^9, 3.411910357404933*^9}, {3.8292141538076887`*^9,
409 3.829214161942341*^9}},ExpressionUUID->"34ecf012-8d72-4b2d-83a6-\
4107f9bf807588d"],
411
412Cell["\<\
413The part of the SM Lagrangian representing the fermion sector can be accessed \
414via\
415\>", "Text",
416 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
417 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.4119103873434134`*^9,
418 3.411910388077118*^9}, {3.829213894881374*^9,
419 3.8292138957248487`*^9}},ExpressionUUID->"30ab6780-22ed-4b99-a36d-\
4207e293fa331f9"],
421
422Cell[BoxData["LQkin"], "Input",
423 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
424 3.411910379677638*^9, 3.4119103807255*^9}, {3.829214169569601*^9,
425 3.829214171563943*^9}},
426 CellLabel->"In[13]:=",ExpressionUUID->"2efcb5cc-f9ce-4d1d-b377-7a0e6349b355"]
427}, Open ]],
428
429Cell[CellGroupData[{
430
431Cell["Interactions with SM fermions", "Subsubsection",
432 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
433 3.411910274288354*^9, 3.41191027703699*^9}, {3.8292140265344057`*^9,
434 3.829214070743135*^9}, {3.82921410696392*^9,
435 3.829214111971612*^9}},ExpressionUUID->"ff7ac885-a08e-491b-a3ae-\
436eb0790a46c83"],
437
438Cell["\<\
439The part of the LQ Lagrangian representing the interactions with SM fermions \
440can be accessed via\
441\>", "Text",
442 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
443 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.41191028690167*^9,
444 3.411910287709094*^9}, {3.829213891846693*^9, 3.829213893296216*^9}, {
445 3.829214060049488*^9, 3.829214069150332*^9}, {3.829214114867771*^9,
446 3.829214124155758*^9}, {3.8292142363587112`*^9,
447 3.8292142466839647`*^9}},ExpressionUUID->"0f0d84de-7860-4b36-b1dd-\
4486a304223a18d"],
449
450Cell[BoxData["LQf"], "Input",
451 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
452 3.411910290186841*^9, 3.411910292005392*^9}, {3.829214131967423*^9,
453 3.829214133183989*^9}},
454 CellLabel->"In[5]:=",ExpressionUUID->"135c07ba-8634-4ec7-8890-342e991d26c9"]
455}, Open ]],
456
457Cell[CellGroupData[{
458
459Cell["Triple LQ interactions", "Subsubsection",
460 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
461 3.411910393742139*^9, 3.411910394852953*^9}, {3.829214205276751*^9,
462 3.829214210077593*^9}},ExpressionUUID->"6b82c53e-1e2e-4d88-9027-\
4631adf8a738b8d"],
464
465Cell["\<\
466The part of the LQ Lagrangian representing triple LQ interactions can be \
467accessed via\
468\>", "Text",
469 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
470 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
471 3.411910400421185*^9}, {3.82921389905284*^9, 3.829213899710991*^9}, {
472 3.829214212356224*^9,
473 3.829214249462933*^9}},ExpressionUUID->"9abf76e4-0185-408a-b6fa-\
47499751dd34319"],
475
476Cell[BoxData["LQ3Phi"], "Input",
477 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
478 3.4119104032372026`*^9, 3.411910404165523*^9}, {3.829214252514374*^9,
479 3.8292142549553967`*^9}},
480 CellLabel->"In[15]:=",ExpressionUUID->"25e9fdb3-aff5-4c3d-8d1a-0ac21f4abebf"]
481}, Open ]],
482
483Cell[CellGroupData[{
484
485Cell["Quartic LQ interactions", "Subsubsection",
486 CellChangeTimes->{{3.4119102216473637`*^9, 3.411910224608881*^9}, {
487 3.411910393742139*^9, 3.411910394852953*^9}, {3.4119106057673063`*^9,
488 3.411910606397141*^9}, {3.82921425818183*^9,
489 3.829214261323247*^9}},ExpressionUUID->"c56432fd-208b-48c4-90d0-\
490d3a27e7967fb"],
491
492Cell["\<\
493The part of the SM Lagrangian representing quartic LQ interactions can be \
494accessed via\
495\>", "Text",
496 CellChangeTimes->{{3.4119101255458603`*^9, 3.411910192225008*^9}, {
497 3.411910235813308*^9, 3.4119102509651337`*^9}, {3.411910399061659*^9,
498 3.411910400421185*^9}, {3.4119106110136833`*^9, 3.411910611661195*^9}, {
499 3.829213903205504*^9, 3.8292139066036873`*^9}, {3.829214265259676*^9,
500 3.829214271054419*^9}},ExpressionUUID->"c9e42b9f-de8a-4af6-b7ed-\
501791c3380584d"],
502
503Cell[BoxData["LQ4Phi"], "Input",
504 CellChangeTimes->{{3.411910181169772*^9, 3.411910184667088*^9}, {
505 3.4119104032372026`*^9, 3.411910404165523*^9}, {3.411910615100849*^9,
506 3.411910615781582*^9}, {3.829214272760263*^9, 3.829214275239265*^9}},
507 CellLabel->"In[16]:=",ExpressionUUID->"1f8a0d35-3850-4f81-9708-cffd36eccefd"]
508}, Open ]]
509}, Open ]]
510}, Open ]],
511
512Cell[CellGroupData[{
513
514Cell["Feynman Rules", "Section",
515 CellChangeTimes->{{3.411910637332127*^9, 3.41191064360071*^9}, {
516 3.829215512432562*^9,
517 3.82921551599513*^9}},ExpressionUUID->"471a0c6b-9483-4245-887d-\
518249a8d3d0b73"],
519
520Cell["\<\
521We will now calculate explicitly the Feynman rules in Feynman gauge.\
522\>", "Text",
523 CellChangeTimes->{{3.41191064804084*^9, 3.411910672936666*^9}, {
524 3.8292157506565847`*^9,
525 3.829215758967825*^9}},ExpressionUUID->"0f40813c-84bf-432a-99b9-\
5260841fec4eef2"],
527
528Cell[BoxData[
529 RowBox[{
530 RowBox[{"FeynmanGauge", "=", "True"}], ";"}]], "Input",
531 CellChangeTimes->{{3.411910674121689*^9, 3.4119106799564953`*^9}},
532 CellLabel->"In[7]:=",ExpressionUUID->"a6068651-d72a-450a-87a7-0677a1f638ca"],
533
534Cell[CellGroupData[{
535
536Cell["SM Feynman rules", "Subsection",
537 CellChangeTimes->{{3.8292155280837584`*^9,
538 3.829215536797113*^9}},ExpressionUUID->"b81c1c3d-aa3a-465f-92d4-\
5392f92000a1bea"],
540
541Cell[CellGroupData[{
542
543Cell["Gauge sector", "Subsubsection",
544 CellChangeTimes->{{3.411910690443768*^9,
545 3.411910692233274*^9}},ExpressionUUID->"ac747c10-9899-4bff-8bb5-\
5469d2f8aad49f5"],
547
548Cell[BoxData[
549 RowBox[{
550 RowBox[{"vertsGauge", "=",
551 RowBox[{"FeynmanRules", "[",
552 RowBox[{"LGauge", ",",
553 RowBox[{"FlavorExpand", "\[Rule]", "SU2W"}]}], "]"}]}], ";"}]], "Input",
554 CellChangeTimes->{
555 3.40274690437012*^9, {3.402746954727231*^9, 3.4027469691642714`*^9}, {
556 3.4032592998045692`*^9, 3.403259304564069*^9}, 3.403267976055098*^9, {
557 3.411910705212987*^9, 3.411910705553741*^9}, {3.423415993272615*^9,
558 3.42341600147605*^9}},ExpressionUUID->"afb79007-63a3-4990-9bff-\
559ef936e220465"]
560}, Open ]],
561
562Cell[CellGroupData[{
563
564Cell["Higgs Sector", "Subsubsection",
565 CellChangeTimes->{
566 3.404470070069872*^9},ExpressionUUID->"515e1996-dba5-4064-af2d-\
567255d3b248e24"],
568
569Cell[BoxData[
570 RowBox[{
571 RowBox[{"vertsHiggs", "=",
572 RowBox[{"FeynmanRules", "[", "LHiggs", "]"}]}], ";"}]], "Input",
573 CellChangeTimes->{{3.411910728609757*^9, 3.41191072908109*^9}, {
574 3.423416009086747*^9, 3.423416012982971*^9},
575 3.423416065626593*^9},ExpressionUUID->"19578d72-431c-4540-b8a7-\
576a97cf3728e5a"]
577}, Open ]],
578
579Cell[CellGroupData[{
580
581Cell["Matter sector", "Subsubsection",ExpressionUUID->"ddf45544-8d02-498c-a923-444d8932005e"],
582
583Cell[BoxData[
584 RowBox[{
585 RowBox[{"vertsFermions", "=",
586 RowBox[{"FeynmanRules", "[", "LFermions", "]"}]}], ";"}]], "Input",
587 CellChangeTimes->{{3.402205118991502*^9, 3.4022051228508387`*^9},
588 3.402747846432675*^9, {3.4032613449872217`*^9, 3.403261349245253*^9}, {
589 3.403266977133403*^9, 3.4032669793125563`*^9}, {3.411910788644576*^9,
590 3.411910789233307*^9}, {3.423416034294303*^9,
591 3.423416042739814*^9}},ExpressionUUID->"3c2d48ed-c05a-43df-aa5a-\
5926b5f8bab816d"]
593}, Open ]],
594
595Cell[CellGroupData[{
596
597Cell["Yukawa sector", "Subsubsection",ExpressionUUID->"12af6344-1008-465d-ae43-f6174b690f45"],
598
599Cell[BoxData[
600 RowBox[{
601 RowBox[{"vertsYukawa", "=",
602 RowBox[{"FeynmanRules", "[",
603 RowBox[{"LYukawa", ",",
604 RowBox[{"FlavorExpand", "\[Rule]", "True"}]}], "]"}]}], ";"}]], "Input",
605 CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
606 3.411910826105542*^9, 3.411910826777452*^9}, {3.423416089772278*^9,
607 3.423416095643961*^9}},ExpressionUUID->"12692998-1fcb-47f8-aab8-\
6085ef606351ed9"]
609}, Open ]],
610
611Cell[CellGroupData[{
612
613Cell["LGhost sector", "Subsubsection",
614 CellChangeTimes->{{3.411910849714159*^9,
615 3.411910851088325*^9}},ExpressionUUID->"dec6e064-d31c-48e0-abce-\
616be014f4d50d3"],
617
618Cell[BoxData[
619 RowBox[{
620 RowBox[{"vertsGhosts", "=",
621 RowBox[{"FeynmanRules", "[",
622 RowBox[{"LGhost", ",",
623 RowBox[{"FlavorExpand", "\[Rule]", "SU2W"}]}], "]"}]}], ";"}]], "Input",
624 CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
625 3.411910826105542*^9, 3.411910826777452*^9}, {3.411910857580064*^9,
626 3.411910870001601*^9}, 3.415256462464088*^9, {3.423416107236608*^9,
627 3.423416112835993*^9}},ExpressionUUID->"5af83643-4663-48bb-bd12-\
62848a7dd54dd2a"]
629}, Open ]]
630}, Open ]],
631
632Cell[CellGroupData[{
633
634Cell["LQ Feynman rules", "Subsection",
635 CellChangeTimes->{{3.8292155280837584`*^9, 3.829215536797113*^9}, {
636 3.829215591759852*^9,
637 3.829215592307922*^9}},ExpressionUUID->"49241856-d642-4ab9-bcc6-\
638fe7841b8eadd"],
639
640Cell[CellGroupData[{
641
642Cell["LQ masses and Higgs interactions", "Subsubsection",
643 CellChangeTimes->{{3.411910690443768*^9, 3.411910692233274*^9}, {
644 3.829215595056684*^9, 3.829215607595992*^9}, {3.829215646849041*^9,
645 3.8292156474183273`*^9}},ExpressionUUID->"84961d68-3069-4352-b3bb-\
64631e8070b7fd5"],
647
648Cell[BoxData[
649 RowBox[{
650 RowBox[{"vertsLQ2Phi", "=",
651 RowBox[{"FeynmanRules", "[", "LQ2Phi", "]"}]}], ";"}]], "Input",
652 CellChangeTimes->{
653 3.40274690437012*^9, {3.402746954727231*^9, 3.4027469691642714`*^9}, {
654 3.4032592998045692`*^9, 3.403259304564069*^9}, 3.403267976055098*^9, {
655 3.411910705212987*^9, 3.411910705553741*^9}, {3.423415993272615*^9,
656 3.42341600147605*^9}, {3.829215610913702*^9, 3.829215636565795*^9}},
657 CellLabel->"In[8]:=",ExpressionUUID->"3fddd0ee-a2fe-4128-bd2d-f1334eedcd38"]
658}, Open ]],
659
660Cell[CellGroupData[{
661
662Cell["Kinetic terms and interactions with SM gauge bosons", "Subsubsection",
663 CellChangeTimes->{
664 3.404470070069872*^9, {3.82921564035389*^9,
665 3.829215653771513*^9}},ExpressionUUID->"98f6ddfb-9422-4710-adcb-\
666eac0c5e06a0d"],
667
668Cell[BoxData[
669 RowBox[{
670 RowBox[{"vertsLQkin", "=",
671 RowBox[{"FeynmanRules", "[", "LQkin", "]"}]}], ";"}]], "Input",
672 CellChangeTimes->{{3.411910728609757*^9, 3.41191072908109*^9}, {
673 3.423416009086747*^9, 3.423416012982971*^9}, 3.423416065626593*^9, {
674 3.82921565538326*^9,
675 3.829215661726709*^9}},ExpressionUUID->"24723dda-7ad7-47f6-a68e-\
6764c8311a495da"]
677}, Open ]],
678
679Cell[CellGroupData[{
680
681Cell["Interactions with SM fermions", "Subsubsection",
682 CellChangeTimes->{{3.829215664935898*^9,
683 3.82921566790796*^9}},ExpressionUUID->"c6c3d1d4-4c33-4bcd-a9c8-\
6842638c18b6ddc"],
685
686Cell[BoxData[
687 RowBox[{
688 RowBox[{"vertsLQf", "=",
689 RowBox[{"FeynmanRules", "[", "LQf", "]"}]}], ";"}]], "Input",
690 CellChangeTimes->{{3.402205118991502*^9, 3.4022051228508387`*^9},
691 3.402747846432675*^9, {3.4032613449872217`*^9, 3.403261349245253*^9}, {
692 3.403266977133403*^9, 3.4032669793125563`*^9}, {3.411910788644576*^9,
693 3.411910789233307*^9}, {3.423416034294303*^9, 3.423416042739814*^9}, {
694 3.829215669415489*^9, 3.829215673536475*^9}},
695 CellLabel->"In[6]:=",ExpressionUUID->"b6b52221-2242-4d9d-86f0-81112b5262bb"]
696}, Open ]],
697
698Cell[CellGroupData[{
699
700Cell["Triple LQ interactions", "Subsubsection",
701 CellChangeTimes->{{3.829215678751444*^9,
702 3.8292156839336977`*^9}},ExpressionUUID->"03a7a6aa-9b8b-4edd-9cd7-\
70306102c52b791"],
704
705Cell[BoxData[
706 RowBox[{
707 RowBox[{"vertsLQ3Phi", "=",
708 RowBox[{"FeynmanRules", "[", "LQ3Phi", "]"}]}], ";"}]], "Input",
709 CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
710 3.411910826105542*^9, 3.411910826777452*^9}, {3.423416089772278*^9,
711 3.423416095643961*^9}, {3.8292156855173798`*^9,
712 3.829215696598853*^9}},ExpressionUUID->"ba674f08-fb85-4e91-b0e0-\
71387c4e25c5977"]
714}, Open ]],
715
716Cell[CellGroupData[{
717
718Cell["Quartic LQ interactions", "Subsubsection",
719 CellChangeTimes->{{3.411910849714159*^9, 3.411910851088325*^9}, {
720 3.82921577096142*^9,
721 3.829215773753146*^9}},ExpressionUUID->"0304a94a-5a32-4bbb-af6e-\
7226454e3188bdf"],
723
724Cell[BoxData[
725 RowBox[{
726 RowBox[{"vertsLQ4Phi", "=",
727 RowBox[{"FeynmanRules", "[", "LQ4Phi", "]"}]}], ";"}]], "Input",
728 CellChangeTimes->{{3.403266987858165*^9, 3.4032670026080303`*^9}, {
729 3.411910826105542*^9, 3.411910826777452*^9}, {3.411910857580064*^9,
730 3.411910870001601*^9}, 3.415256462464088*^9, {3.423416107236608*^9,
731 3.423416112835993*^9}, {3.8292156993492327`*^9, 3.829215710508623*^9}, {
732 3.829289791816822*^9, 3.829289824554365*^9}, {3.8292973820259123`*^9,
733 3.829297383199526*^9}},ExpressionUUID->"d650c38b-5ce3-4036-83af-\
734db25787dd434"]
735}, Open ]]
736}, Open ]]
737}, Open ]],
738
739Cell[CellGroupData[{
740
741Cell["Output to FeynArts and MadGraph (LO)", "Section",
742 CellChangeTimes->{
743 3.411910944409371*^9, {3.412185514054689*^9, 3.412185517014236*^9}, {
744 3.829317434673444*^9, 3.829317439013938*^9}, {3.829317736774302*^9,
745 3.829317737707015*^9}},ExpressionUUID->"fca25d07-b476-4934-be9c-\
746000257845077"],
747
748Cell[CellGroupData[{
749
750Cell["FeynArts output", "Subsection",
751 CellChangeTimes->{{3.411911000132907*^9,
752 3.411911005135379*^9}},ExpressionUUID->"767f1460-6bb0-4011-815f-\
753b0e2a89bc978"],
754
755Cell["\<\
756The FeynArts output can be obtained via the commands below. FeynArts supports \
757Feynman gauge.\
758\>", "Text",
759 CellChangeTimes->{{3.4121854851672792`*^9, 3.412185494183435*^9}, {
760 3.829317345260894*^9,
761 3.829317371330112*^9}},ExpressionUUID->"fe1f6866-04ec-47fa-bd3d-\
7623a225d460d63"],
763
764Cell[BoxData[{
765 RowBox[{
766 RowBox[{"FeynmanGauge", " ", "=", " ", "True"}],
767 ";"}], "\[IndentingNewLine]",
768 RowBox[{"WriteFeynArtsOutput", "[",
769 RowBox[{
770 RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
771 RowBox[{"Output", "\[Rule]", "\"\<SLQrules-FA\>\""}]}], "]"}]}], "Input",
772 CellChangeTimes->{{3.411911018354619*^9, 3.4119110196967573`*^9}, {
773 3.412185470680571*^9, 3.412185506240796*^9}, {3.4234161971513453`*^9,
774 3.423416209716672*^9}, {3.829216185775022*^9, 3.829216215466721*^9}, {
775 3.8292172624502296`*^9, 3.829217263668345*^9}, 3.829307863874927*^9, {
776 3.8293079648676643`*^9, 3.829307973887467*^9}, {3.829317339954515*^9,
777 3.829317341602551*^9},
778 3.829317374406982*^9},ExpressionUUID->"c5883ed3-34ce-4193-bec0-\
779173de87e6e36"]
780}, Open ]],
781
782Cell[CellGroupData[{
783
784Cell["MadGraph output (LO)", "Subsection",
785 CellChangeTimes->{{3.4119110460271273`*^9, 3.411911049405038*^9}, {
786 3.411911150323291*^9, 3.4119111515122623`*^9}, {3.5074389822322817`*^9,
787 3.507438983565652*^9}, {3.507439158477231*^9, 3.507439159035309*^9}, {
788 3.82921599622618*^9, 3.829215998252964*^9}, {3.8293177326702642`*^9,
789 3.829317734640527*^9}},ExpressionUUID->"8e432d9c-e319-4320-9c94-\
7902272b0378390"],
791
792Cell[BoxData[
793 RowBox[{"WriteUFO", "[",
794 RowBox[{
795 RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
796 RowBox[{"Output", "\[Rule]", "\"\<SLQrules-UFO\>\""}]}], "]"}]], "Input",
797 CellChangeTimes->{
798 3.412185367693318*^9, 3.412185407947097*^9, {3.5074391727475023`*^9,
799 3.5074391804929533`*^9}, {3.829217380837536*^9, 3.829217387763755*^9},
800 3.829217445398571*^9, {3.829286056748787*^9, 3.829286057755117*^9}},
801 CellLabel->"In[5]:=",ExpressionUUID->"205795bd-604d-406b-a84b-171a43be6b72"]
802}, Open ]]
803}, Open ]],
804
805Cell[CellGroupData[{
806
807Cell["Further Outputs (not tested)", "Section",
808 CellChangeTimes->{
809 3.411910944409371*^9, {3.412185514054689*^9, 3.412185517014236*^9}, {
810 3.829317442109345*^9, 3.829317447752201*^9}, {3.829317491763179*^9,
811 3.829317495376507*^9}, {3.829317716032243*^9,
812 3.829317721229558*^9}},ExpressionUUID->"ca174a26-f0af-49fc-ae37-\
8136b00eb4e769d"],
814
815Cell[CellGroupData[{
816
817Cell["MadGraph output (NLO)", "Subsection",
818 CellChangeTimes->{{3.606568224887179*^9, 3.606568225228436*^9}, {
819 3.606568338418679*^9, 3.606568340840477*^9}, {3.829215990329516*^9,
820 3.8292159946774683`*^9}, {3.8293177401679363`*^9,
821 3.829317741160136*^9}},ExpressionUUID->"d0bc5a0a-612d-445f-95bc-\
8226e8966c109ba"],
823
824Cell[BoxData[
825 RowBox[{"(*",
826 RowBox[{
827 "Renormalization", " ", "and", " ", "output", " ", "to", " ", "FA"}],
828 "*)"}]], "Input",
829 CellChangeTimes->{{3.606568280586434*^9, 3.606568289181669*^9}, {
830 3.606568347601158*^9,
831 3.606568356208818*^9}},ExpressionUUID->"1b930662-f8b2-452a-b56d-\
832c9bfc9ac6898"],
833
834Cell[BoxData[{
835 RowBox[{
836 RowBox[{"Lren", "=",
837 RowBox[{"OnShellRenormalization", "[",
838 RowBox[{
839 RowBox[{"LSM", "+", "LQall"}], ",",
840 RowBox[{"QCDOnly", "\[Rule]", "True"}], ",",
841 RowBox[{"FlavorMixing", "\[Rule]", "False"}]}], "]"}]}],
842 ";"}], "\[IndentingNewLine]",
843 RowBox[{
844 RowBox[{
845 "SetDirectory", "[", "\"\<Path to FeynArts/Models directory\>\"", "]"}],
846 ";"}], "\[IndentingNewLine]",
847 RowBox[{"WriteFeynArtsOutput", "[",
848 RowBox[{"Lren", ",",
849 RowBox[{"Output", "\[Rule]", "\"\<SLQrulesRen\>\""}], ",",
850 RowBox[{"GenericFile", "\[Rule]", "False"}]}], "]"}]}], "Input",
851 CellChangeTimes->{{3.606568250159355*^9, 3.6065682552288523`*^9}, {
852 3.6065683087252502`*^9, 3.6065683093453608`*^9}, {3.6065684035728207`*^9,
853 3.606568404147846*^9}, {3.824044900202484*^9, 3.824044916247203*^9}, {
854 3.824057173692593*^9, 3.824057191173675*^9}, {3.8240643178993683`*^9,
855 3.8240643203718367`*^9}, {3.824182772031001*^9, 3.8241827723487883`*^9}, {
856 3.824234854932047*^9, 3.82423488016323*^9}, 3.824236197413455*^9, {
857 3.824236502199308*^9, 3.824236510665146*^9}, {3.824354237724072*^9,
858 3.824354241903737*^9}, {3.829215795500759*^9, 3.829215823334786*^9}, {
859 3.8293174787545557`*^9,
860 3.8293175145510273`*^9}},ExpressionUUID->"10263708-39b4-4c83-b08e-\
8614b581e608878"],
862
863Cell[BoxData[
864 RowBox[{"(*",
865 RowBox[{"Computation", " ", "of", " ", "the", " ", "Counterterms"}],
866 "*)"}]], "Input",
867 CellChangeTimes->{{3.606568413917823*^9,
868 3.6065684261433983`*^9}},ExpressionUUID->"0d1d00bd-baf4-4ab7-a054-\
869ae49de279dbe"],
870
871Cell[BoxData[
872 RowBox[{"Quit", "[", "]"}]], "Input",
873 CellChangeTimes->{{3.606568433162343*^9, 3.606568438694559*^9}},
874 CellLabel->"In[9]:=",ExpressionUUID->"505b1b1d-f468-4132-8776-c8a5ee50b352"],
875
876Cell[BoxData[{
877 RowBox[{
878 RowBox[{"SetDirectory", "[", "\"\<Path to FeynArts directory\>\"", "]"}],
879 ";"}], "\[IndentingNewLine]",
880 RowBox[{"<<", " ", "FeynArts`"}], "\[IndentingNewLine]",
881 RowBox[{
882 RowBox[{"SetDirectory", "[", "\"\<Path to FeynRules directory\>\"", "]"}],
883 ";"}], "\[IndentingNewLine]",
884 RowBox[{"<<", " ", "NLOCT`"}]}], "Input",
885 CellChangeTimes->{{3.6065684720815067`*^9, 3.6065685038224916`*^9}, {
886 3.824041543853984*^9, 3.824041551195013*^9}, {3.824041608979226*^9,
887 3.824041618200704*^9}, {3.829317531324136*^9,
888 3.829317547921916*^9}},ExpressionUUID->"eca1ebb2-3ca1-4381-929c-\
889a5b452dfd06e"],
890
891Cell[BoxData[
892 RowBox[{
893 RowBox[{"WriteCT", "[",
894 RowBox[{"\"\<SLQrulesRen/SLQrulesRen\>\"", ",", "\"\<Lorentz\>\"", ",",
895 RowBox[{"Output", " ", "\[Rule]", " ", "\"\<SLQrulesRen\>\""}], ",",
896 RowBox[{"LabelInternal", "\[Rule]", "True"}], ",",
897 RowBox[{"QCDOnly", "\[Rule]", "True"}], ",",
898 RowBox[{"KeptIndices", "\[Rule]",
899 RowBox[{"{", "}"}]}], ",",
900 RowBox[{"ZeroMom", "\[Rule]",
901 RowBox[{"{",
902 RowBox[{"{",
903 RowBox[{"aS", ",",
904 RowBox[{"{",
905 RowBox[{
906 RowBox[{"F", "[", "7", "]"}], ",",
907 RowBox[{"V", "[", "4", "]"}], ",",
908 RowBox[{"-",
909 RowBox[{"F", "[", "7", "]"}]}]}], "}"}], ",", "0"}], "}"}],
910 "}"}]}], ",",
911 RowBox[{"ComplexMass", "\[Rule]", "False"}]}], "]"}], "//",
912 "Timing"}]], "Input",
913 CellChangeTimes->{{3.606569782037321*^9, 3.606569798425932*^9}, {
914 3.8240420245848017`*^9, 3.824042040296957*^9}, {3.8240449896101923`*^9,
915 3.824044993658993*^9}, {3.824045028657148*^9, 3.824045039727353*^9}, {
916 3.824354477405341*^9, 3.824354485351205*^9}, {3.829215847112258*^9,
917 3.829215862665469*^9}},ExpressionUUID->"f8201996-ff3d-42c2-8024-\
918c52d0c306c3b"],
919
920Cell[BoxData[
921 RowBox[{"(*",
922 RowBox[{"Copy", " ", "the", " ", "file", " ",
923 RowBox[{"SLQrulesRen", ".", "nlo"}], " ", "to", " ", "the", " ",
924 RowBox[{"FeynRules", "/", "SLQrules"}], " ",
925 RowBox[{"folder", ".", " ", "Quit"}], " ", "and", " ", "reload", " ",
926 "the", " ", "SLQrules", " ", "model", " ", "files", " ", "with", " ",
927 "restrictions", " ", "for", " ", "the", " ", "SM", " ", "if", " ",
928 "desired"}], " ", "*)"}]], "Input",
929 CellChangeTimes->{{3.6065685476941853`*^9, 3.6065685843784647`*^9}, {
930 3.829317668291019*^9,
931 3.829317696467911*^9}},ExpressionUUID->"cae44f65-224f-463f-bfbd-\
932cd9b1ff1d695"],
933
934Cell[BoxData[{
935 RowBox[{
936 RowBox[{
937 "SetDirectory", "[", "\"\<Path to FeynRules/Models/SLQrules\>\"", "]"}],
938 ";"}], "\[IndentingNewLine]",
939 RowBox[{
940 RowBox[{"Get", "[", "\"\<SLQrulesRen.nlo\>\"", "]"}], ";"}]}], "Input",
941 CellChangeTimes->{{3.824044699095984*^9, 3.8240447048338137`*^9}, {
942 3.824045265459449*^9, 3.824045267232279*^9}, {3.824045325867647*^9,
943 3.82404532675732*^9}, {3.824355155397867*^9, 3.824355156347355*^9}, {
944 3.825595584381959*^9, 3.825595585533291*^9}, {3.8256012988199673`*^9,
945 3.825601300549666*^9}, {3.825681031976363*^9, 3.825681032621423*^9}, {
946 3.825682168873169*^9, 3.825682169885099*^9}, {3.827670159771389*^9,
947 3.8276701617811728`*^9}, {3.827945438276372*^9, 3.8279454403812037`*^9}, {
948 3.829215916308983*^9, 3.829215920362095*^9}, {3.829317625534028*^9,
949 3.829317633229519*^9}},ExpressionUUID->"7d96f046-6569-4843-8a38-\
950ba116e454853"],
951
952Cell[BoxData[
953 RowBox[{"WriteUFO", "[",
954 RowBox[{
955 RowBox[{"LSM", "+", "LQall"}], ",",
956 RowBox[{"UVCounterterms", "\[Rule]", "UV$vertlist"}], ",",
957 RowBox[{"R2Vertices", "\[Rule]", "R2$vertlist"}], ",",
958 RowBox[{"Output", "\[Rule]", "\"\<SLQrulesNLO\>\""}]}], "]"}]], "Input",
959 CellChangeTimes->{{3.60656864069383*^9, 3.606568704839243*^9}, {
960 3.824045312263064*^9, 3.8240453134089203`*^9}, {3.8240454130852003`*^9,
961 3.824045426446526*^9}, {3.824355288930069*^9, 3.8243552972465687`*^9}, {
962 3.824355340557374*^9, 3.824355349973928*^9}, {3.824358280104438*^9,
963 3.824358280481341*^9}, {3.824359272193449*^9, 3.8243592775346327`*^9}, {
964 3.824359609008649*^9, 3.8243596399406023`*^9}, {3.824359840665352*^9,
965 3.8243598553660316`*^9}, {3.8243599723283367`*^9, 3.824359985320318*^9}, {
966 3.82436012447043*^9, 3.824360127029685*^9}, {3.8243602196467*^9,
967 3.8243602240451307`*^9}, {3.825595534914063*^9, 3.825595537548952*^9}, {
968 3.8255958328196907`*^9, 3.825595835369465*^9}, {3.8256012634782963`*^9,
969 3.825601281027199*^9}, {3.825679142330309*^9, 3.825679152757854*^9}, {
970 3.825679191045094*^9, 3.825679203887518*^9}, {3.8274941549563828`*^9,
971 3.827494162852319*^9}, {3.8274942624154797`*^9, 3.827494273001966*^9}, {
972 3.82766990372858*^9, 3.827669907226015*^9}, {3.8276699786111526`*^9,
973 3.827669978993259*^9}, {3.827814032748253*^9, 3.8278140348941183`*^9}, {
974 3.827814512387393*^9, 3.827814512881673*^9}, {3.827919768541841*^9,
975 3.827919806432831*^9}, {3.827920896712434*^9, 3.827920899521324*^9}, {
976 3.827945037947239*^9, 3.827945083454887*^9}, 3.827947833042583*^9, {
977 3.829215930833584*^9, 3.8292159388741913`*^9}, {3.829217574433614*^9,
978 3.829217585539023*^9}},ExpressionUUID->"3d0fdecb-e60f-45b1-a607-\
979a8c1085436fb"]
980}, Open ]],
981
982Cell[CellGroupData[{
983
984Cell["Sherpa output", "Subsection",
985 CellChangeTimes->{{3.4119110460271273`*^9,
986 3.411911049405038*^9}},ExpressionUUID->"4c0a9dc9-9112-4554-bd1b-\
98767d12c33904e"],
988
989Cell["The Sherpa output for the SM can be obtained via", "Text",
990 CellChangeTimes->{{3.411910955110715*^9, 3.4119109690877657`*^9}, {
991 3.411911059590749*^9,
992 3.4119110601885567`*^9}},ExpressionUUID->"7c0ba6c8-b6ed-4845-9fcc-\
99302a5ff82e30a"],
994
995Cell[BoxData[{
996 RowBox[{
997 RowBox[{"FeynmanGauge", "=", "False"}], ";"}], "\[IndentingNewLine]",
998 RowBox[{"WriteSHOutput", "[",
999 RowBox[{
1000 RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
1001 RowBox[{"Output", "\[Rule]", "\"\<SLQrules-SH\>\""}]}], "]"}]}], "Input",
1002 CellChangeTimes->{{3.4119110943383636`*^9, 3.41191110054212*^9}, {
1003 3.412185455856553*^9, 3.412185456628922*^9}, {3.4143156544792233`*^9,
1004 3.414315668290971*^9}, {3.423416222700699*^9, 3.423416235756197*^9}, {
1005 3.829217327434263*^9, 3.8292173381259527`*^9},
1006 3.829317703385848*^9},ExpressionUUID->"97cdf914-d42a-4560-b2cb-\
10071dfa13df3e7b"]
1008}, Open ]],
1009
1010Cell[CellGroupData[{
1011
1012Cell["CalcHep output", "Subsection",
1013 CellChangeTimes->{{3.4119110460271273`*^9, 3.411911049405038*^9}, {
1014 3.411911150323291*^9,
1015 3.4119111515122623`*^9}},ExpressionUUID->"3b727f9f-0b16-4ae0-9263-\
101681de78091dd4"],
1017
1018Cell["CalcHep also supports the Feynman gauge", "Text",
1019 CellChangeTimes->{{3.4121853722243843`*^9,
1020 3.412185380407339*^9}},ExpressionUUID->"e1e11052-6536-44ca-80b9-\
102175bb5ecb0b2c"],
1022
1023Cell[BoxData[{
1024 RowBox[{
1025 RowBox[{"FeynmanGauge", "=", "True"}], ";"}], "\[IndentingNewLine]",
1026 RowBox[{
1027 RowBox[{"WriteCHOutput", "[",
1028 RowBox[{
1029 RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
1030 RowBox[{"Output", "\[Rule]", "\"\<SLQrules-CH\>\""}]}], "]"}],
1031 ";"}]}], "Input",
1032 CellChangeTimes->{{3.4119110943383636`*^9, 3.41191110054212*^9}, {
1033 3.412185409690489*^9, 3.4121854275198507`*^9}, {3.412450479942018*^9,
1034 3.4124504817138367`*^9}, {3.8292173423167677`*^9, 3.829217351323717*^9},
1035 3.829317706602*^9},ExpressionUUID->"a32f6603-0269-48f5-a793-e363bafdb2c3"]
1036}, Open ]],
1037
1038Cell[CellGroupData[{
1039
1040Cell["Whizard output", "Subsection",
1041 CellChangeTimes->{{3.4119110460271273`*^9, 3.411911049405038*^9}, {
1042 3.411911150323291*^9, 3.4119111515122623`*^9}, {3.5074389822322817`*^9,
1043 3.507438983565652*^9}},ExpressionUUID->"9a745412-8fb2-4156-96ba-\
104433af491dcac1"],
1045
1046Cell["Whizard also supports the Feynman gauge", "Text",
1047 CellChangeTimes->{{3.4121853722243843`*^9, 3.412185380407339*^9}, {
1048 3.507438990997637*^9,
1049 3.507438992828805*^9}},ExpressionUUID->"027bfaf0-314e-43ca-a852-\
1050b3c5e1452206"],
1051
1052Cell[BoxData[{
1053 RowBox[{
1054 RowBox[{"FeynmanGauge", "=", "True"}], ";"}], "\[IndentingNewLine]",
1055 RowBox[{
1056 RowBox[{"WriteWOOutput", "[",
1057 RowBox[{
1058 RowBox[{"LSM", " ", "+", " ", "LQall"}], ",",
1059 RowBox[{"Output", "\[Rule]", "\"\<SLQrules-WO\>\""}]}], "]"}],
1060 ";"}]}], "Input",
1061 CellChangeTimes->{{3.4119110943383636`*^9, 3.41191110054212*^9}, {
1062 3.412185409690489*^9, 3.4121854275198507`*^9}, {3.412450479942018*^9,
1063 3.4124504817138367`*^9}, {3.507438986168689*^9, 3.507438987383316*^9}, {
1064 3.8292173561928368`*^9, 3.829217373570979*^9},
1065 3.829317707730329*^9},ExpressionUUID->"6c2a3c74-62aa-4fe9-b83f-\
10664d625737535f"]
1067}, Open ]]
1068}, Open ]]
1069}, Open ]]
1070},
1071WindowSize->{1066, 682},
1072WindowMargins->{{29, Automatic}, {Automatic, 15}},
1073ShowSelection->True,
1074FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)",
1075StyleDefinitions->"Default.nb"
1076]
1077(* End of Notebook Content *)
1078
1079(* Internal cache information *)
1080(*CellTagsOutline
1081CellTagsIndex->{}
1082*)
1083(*CellTagsIndex
1084CellTagsIndex->{}
1085*)
1086(*NotebookFileOutline
1087Notebook[{
1088Cell[545, 20, 198, 3, 30, "Input",ExpressionUUID->"b688e269-f949-4f2c-a5f5-9de5f1b3267d"],
1089Cell[746, 25, 318, 7, 58, "Text",ExpressionUUID->"cc085fb5-11e0-443f-82b9-5a2d42c2cd4e"],
1090Cell[CellGroupData[{
1091Cell[1089, 36, 744, 16, 52, "Input",ExpressionUUID->"a0323c9b-4a85-486b-8893-6aa74c98675c"],
1092Cell[1836, 54, 2329, 33, 34, "Output",ExpressionUUID->"6943a034-02dc-441c-8676-f99c07faee4c"]
1093}, Open ]],
1094Cell[4180, 90, 389, 8, 52, "Input",ExpressionUUID->"dae72e58-5763-4788-8c5b-617b4aebb651"],
1095Cell[4572, 100, 979, 20, 52, "Input",ExpressionUUID->"bc43008c-6c7d-4f5d-a2ab-eebcf254e2c2"],
1096Cell[CellGroupData[{
1097Cell[5576, 124, 153, 3, 98, "Title",ExpressionUUID->"636beac9-9f31-4b31-b755-3eb42ffd478e"],
1098Cell[5732, 129, 232, 4, 35, "Text",ExpressionUUID->"ec7f2af5-77dc-482c-8fb4-9b08b7dd505e"],
1099Cell[5967, 135, 1522, 25, 52, "Input",ExpressionUUID->"59631497-ebc3-49fd-8e92-ad2825080560"],
1100Cell[7492, 162, 248, 6, 35, "Text",ExpressionUUID->"20fa5ed0-b235-4319-9812-14fdf3322a3d"],
1101Cell[7743, 170, 279, 5, 30, "Input",ExpressionUUID->"98c0dab1-7ec3-42cb-bfa0-b73e6f421115"],
1102Cell[8025, 177, 156, 3, 30, "Input",ExpressionUUID->"8fc83e3e-26a7-4176-ae65-36575f4b3800"],
1103Cell[CellGroupData[{
1104Cell[8206, 184, 207, 4, 67, "Section",ExpressionUUID->"71117ab3-5427-49a8-a834-7937a1026b1a"],
1105Cell[CellGroupData[{
1106Cell[8438, 192, 163, 3, 54, "Subsection",ExpressionUUID->"0b8321e7-8717-49ad-900e-3e223b1eeaf1"],
1107Cell[8604, 197, 204, 3, 35, "Text",ExpressionUUID->"fec50e9b-5370-4937-b93e-a86a29374477"],
1108Cell[8811, 202, 227, 4, 30, "Input",ExpressionUUID->"a0d827a7-58f8-445a-aa08-d7b0f9121b1c"],
1109Cell[9041, 208, 445, 6, 35, "Text",ExpressionUUID->"362c7424-cc6f-41da-abaf-236dd1d84159"],
1110Cell[9489, 216, 155, 3, 30, "Input",ExpressionUUID->"946efd16-a954-4caa-818d-8587b2eddc42"],
1111Cell[CellGroupData[{
1112Cell[9669, 223, 165, 3, 45, "Subsubsection",ExpressionUUID->"5cffddb4-ac7e-4684-851f-5715248647ab"],
1113Cell[9837, 228, 332, 7, 35, "Text",ExpressionUUID->"9ae9c6af-ebbd-46eb-9f5d-dbf5a17db985"],
1114Cell[10172, 237, 158, 3, 30, "Input",ExpressionUUID->"9a57df20-3954-4969-8615-e8120a673950"]
1115}, Open ]],
1116Cell[CellGroupData[{
1117Cell[10367, 245, 214, 4, 45, "Subsubsection",ExpressionUUID->"3eafaea8-6c94-4d58-8cd8-09a6ddd8d65a"],
1118Cell[10584, 251, 379, 8, 35, "Text",ExpressionUUID->"8f7e06ed-6571-4ca8-8418-df93504a99ea"],
1119Cell[10966, 261, 207, 4, 30, "Input",ExpressionUUID->"7a7a5c35-31cc-40c5-be4d-57d41d1af96e"]
1120}, Open ]],
1121Cell[CellGroupData[{
1122Cell[11210, 270, 218, 4, 45, "Subsubsection",ExpressionUUID->"d31b98ea-8680-4e4a-8792-10636cf834c2"],
1123Cell[11431, 276, 385, 8, 35, "Text",ExpressionUUID->"f38ace0f-c0f8-4c44-89c9-6c8548d14f8d"],
1124Cell[11819, 286, 206, 3, 30, "Input",ExpressionUUID->"47f1aea6-01a0-4e7a-a624-cc213bad8bd3"]
1125}, Open ]],
1126Cell[CellGroupData[{
1127Cell[12062, 294, 215, 4, 45, "Subsubsection",ExpressionUUID->"8c8d5553-dc94-4d38-bd21-4815416e8dc5"],
1128Cell[12280, 300, 379, 8, 35, "Text",ExpressionUUID->"8b4d77a9-0455-49eb-82c6-58a23e959ed8"],
1129Cell[12662, 310, 210, 4, 30, "Input",ExpressionUUID->"cf8cf460-2a00-4a0e-84fc-af9f2bd7543b"]
1130}, Open ]],
1131Cell[CellGroupData[{
1132Cell[12909, 319, 262, 4, 45, "Subsubsection",ExpressionUUID->"47080b0c-0bcf-4ee8-a446-2df3de49516f"],
1133Cell[13174, 325, 432, 9, 35, "Text",ExpressionUUID->"7cb35b1c-4379-4b20-9571-79351621bd51"],
1134Cell[13609, 336, 255, 4, 30, "Input",ExpressionUUID->"eae7cde0-46d1-4e5d-bdf5-f16a6d620f38"]
1135}, Open ]]
1136}, Open ]],
1137Cell[CellGroupData[{
1138Cell[13913, 346, 214, 4, 54, "Subsection",ExpressionUUID->"da621b90-69a3-4897-962a-63ccff7abedb"],
1139Cell[14130, 352, 204, 3, 35, "Text",ExpressionUUID->"f4114b7b-307b-42ec-9c66-8aee0c11c4ba"],
1140Cell[14337, 357, 227, 4, 30, "Input",ExpressionUUID->"66f57e38-268c-48ec-9c6e-bce19710483e"],
1141Cell[14567, 363, 437, 6, 35, "Text",ExpressionUUID->"9313027b-7d84-4a0d-a4bf-7b6b30f3f04f"],
1142Cell[15007, 371, 229, 3, 30, "Input",ExpressionUUID->"cdf50274-7d0a-42a5-9682-0e1bb29814b8"],
1143Cell[CellGroupData[{
1144Cell[15261, 378, 377, 6, 45, "Subsubsection",ExpressionUUID->"ffbe693b-e14d-433f-a0d7-73149956ae7c"],
1145Cell[15641, 386, 458, 9, 35, "Text",ExpressionUUID->"a4a32daa-f7ed-4078-9550-78fce0c5587e"],
1146Cell[16102, 397, 225, 3, 30, "Input",ExpressionUUID->"559657cc-14b7-4dd5-8a6e-40cddf1604ed"]
1147}, Open ]],
1148Cell[CellGroupData[{
1149Cell[16364, 405, 303, 4, 45, "Subsubsection",ExpressionUUID->"34ecf012-8d72-4b2d-83a6-7f9bf807588d"],
1150Cell[16670, 411, 385, 8, 35, "Text",ExpressionUUID->"30ab6780-22ed-4b99-a36d-7e293fa331f9"],
1151Cell[17058, 421, 272, 4, 30, "Input",ExpressionUUID->"2efcb5cc-f9ce-4d1d-b377-7a0e6349b355"]
1152}, Open ]],
1153Cell[CellGroupData[{
1154Cell[17367, 430, 326, 5, 45, "Subsubsection",ExpressionUUID->"ff7ac885-a08e-491b-a3ae-eb0790a46c83"],
1155Cell[17696, 437, 543, 10, 35, "Text",ExpressionUUID->"0f0d84de-7860-4b36-b1dd-6a304223a18d"],
1156Cell[18242, 449, 271, 4, 30, "Input",ExpressionUUID->"135c07ba-8634-4ec7-8890-342e991d26c9"]
1157}, Open ]],
1158Cell[CellGroupData[{
1159Cell[18550, 458, 270, 4, 45, "Subsubsection",ExpressionUUID->"6b82c53e-1e2e-4d88-9027-1adf8a738b8d"],
1160Cell[18823, 464, 433, 9, 35, "Text",ExpressionUUID->"9abf76e4-0185-408a-b6fa-99751dd34319"],
1161Cell[19259, 475, 279, 4, 30, "Input",ExpressionUUID->"25e9fdb3-aff5-4c3d-8d1a-0ac21f4abebf"]
1162}, Open ]],
1163Cell[CellGroupData[{
1164Cell[19575, 484, 321, 5, 45, "Subsubsection",ExpressionUUID->"c56432fd-208b-48c4-90d0-d3a27e7967fb"],
1165Cell[19899, 491, 485, 9, 35, "Text",ExpressionUUID->"c9e42b9f-de8a-4af6-b7ed-791c3380584d"],
1166Cell[20387, 502, 323, 4, 30, "Input",ExpressionUUID->"1f8a0d35-3850-4f81-9708-cffd36eccefd"]
1167}, Open ]]
1168}, Open ]]
1169}, Open ]],
1170Cell[CellGroupData[{
1171Cell[20771, 513, 205, 4, 67, "Section",ExpressionUUID->"471a0c6b-9483-4245-887d-249a8d3d0b73"],
1172Cell[20979, 519, 268, 6, 35, "Text",ExpressionUUID->"0f40813c-84bf-432a-99b9-0841fec4eef2"],
1173Cell[21250, 527, 227, 4, 30, "Input",ExpressionUUID->"a6068651-d72a-450a-87a7-0677a1f638ca"],
1174Cell[CellGroupData[{
1175Cell[21502, 535, 166, 3, 54, "Subsection",ExpressionUUID->"b81c1c3d-aa3a-465f-92d4-2f92000a1bea"],
1176Cell[CellGroupData[{
1177Cell[21693, 542, 163, 3, 45, "Subsubsection",ExpressionUUID->"ac747c10-9899-4bff-8bb5-9d2f8aad49f5"],
1178Cell[21859, 547, 514, 11, 30, "Input",ExpressionUUID->"afb79007-63a3-4990-9bff-ef936e220465"]
1179}, Open ]],
1180Cell[CellGroupData[{
1181Cell[22410, 563, 139, 3, 45, "Subsubsection",ExpressionUUID->"515e1996-dba5-4064-af2d-255d3b248e24"],
1182Cell[22552, 568, 319, 7, 30, "Input",ExpressionUUID->"19578d72-431c-4540-b8a7-a97cf3728e5a"]
1183}, Open ]],
1184Cell[CellGroupData[{
1185Cell[22908, 580, 93, 0, 45, "Subsubsection",ExpressionUUID->"ddf45544-8d02-498c-a923-444d8932005e"],
1186Cell[23004, 582, 478, 9, 30, "Input",ExpressionUUID->"3c2d48ed-c05a-43df-aa5a-6b5f8bab816d"]
1187}, Open ]],
1188Cell[CellGroupData[{
1189Cell[23519, 596, 93, 0, 45, "Subsubsection",ExpressionUUID->"12af6344-1008-465d-ae43-f6174b690f45"],
1190Cell[23615, 598, 417, 9, 30, "Input",ExpressionUUID->"12692998-1fcb-47f8-aab8-5ef606351ed9"]
1191}, Open ]],
1192Cell[CellGroupData[{
1193Cell[24069, 612, 164, 3, 45, "Subsubsection",ExpressionUUID->"dec6e064-d31c-48e0-abce-be014f4d50d3"],
1194Cell[24236, 617, 490, 10, 30, "Input",ExpressionUUID->"5af83643-4663-48bb-bd12-48a7dd54dd2a"]
1195}, Open ]]
1196}, Open ]],
1197Cell[CellGroupData[{
1198Cell[24775, 633, 215, 4, 54, "Subsection",ExpressionUUID->"49241856-d642-4ab9-bcc6-fe7841b8eadd"],
1199Cell[CellGroupData[{
1200Cell[25015, 641, 280, 4, 45, "Subsubsection",ExpressionUUID->"84961d68-3069-4352-b3bb-31e8070b7fd5"],
1201Cell[25298, 647, 511, 9, 30, "Input",ExpressionUUID->"3fddd0ee-a2fe-4128-bd2d-f1334eedcd38"]
1202}, Open ]],
1203Cell[CellGroupData[{
1204Cell[25846, 661, 227, 4, 45, "Subsubsection",ExpressionUUID->"98f6ddfb-9422-4710-adcb-eac0c5e06a0d"],
1205Cell[26076, 667, 367, 8, 30, "Input",ExpressionUUID->"24723dda-7ad7-47f6-a68e-4c8311a495da"]
1206}, Open ]],
1207Cell[CellGroupData[{
1208Cell[26480, 680, 179, 3, 45, "Subsubsection",ExpressionUUID->"c6c3d1d4-4c33-4bcd-a9c8-2638c18b6ddc"],
1209Cell[26662, 685, 534, 9, 30, "Input",ExpressionUUID->"b6b52221-2242-4d9d-86f0-81112b5262bb"]
1210}, Open ]],
1211Cell[CellGroupData[{
1212Cell[27233, 699, 175, 3, 45, "Subsubsection",ExpressionUUID->"03a7a6aa-9b8b-4edd-9cd7-06102c52b791"],
1213Cell[27411, 704, 396, 8, 30, "Input",ExpressionUUID->"ba674f08-fb85-4e91-b0e0-87c4e25c5977"]
1214}, Open ]],
1215Cell[CellGroupData[{
1216Cell[27844, 717, 222, 4, 45, "Subsubsection",ExpressionUUID->"0304a94a-5a32-4bbb-af6e-6454e3188bdf"],
1217Cell[28069, 723, 569, 10, 30, "Input",ExpressionUUID->"d650c38b-5ce3-4036-83af-db25787dd434"]
1218}, Open ]]
1219}, Open ]]
1220}, Open ]],
1221Cell[CellGroupData[{
1222Cell[28699, 740, 303, 5, 67, "Section",ExpressionUUID->"fca25d07-b476-4934-be9c-000257845077"],
1223Cell[CellGroupData[{
1224Cell[29027, 749, 163, 3, 54, "Subsection",ExpressionUUID->"767f1460-6bb0-4011-815f-b0e2a89bc978"],
1225Cell[29193, 754, 295, 7, 35, "Text",ExpressionUUID->"fe1f6866-04ec-47fa-bd3d-3a225d460d63"],
1226Cell[29491, 763, 760, 15, 52, "Input",ExpressionUUID->"c5883ed3-34ce-4193-bec0-173de87e6e36"]
1227}, Open ]],
1228Cell[CellGroupData[{
1229Cell[30288, 783, 414, 6, 54, "Subsection",ExpressionUUID->"8e432d9c-e319-4320-9c94-2272b0378390"],
1230Cell[30705, 791, 495, 9, 30, "Input",ExpressionUUID->"205795bd-604d-406b-a84b-171a43be6b72"]
1231}, Open ]]
1232}, Open ]],
1233Cell[CellGroupData[{
1234Cell[31249, 806, 345, 6, 67, "Section",ExpressionUUID->"ca174a26-f0af-49fc-ae37-6b00eb4e769d"],
1235Cell[CellGroupData[{
1236Cell[31619, 816, 317, 5, 54, "Subsection",ExpressionUUID->"d0bc5a0a-612d-445f-95bc-6e8966c109ba"],
1237Cell[31939, 823, 308, 8, 30, "Input",ExpressionUUID->"1b930662-f8b2-452a-b56d-c9bfc9ac6898"],
1238Cell[32250, 833, 1320, 27, 73, "Input",ExpressionUUID->"10263708-39b4-4c83-b08e-4b581e608878"],
1239Cell[33573, 862, 249, 6, 30, "Input",ExpressionUUID->"0d1d00bd-baf4-4ab7-a054-ae49de279dbe"],
1240Cell[33825, 870, 196, 3, 30, "Input",ExpressionUUID->"505b1b1d-f468-4132-8776-c8a5ee50b352"],
1241Cell[34024, 875, 631, 13, 94, "Input",ExpressionUUID->"eca1ebb2-3ca1-4381-929c-a5b452dfd06e"],
1242Cell[34658, 890, 1186, 27, 52, "Input",ExpressionUUID->"f8201996-ff3d-42c2-8024-c52d0c306c3b"],
1243Cell[35847, 919, 633, 12, 52, "Input",ExpressionUUID->"cae44f65-224f-463f-bfbd-cd9b1ff1d695"],
1244Cell[36483, 933, 888, 16, 52, "Input",ExpressionUUID->"7d96f046-6569-4843-8a38-ba116e454853"],
1245Cell[37374, 951, 1777, 27, 30, "Input",ExpressionUUID->"3d0fdecb-e60f-45b1-a607-a8c1085436fb"]
1246}, Open ]],
1247Cell[CellGroupData[{
1248Cell[39188, 983, 163, 3, 54, "Subsection",ExpressionUUID->"4c0a9dc9-9112-4554-bd1b-67d12c33904e"],
1249Cell[39354, 988, 243, 4, 35, "Text",ExpressionUUID->"7c0ba6c8-b6ed-4845-9fcc-02a5ff82e30a"],
1250Cell[39600, 994, 617, 12, 52, "Input",ExpressionUUID->"97cdf914-d42a-4560-b2cb-1dfa13df3e7b"]
1251}, Open ]],
1252Cell[CellGroupData[{
1253Cell[40254, 1011, 215, 4, 54, "Subsection",ExpressionUUID->"3b727f9f-0b16-4ae0-9263-81de78091dd4"],
1254Cell[40472, 1017, 183, 3, 35, "Text",ExpressionUUID->"e1e11052-6536-44ca-80b9-75bb5ecb0b2c"],
1255Cell[40658, 1022, 587, 12, 52, "Input",ExpressionUUID->"a32f6603-0269-48f5-a793-e363bafdb2c3"]
1256}, Open ]],
1257Cell[CellGroupData[{
1258Cell[41282, 1039, 263, 4, 54, "Subsection",ExpressionUUID->"9a745412-8fb2-4156-96ba-33af491dcac1"],
1259Cell[41548, 1045, 232, 4, 35, "Text",ExpressionUUID->"027bfaf0-314e-43ca-a852-b3c5e1452206"],
1260Cell[41783, 1051, 642, 14, 52, "Input",ExpressionUUID->"6c2a3c74-62aa-4fe9-b83f-4d625737535f"]
1261}, Open ]]
1262}, Open ]]
1263}, Open ]]
1264}
1265]
1266*)
1267