SLQrules: SLQrules.2.fr

File SLQrules.2.fr, 66.2 KB (added by LucSchnell, 3 years ago)
Line 
1M$ModelName = "SLQrules";
2
3(*
4FeynRules model file including all scalar LQ. It is based on the Physics Reports 641 (2016) 1-68. See Eqs. (1) and (2) of Phys. Rep. for notation. This model file is suitable for the leading order simulations only.
5*)
6
7M$Information = {Authors -> {"L. Schnell", "I. Dorsner", "D. A. Faroughy", "A. Greljo"},
8 Version -> "1.0",
9 Date -> "04.05.2021",
10 Emails -> {"luschnel@student.ethz.ch", "dorsner@fesb.hr"},
11 URLs -> {"https://gitlab.com/lucschnell/SLQrules", "http://lqnlo.hepforge.org"}};
12
13M$InteractionOrderHierarchy = {
14 {QCD, 1},
15 {QED, 2},
16 {NP, 2}
17};
18
19(* Define range of the colour index *)
20IndexRange[ Index[Colour] ] = Range[3];
21
22(* Define range of the mass diagonalization matrices *)
23IndexRange[Index[Q13]] = Range[3];
24IndexRange[Index[Q23]] = Range[3];
25IndexRange[Index[Q43]] = Range[2];
26
27
28(******************************************)
29(******************************************)
30(* Parameters *)
31(******************************************)
32(******************************************)
33
34
35
36M$Parameters = {
37
38(**********************************)
39(* Scalar singlet S1 = (3,1,-1/3) *)
40(**********************************)
41
42(* S1 leptoquark mass *)
43m1 == {
44 ParameterType -> External,
45 BlockName -> LQPARAM,
46 Value -> 1000.0,
47 Description -> "S1 mass"
48},
49
50(* S1 leptoquark Yukawa couplings *)
51Y1LL == {
52 ParameterType -> External,
53 ComplexParameter -> True,
54 Indices -> {Index[Generation], Index[Generation]},
55 BlockName -> YUKS1LL,
56 Value -> { Y1LL[1,1] -> 1.0, Y1LL[1,2] -> 0.0, Y1LL[1,3] -> 0.0,
57 Y1LL[2,1] -> 0.0, Y1LL[2,2] -> 1.0, Y1LL[2,3] -> 0.0,
58 Y1LL[3,1] -> 0.0, Y1LL[3,2] -> 0.0, Y1LL[3,3] -> 1.0},
59 TeX -> Superscript[Subscript[Y, "1"],LL],
60 InteractionOrder -> {NP, 1},
61 Description -> "S1 leptoquark LL Yukawa coupling matrix"
62},
63
64Y1QLL == {
65 ParameterType -> External,
66 ComplexParameter -> True,
67 Indices -> {Index[Generation], Index[Generation]},
68 BlockName -> YUKS1QLL,
69 Value -> { Y1QLL[1,1] -> 1.0, Y1QLL[1,2] -> 0.0, Y1QLL[1,3] -> 0.0,
70 Y1QLL[2,1] -> 0.0, Y1QLL[2,2] -> 1.0, Y1QLL[2,3] -> 0.0,
71 Y1QLL[3,1] -> 0.0, Y1QLL[3,2] -> 0.0, Y1QLL[3,3] -> 1.0},
72 TeX -> Superscript[Subscript[Y, "1"],QLL],
73 InteractionOrder -> {NP, 1},
74 Description -> "S1 leptoquark QLL Yukawa coupling matrix (symmetric)"
75},
76
77Y1RR == {
78 ParameterType -> External,
79 ComplexParameter -> True,
80 Indices -> {Index[Generation], Index[Generation]},
81 BlockName -> YUKS1RR,
82 Value -> { Y1RR[1,1] -> 1.0, Y1RR[1,2] -> 0.0, Y1RR[1,3] -> 0.0,
83 Y1RR[2,1] -> 0.0, Y1RR[2,2] -> 1.0, Y1RR[2,3] -> 0.0,
84 Y1RR[3,1] -> 0.0, Y1RR[3,2] -> 0.0, Y1RR[3,3] -> 1.0},
85 TeX -> Superscript[Subscript[Y, "1"],RR],
86 InteractionOrder -> {NP, 1},
87 Description -> "S1 leptoquark RR Yukawa coupling matrix"
88},
89
90Y1QRR == {
91 ParameterType -> External,
92 ComplexParameter -> True,
93 Indices -> {Index[Generation], Index[Generation]},
94 BlockName -> YUKS1QRR,
95 Value -> { Y1QRR[1,1] -> 0.0, Y1QRR[1,2] -> -1.0, Y1QRR[1,3] -> -1.0,
96 Y1QRR[2,1] -> 1.0, Y1QRR[2,2] -> 0.0, Y1QRR[2,3] -> -1.0,
97 Y1QRR[3,1] -> 1.0, Y1QRR[3,2] -> 1.0, Y1QRR[3,3] -> 0.0},
98 TeX -> Superscript[Subscript[Y, "1"],QRR],
99 InteractionOrder -> {NP, 1},
100 Description -> "S1 leptoquark QRR Yukawa coupling matrix (anti-symmetric)"
101},
102
103
104(***********************************)
105(* Scalar singlet S1~ = (3,1,-4/3) *)
106(***********************************)
107
108(* S1~ leptoquark mass *)
109m1t == {
110 ParameterType -> External,
111 BlockName -> LQPARAM,
112 Value -> 2000.0,
113 Description -> "S1~ = S1tm43 mass"
114},
115
116(* S1~ leptoquark Yukawa couplings *)
117Y1tRR == {
118 ParameterType -> External,
119 ComplexParameter -> True,
120 Indices -> {Index[Generation], Index[Generation]},
121 BlockName -> YUKS1tRR,
122 Value -> {Y1tRR[1,1] -> 1.0, Y1tRR[1,2] -> 0.0, Y1tRR[1,3] -> 0.0,
123 Y1tRR[2,1] -> 0.0, Y1tRR[2,2] -> 1.0, Y1tRR[2,3] -> 0.0,
124 Y1tRR[3,1] -> 0.0, Y1tRR[3,2] -> 0.0, Y1tRR[3,3] -> 1.0},
125 TeX -> Superscript[Subscript[Y, "1t"],RR],
126 InteractionOrder -> {NP, 1},
127 Description -> "S1~ leptoquark RR Yukawa coupling matrix"
128},
129
130Y1tQRR == {
131 ParameterType -> External,
132 ComplexParameter -> True,
133 Indices -> {Index[Generation], Index[Generation]},
134 BlockName -> YUKS1tQRR,
135 Value -> {Y1tQRR[1,1] -> 1.0, Y1tQRR[1,2] -> 0.0, Y1tQRR[1,3] -> 0.0,
136 Y1tQRR[2,1] -> 0.0, Y1tQRR[2,2] -> 1.0, Y1tQRR[2,3] -> 0.0,
137 Y1tQRR[3,1] -> 0.0, Y1tQRR[3,2] -> 0.0, Y1tQRR[3,3] -> 1.0},
138 TeX -> Superscript[Subscript[Y, "1t"],QRR],
139 InteractionOrder -> {NP, 1},
140 Description -> "S1~ leptoquark QRR Yukawa coupling matrix"
141},
142
143(**********************************)
144(* Scalar doublet R2 = (3,2,-7/6) *)
145(**********************************)
146
147(* R2 leptoquark mass *)
148m2 == {
149 ParameterType -> External,
150 BlockName -> LQPARAM,
151 Value -> 3000.0,
152 Description -> "R2 mass"
153},
154
155(* R2 leptoquark Yukawa couplings *)
156Y2RL == {
157 ParameterType -> External,
158 ComplexParameter -> True,
159 Indices -> {Index[Generation], Index[Generation]},
160 BlockName -> YUKR2RL,
161 Value -> { Y2RL[1,1] -> 1.0, Y2RL[1,2] -> 0.0, Y2RL[1,3] -> 0.0,
162 Y2RL[2,1] -> 0.0, Y2RL[2,2] -> 1.0, Y2RL[2,3] -> 0.0,
163 Y2RL[3,1] -> 0.0, Y2RL[3,2] -> 0.0, Y2RL[3,3] -> 1.0},
164 TeX -> Superscript[Subscript[Y, "2"],RL],
165 InteractionOrder -> {NP, 1},
166 Description -> "R2 leptoquark RL Yukawa coupling matrix"
167},
168
169Y2LR == {
170 ParameterType -> External,
171 ComplexParameter -> True,
172 Indices -> {Index[Generation], Index[Generation]},
173 BlockName -> YUKR2LR,
174 Value -> { Y2LR[1,1] -> 1.0, Y2LR[1,2] -> 0.0, Y2LR[1,3] -> 0.0,
175 Y2LR[2,1] -> 0.0, Y2LR[2,2] -> 1.0, Y2LR[2,3] -> 0.0,
176 Y2LR[3,1] -> 0.0, Y2LR[3,2] -> 0.0, Y2LR[3,3] -> 1.0},
177 TeX -> Superscript[Subscript[Y, "2"],LR],
178 InteractionOrder -> {NP, 1},
179 Description -> "R2 leptoquark LR Yukawa coupling matrix"
180},
181
182(***********************************)
183(* Scalar doublet R2~ = (3,2,-1/6) *)
184(***********************************)
185
186(* R2~ leptoquark mass *)
187m2t == {
188 ParameterType -> External,
189 BlockName -> LQPARAM,
190 Value -> 4000.0,
191 Description -> "R2~ = R2t mass"
192},
193
194(* R2~ leptoquark Yukawa couplings *)
195Y2tRL == {
196 ParameterType -> External,
197 ComplexParameter -> True,
198 Indices -> {Index[Generation], Index[Generation]},
199 BlockName -> YUKR2t,
200 Value -> { Y2tRL[1,1] -> 1.0, Y2tRL[1,2] -> 0.0, Y2tRL[1,3] -> 0.0,
201 Y2tRL[2,1] -> 0.0, Y2tRL[2,2] -> 1.0, Y2tRL[2,3] -> 0.0,
202 Y2tRL[3,1] -> 0.0, Y2tRL[3,2] -> 0.0, Y2tRL[3,3] -> 1.0},
203 TeX -> Superscript[Subscript[Y, "2t"],RL],
204 InteractionOrder -> {NP, 1},
205 Description -> "R2~ leptoquark RL Yukawa coupling matrix"
206},
207
208(**********************************)
209(* Scalar triplet S3 = (3,3,-1/3) *)
210(**********************************)
211
212(* S3 leptoquark mass *)
213m3 == {
214 ParameterType -> External,
215 BlockName -> LQPARAM,
216 Value -> 5000.0,
217 Description -> "S3 mass"
218},
219
220(* S3 leptoquark Yukawa couplings *)
221Y3LL == {
222 ParameterType -> External,
223 ComplexParameter -> True,
224 Indices -> {Index[Generation], Index[Generation]},
225 BlockName -> YUKS3LL,
226 Value -> { Y3LL[1,1] -> 1.0, Y3LL[1,2] -> 0.0, Y3LL[1,3] -> 0.0,
227 Y3LL[2,1] -> 0.0, Y3LL[2,2] -> 1.0, Y3LL[2,3] -> 0.0,
228 Y3LL[3,1] -> 0.0, Y3LL[3,2] -> 0.0, Y3LL[3,3] -> 1.0},
229 TeX -> Superscript[Subscript[Y, "3"],LL],
230 InteractionOrder -> {NP, 1},
231 ComplexParameter -> True,
232 Description -> "S3 leptoquark LL Yukawa coupling matrix"
233},
234
235Y3QLL == {
236 ParameterType -> External,
237 ComplexParameter -> True,
238 Indices -> {Index[Generation], Index[Generation]},
239 BlockName -> YUKS3QLL,
240 Value -> { Y3QLL[1,1] -> 0.0, Y3QLL[1,2] -> -1.0, Y3QLL[1,3] -> -1.0,
241 Y3QLL[2,1] -> 1.0, Y3QLL[2,2] -> 0.0, Y3QLL[2,3] -> -1.0,
242 Y3QLL[3,1] -> 1.0, Y3QLL[3,2] -> 1.0, Y3QLL[3,3] -> 0.0},
243 TeX -> Superscript[Subscript[Y, "3"],LL],
244 InteractionOrder -> {NP, 1},
245 ComplexParameter -> True,
246 Description -> "S3 leptoquark QLL Yukawa coupling matrix (anti-symmetric)"
247},
248
249
250
251(******************************)
252(* LQ Bilinear Interactions *)
253(******************************)
254A12t == {
255 ParameterType -> External,
256 ComplexParameter -> True,
257 Indices -> {},
258 BlockName -> A12t,
259 TeX -> Subscript[A, "12t"],
260 Value -> 1.0,
261 InteractionOrder -> {QED, 1},
262 Description -> "R2t-S1 scalar leptoquark mixing coupling"
263},
264
265A2t3 == {
266 ParameterType -> External,
267 ComplexParameter -> True,
268 Indices -> {},
269 BlockName -> A2t3,
270 TeX -> Subscript[A, "2t3"],
271 Value -> 1.0,
272 InteractionOrder -> {QED, 1},
273 Description -> "S3-R2t scalar leptoquark mixing coupling"
274},
275
276Y22t == {
277 ParameterType -> External,
278 ComplexParameter -> True,
279 Indices -> {},
280 BlockName -> Y22t,
281 TeX -> Subscript[Y, "22t"],
282 Value -> 1.0,
283 InteractionOrder -> {QED, 2},
284 Description -> "S2-R2t scalar leptoquark mixing coupling"
285},
286
287Y1t3 == {
288 ParameterType -> External,
289 ComplexParameter -> True,
290 Indices -> {},
291 BlockName -> Y1t3,
292 TeX -> Subscript[Y, "1t3"],
293 Value -> 1.0,
294 InteractionOrder -> {QED, 2},
295 Description -> "S3-S1t scalar leptoquark mixing coupling"
296},
297
298Y13 == {
299 ParameterType -> External,
300 ComplexParameter -> True,
301 Indices -> {},
302 BlockName -> Y13,
303 TeX -> Subscript[Y, "13"],
304 Value -> 1.0,
305 InteractionOrder -> {QED, 2},
306 Description -> "S3-S1 scalar leptoquark mixing coupling"
307},
308
309Y22 == {
310 ParameterType -> External,
311 ComplexParameter -> True,
312 Indices -> {},
313 BlockName -> Y22,
314 TeX -> Subscript[Y, "22"],
315 Value -> 1.0,
316 InteractionOrder -> {QED, 2},
317 Description -> "R2-R2 scalar leptoquark mixing coupling"
318},
319
320Y2t2t == {
321 ParameterType -> External,
322 ComplexParameter -> True,
323 Indices -> {},
324 BlockName -> Y2t2t,
325 TeX -> Subscript[Y, "2t2t"],
326 Value -> 1.0,
327 InteractionOrder -> {QED, 2},
328 Description -> "R2t-R2t scalar leptoquark mixing coupling"
329},
330
331Y33 == {
332 ParameterType -> External,
333 ComplexParameter -> True,
334 Indices -> {},
335 BlockName -> Y33,
336 TeX -> Subscript[Y, "33"],
337 Value -> 1.0,
338 InteractionOrder -> {QED, 2},
339 Description -> "S3-S3 scalar leptoquark mixing coupling"
340},
341
342Y1 == {
343 ParameterType -> External,
344 ComplexParameter -> True,
345 Indices -> {},
346 BlockName -> Y1,
347 TeX -> Subscript[Y, "1"],
348 Value -> 1.0,
349 InteractionOrder -> {QED, 2},
350 Description -> "S1 scalar leptoquark Higgs coupling"
351},
352Y1t == {
353 ParameterType -> External,
354 ComplexParameter -> True,
355 Indices -> {},
356 BlockName -> Y1t,
357 TeX -> Subscript[Y, "1t"],
358 Value -> 1.0,
359 InteractionOrder -> {QED, 2},
360 Description -> "S1t scalar leptoquark Higgs coupling"
361},
362
363Y2 == {
364 ParameterType -> External,
365 ComplexParameter -> True,
366 Indices -> {},
367 BlockName -> Y2,
368 TeX -> Subscript[Y, "2"],
369 Value -> 1.0,
370 InteractionOrder -> {QED, 2},
371 Description -> "R2 scalar leptoquark Higgs coupling"
372},
373Y2t == {
374 ParameterType -> External,
375 ComplexParameter -> True,
376 Indices -> {},
377 BlockName -> Y2t,
378 TeX -> Subscript[Y, "2t"],
379 Value -> 1.0,
380 InteractionOrder -> {QED, 2},
381 Description -> "R2t scalar leptoquark Higgs coupling"
382},
383Y3 == {
384 ParameterType -> External,
385 ComplexParameter -> True,
386 Indices -> {},
387 BlockName -> Y3,
388 TeX -> Subscript[Y, "3"],
389 Value -> 1.0,
390 InteractionOrder -> {QED, 2},
391 Description -> "S3 scalar leptoquark Higgs coupling"
392},
393
394(* Mass Diagonalization Matrices *)
395W13mat == {
396 ParameterType -> Internal,
397 Unitary -> True,
398 Indices -> {Index[Q13], Index[Q13]},
399 BlockName -> W13mat,
400 Value -> { W13mat[1,1] -> 1 - vev^2 Abs[A12t]^2/(4(m1^2-m2t^2)^2), W13mat[1,2] -> vev Conjugate[A12t] / (Sqrt[2] (m1^2 - m2t^2)), W13mat[1,3] -> vev^2 (Y13 * (m1^2 - m2t^2) + Conjugate[A12t] A2t3)/(2(m1^2-m3^2)(m1^2-m2t^2)),
401 W13mat[2,1] -> -vev A12t / (Sqrt[2](m1^2 - m2t^2)), W13mat[2,2] -> 1 - vev^2/4*(Abs[A12t]^2/(m1^2-m2t^2)^2 + Abs[A2t3]^2/(m3^2-m2t^2)^2), W13mat[2,3] -> -vev A2t3 /(Sqrt[2] m3^2-m2t^2),
402 W13mat[3,1] -> -vev^2(Conjugate[Y13](m3^2-m2t^2) + A12t Conjugate[A2t3])/(2 (m1^2 - m3^2) (m3^2-m2t^2)), W13mat[3,2] -> vev Conjugate[A2t3]/(Sqrt[2] (m3^2-m2t^2)), W13mat[3,3] -> 1 - vev^2 Abs[A2t3]^2 /(4(m3^2-m2t^2)^2)},
403 TeX -> Superscript[W, -1/3],
404 InteractionOrder -> {NP, 0},
405 Description -> "Mass eigenstates diagonalization matrix (Q = -1/3)"
406},
407
408W23mat == {
409 ParameterType -> Internal,
410 Unitary -> True,
411 Indices -> {Index[Q23], Index[Q23]},
412 BlockName -> W23mat,
413 Value -> {W23mat[1,1] -> 1.0, W23mat[1,2] -> vev^2 Y22t / (2 (m2^2-m2t^2)), W23mat[1,3] -> 0.0,
414 W23mat[2,1] -> -vev Conjugate[Y22t] / (2 (m2^2 - m2t^2)), W23mat[2,2] -> 1.0 - vev^2 Abs[A2t3]^2 / (2 (m3^2 - m2t^2)^2), W23mat[2,3] -> -vev A2t3 / (m2t^2-m3^2),
415 W23mat[3,1] -> 0.0, W23mat[3,2] -> vev * Conjugate[A2t3]/(m2t^2-m3^2), W23mat[3,3] -> 1.0 - vev^2 Abs[A2t3]^2/(2(m3^2-m2t^2)^2)},
416 TeX -> Superscript[W, +2/3],
417 InteractionOrder -> {NP, 0},
418 Description -> "Mass eigenstates diagonalization matrix (Q = +2/3)"
419},
420
421W43mat == {
422 ParameterType -> Internal,
423 Unitary -> True,
424 Indices -> {Index[Q43], Index[Q43]},
425 BlockName -> W43mat,
426 Value -> {W43mat[1,1] -> 1.0, W43mat[1,2] -> vev^2*Conjugate[Y1t3]/(Sqrt[2] (m1t^2-m3^2)),
427 W43mat[2,1] -> -vev^2 Y1t3 /(Sqrt[2] (m1t^2-m3^2)), W43mat[2,2] -> 1.0},
428 TeX -> Superscript[W, -4/3],
429 InteractionOrder -> {NP, 0},
430 Description -> "Mass eigenstates diagonalization matrix (Q = -4/3)"
431},
432
433(* Masses *)
434m1m13hat == {
435 ParameterType -> Internal,
436 BlockName -> LQPARAM,
437 Value -> m1^2 + vev^2/2*(Y1 - Abs[A12t]^2/(m2t^2 - m1^2)),
438 Description -> "S1m13 mass in hat basis"
439},
440
441m2tm13hat == {
442 ParameterType -> Internal,
443 BlockName -> LQPARAM,
444 Value -> m2t^2 + vev^2/2*(Y2t + Abs[A12t]^2/(m2t^2 - m1^2) + Abs[A2t3]^2/(m2t^2 - m3^2)),
445 Description -> "S2tm13 mass in hat basis"
446},
447
448m3m13hat == {
449 ParameterType -> Internal,
450 BlockName -> LQPARAM,
451 Value -> m3^2 + vev^2/2*(Y3 - Abs[A2t3]^2/(m2t^2 - m3^2)),
452 Description -> "S3m13 mass in hat basis"
453},
454
455m2p23hat == {
456 ParameterType -> Internal,
457 BlockName -> LQPARAM,
458 Value -> m2^2 + vev^2/2*Y2,
459 Description -> "S2p23 mass in hat basis"
460},
461
462m2tp23hat == {
463 ParameterType -> Internal,
464 BlockName -> LQPARAM,
465 Value -> m2t^2 + vev^2/2*(Y2t + Y2t2t + 2 Abs[A2t3]^2/(m2t^2 - m3^2)),
466 Description -> "S2tp23 mass in hat basis"
467},
468
469m3p23hat == {
470 ParameterType -> Internal,
471 BlockName -> LQPARAM,
472 Value -> m3^2 + vev^2/2*(Y3 + Y33 - 2 Abs[A2t3]^2/(m2t^2 - m3^2)),
473 Description -> "S3p23 mass in hat basis"
474},
475
476m1tm43hat == {
477 ParameterType -> Internal,
478 BlockName -> LQPARAM,
479 Value -> m1t^2 + vev^2/2*Y1t,
480 Description -> "S1tm43 mass in hat basis"
481},
482
483m3m43hat == {
484 ParameterType -> Internal,
485 BlockName -> LQPARAM,
486 Value -> m3^2 + vev^2/2*(Y3 - Y33),
487 Description -> "S3m43 mass in hat basis"
488},
489
490m2p53hat == {
491 ParameterType -> Internal,
492 BlockName -> LQPARAM,
493 Value -> m2^2 + vev^2/2*(Y2 + Y22),
494 Description -> "S2p53 mass in hat basis"
495},
496
497(* Widths *)
498W1m13hat == {
499 ParameterType -> Internal,
500 Value -> (m1m13hat*(Sum[Abs[Y2tRL[j,i]*Conjugate[W13mat[1,2]]]^2,{i,1,3},{j,1,3}]
501 + Sum[Abs[Y1LL[i,j]*W13mat[1,1] - Y3LL[i,j]*W13mat[1,3]]^2,{i,1,3},{j,1,2}]
502 + Sum[Abs[Y1RR[i,j]*W13mat[1,1]]^2,{i,1,3},{j,1,2}]
503 + Sum[Abs[CKM[k,i]*Y1LL[k,j]*W13mat[1,1] + CKM[k,i]*Y1LL[k,j]*W13mat[1,3]]^2,{i,1,3},{j,1,3},{k,1,3}]
504 + Sum[8*Abs[CKM[k,j]*Y1QLL[i,k]*Conjugate[W13mat[1,1]] - CKM[k,j]*Y1LL[i,k]*Conjugate[W13mat[1,3]]]^2,{i,1,2},{j,1,3},{k,1,3}]
505 + Sum[2*Abs[Y1QRR[i,j]*Conjugate[W13mat[1,1]]]^2,{i,1,2},{j,1,3}])
506 + (Sum[Abs[Y1LL[i,3]*W13mat[1,1] - Y3LL[i,3]*W13mat[1,3]]^2,{i,1,3}]
507 + Sum[Abs[Y1RR[i,3]*W13mat[1,1]]^2,{i,1,3}]
508 + Sum[8*Abs[CKM[k,j]*Y1QLL[3,k]*Conjugate[W13mat[1,1]] - CKM[k,j]*Y1LL[3,k]*Conjugate[W13mat[1,3]]]^2,{j,1,3},{k,1,3}]
509 + Sum[2*Abs[Y1QRR[3,j]*Conjugate[W13mat[1,1]]]^2,{j,1,3}])*(m1m13hat^2-ymt^2)^2/m1m13hat^3)/(16*Pi)
510},
511W2tm13hat == {
512 ParameterType -> Internal,
513 Value -> (m2tm13hat*(Sum[Abs[Y2tRL[j,i]*Conjugate[W13mat[2,2]]]^2,{i,1,3},{j,1,3}]
514 + Sum[Abs[Y1LL[i,j]*W13mat[2,1] - Y3LL[i,j]*W13mat[2,3]]^2,{i,1,3},{j,1,2}]
515 + Sum[Abs[Y1RR[i,j]*W13mat[2,1]]^2,{i,1,3},{j,1,2}]
516 + Sum[Abs[CKM[k,i]*Y1LL[k,j]*W13mat[2,1] + CKM[k,i]*Y1LL[k,j]*W13mat[2,3]]^2,{i,1,3},{j,1,3},{k,1,3}]
517 + Sum[8*Abs[CKM[k,j]*Y1QLL[i,k]*Conjugate[W13mat[2,1]] - CKM[k,j]*Y1LL[i,k]*Conjugate[W13mat[2,3]]]^2,{i,1,2},{j,1,3},{k,1,3}]
518 + Sum[2*Abs[Y1QRR[i,j]*Conjugate[W13mat[2,1]]]^2,{i,1,2},{j,1,3}])
519 + (Sum[Abs[Y1LL[i,3]*W13mat[2,1] - Y3LL[i,3]*W13mat[2,3]]^2,{i,1,3}]
520 + Sum[Abs[Y1RR[i,3]*W13mat[2,1]]^2,{i,1,3}]
521 + Sum[8*Abs[CKM[k,j]*Y1QLL[3,k]*Conjugate[W13mat[2,1]] - CKM[k,j]*Y1LL[3,k]*Conjugate[W13mat[2,3]]]^2,{j,1,3},{k,1,3}]
522 + Sum[2*Abs[Y1QRR[3,j]*Conjugate[W13mat[2,1]]]^2,{j,1,3}])*(m2tm13hat^2-ymt^2)^2/m2tm13hat^3)/(16*Pi)
523},
524W3m13hat == {
525 ParameterType -> Internal,
526 Value -> (m3m13hat*(Sum[Abs[Y2tRL[j,i]*Conjugate[W13mat[3,2]]]^2,{i,1,3},{j,1,3}]
527 + Sum[Abs[Y1LL[i,j]*W13mat[3,1] - Y3LL[i,j]*W13mat[1,3]]^2,{i,1,3},{j,1,2}]
528 + Sum[Abs[Y1RR[i,j]*W13mat[3,1]]^2,{i,1,3},{j,1,2}]
529 + Sum[Abs[CKM[k,i]*Y1LL[k,j]*W13mat[3,1] + CKM[k,i]*Y1LL[k,j]*W13mat[3,3]]^2,{i,1,3},{j,1,3},{k,1,3}]
530 + Sum[8*Abs[CKM[k,j]*Y1QLL[i,k]*Conjugate[W13mat[3,1]] - CKM[k,j]*Y1LL[i,k]*Conjugate[W13mat[3,3]]]^2,{i,1,2},{j,1,3},{k,1,3}]
531 + Sum[2*Abs[Y1QRR[i,j]*Conjugate[W13mat[3,1]]]^2,{i,1,2},{j,1,3}])
532 + (Sum[Abs[Y1LL[i,3]*W13mat[1,1] - Y3LL[i,3]*W13mat[3,3]]^2,{i,1,3}]
533 + Sum[Abs[Y1RR[i,3]*W13mat[3,1]]^2,{i,1,3}]
534 + Sum[8*Abs[CKM[k,j]*Y1QLL[3,k]*Conjugate[W13mat[3,1]] - CKM[k,j]*Y1LL[3,k]*Conjugate[W13mat[3,3]]]^2,{j,1,3},{k,1,3}]
535 + Sum[2*Abs[Y1QRR[3,j]*Conjugate[W13mat[3,1]]]^2,{j,1,3}])*(m3m13hat^2-ymt^2)^2/m3m13hat^3)/(16*Pi)
536},
537
538W2p23hat == {
539 ParameterType -> Internal,
540 Value -> (m2p23hat*(Sum[Abs[CKM[k,i] Conjugate[Y2LR[k,j]]*W23mat[1,1]]^2,{i,1,3},{j,1,3},{k,1,3}]
541 + Sum[Abs[Conjugate[Y2tRL[i,j]]*W23mat[1,2]]^2,{i,1,3},{j,1,3}]
542 + Sum[Abs[Conjugate[Y2RL[i,j]]*W23mat[1,1]]^2,{i,1,2},{j,1,3}]
543 + Sum[2*Abs[Y3LL[j,i]*W23mat[1,3]]^2,{i,1,3},{j,1,2}]
544 + Sum[16*Abs[CKM[k,i] CKM[k,l] Y3QLL[k,l]*W23mat[1,3]]^2,{i,1,3},{j,1,3},{k,1,3},{l,1,3}])
545 + (Sum[Abs[Conjugate[Y2RL[3,j]]*W23mat[1,1]]^2,{j,1,3}]
546 + Sum[2*Abs[Y3LL[3,i]*W23mat[1,3]]^2,{i,1,3}])*(m2p23hat^2-ymt^2)^2/m2p23hat^3)/(16*Pi)
547},
548
549W2tp23hat == {
550 ParameterType -> Internal,
551 Value -> (m2tp23hat*(Sum[Abs[CKM[k,i] Conjugate[Y2LR[k,j]]*W23mat[2,1]]^2,{i,1,3},{j,1,3},{k,1,3}]
552 + Sum[Abs[Conjugate[Y2tRL[i,j]]*W23mat[2,2]]^2,{i,1,3},{j,1,3}]
553 + Sum[Abs[Conjugate[Y2RL[i,j]]*W23mat[2,1]]^2,{i,1,2},{j,1,3}]
554 + Sum[2*Abs[Y3LL[j,i]*W23mat[2,3]]^2,{i,1,3},{j,1,2}]
555 + Sum[16*Abs[CKM[k,i] CKM[k,l] Y3QLL[k,l]*W23mat[2,3]]^2,{i,1,3},{j,1,3},{k,1,3},{l,1,3}])
556 + (Sum[Abs[Conjugate[Y2RL[3,j]]*W23mat[2,1]]^2,{j,1,3}]
557 + Sum[2*Abs[Y3LL[3,i]*W23mat[2,3]]^2,{i,1,3}])*(m2tp23hat^2-ymt^2)^2/m2tp23hat^3)/(16*Pi)
558},
559
560W3p23hat == {
561 ParameterType -> Internal,
562 Value -> (m3p23hat*(Sum[Abs[CKM[k,i] Conjugate[Y2LR[k,j]]*W23mat[3,1]]^2,{i,1,3},{j,1,3},{k,1,3}]
563 + Sum[Abs[Conjugate[Y2tRL[i,j]]*W23mat[3,2]]^2,{i,1,3},{j,1,3}]
564 + Sum[Abs[Conjugate[Y2RL[i,j]]*W23mat[3,1]]^2,{i,1,2},{j,1,3}]
565 + Sum[2*Abs[Y3LL[j,i]*W23mat[3,3]]^2,{i,1,3},{j,1,2}]
566 + Sum[16*Abs[CKM[k,i] CKM[k,l] Y3QLL[k,l]*W23mat[3,3]]^2,{i,1,3},{j,1,3},{k,1,3},{l,1,3}])
567 + (Sum[Abs[Conjugate[Y2RL[3,j]]*W23mat[3,1]]^2,{j,1,3}]
568 + Sum[2*Abs[Y3LL[3,i]*W23mat[3,3]]^2,{i,1,3}])*(m3p23hat^2-ymt^2)^2/m3p23hat^3)/(16*Pi)
569},
570
571W1tm43hat == {
572 ParameterType -> Internal,
573 Value -> (m1tm43hat*(Sum[Abs[Y1tRR[i,j]*W43mat[1,1]]^2,{i,1,3},{j,1,3}]
574 + 2*Sum[Abs[CKM[k,i]*Y3LL[k,j]*W43mat[1,2]]^2,{i,1,3},{j,1,3}, {k,1,3}]
575 + 8*Sum[Abs[Y1tQRR[i,j]*W43mat[1,1]]^2,{i,1,2},{j,1,2}]
576 + 16*Sum[Abs[Y3QLL[i,j]*W43mat[1,2]]^2,{i,1,2},{j,1,2}])
577 + (8*Sum[Abs[Y1tQRR[3,j]*W43mat[1,1]]^2,{j,1,2}]
578 + 16*Sum[Abs[Y3QLL[3,j]*W43mat[1,2]]^2,{j,1,2}]
579 + 8*Sum[Abs[Y1tQRR[i,3]*W43mat[1,1]]^2,{i,1,2}]
580 + 16*Sum[Abs[Y3QLL[i,3]*W43mat[1,2]]^2,{i,1,2}])*(m1tm43hat^2-ymt^2)^2/m1tm43hat^3
581 + (8*Abs[Y1tQRR[3,3]*W43mat[1,1]]^2
582 + 16*Abs[Y3QLL[3,3]*W43mat[1,2]]^2)*(m1tm43hat^2-4*ymt^2)^2/m1tm43hat^3)/(16*Pi)
583},
584W3m43hat == {
585 ParameterType -> Internal,
586 Value -> (m3m43hat*(Sum[Abs[Y1tRR[i,j]*W43mat[2,1]]^2,{i,1,3},{j,1,3}]
587 + 2*Sum[Abs[CKM[k,i]*Y3LL[k,j]*W43mat[2,2]]^2,{i,1,3},{j,1,3}, {k,1,3}]
588 + 8*Sum[Abs[Y1tQRR[i,j]*W43mat[2,1]]^2,{i,1,2},{j,1,2}]
589 + 16*Sum[Abs[Y3QLL[i,j]*W43mat[2,2]]^2,{i,1,2},{j,1,2}])
590 + (8*Sum[Abs[Y1tQRR[3,j]*W43mat[2,1]]^2,{j,1,2}]
591 + 16*Sum[Abs[Y3QLL[3,j]*W43mat[2,2]]^2,{j,1,2}]
592 + 8*Sum[Abs[Y1tQRR[i,3]*W43mat[2,1]]^2,{i,1,2}]
593 + 16*Sum[Abs[Y3QLL[i,3]*W43mat[2,2]]^2,{i,1,2}])*(m3m43hat^2-ymt^2)^2/m3m43hat^3
594 + (8*Abs[Y1tQRR[3,3]*W43mat[2,1]]^2
595 + 16*Abs[Y3QLL[3,3]*W43mat[2,2]]^2)*(m3m43hat^2-4*ymt^2)^2/m3m43hat^3)/(16*Pi)
596},
597
598W2p53hat == {
599 ParameterType -> Internal,
600 Value -> (m2p53hat*(Sum[Abs[Y2LR[i,j]]^2,{i,1,2},{j,1,3}]
601 + Sum[Abs[Y2RL[i,j]]^2,{i,1,2},{j,1,3}])
602 + (Sum[Abs[Y2LR[3,j]]^2,{j,1,3}]
603 + Sum[Abs[Y2RL[3,j]]^2,{j,1,3}])*(m2p53hat^2-ymt^2)^2/m2p53hat^3)/(16*Pi)
604},
605
606(****************************)
607(* LQ Triple Interactions *)
608(****************************)
609
610A12t2t == {
611 ParameterType -> External,
612 ComplexParameter -> True,
613 Indices -> {},
614 BlockName -> A12t2t,
615 TeX -> Subscript[A, "12t2t"],
616 Value -> 1.0,
617 InteractionOrder -> {NP, 1},
618 Description -> "S1-R2t-R2t scalar leptoquark coupling"
619},
620A1t22t == {
621 ParameterType -> External,
622 ComplexParameter -> True,
623 Indices -> {},
624 BlockName -> A1t22t,
625 TeX -> Subscript[A, "1t22t"],
626 Value -> 1.0,
627 InteractionOrder -> {NP, 1},
628 Description -> "S1t-R2-R2t scalar leptoquark coupling"
629},
630Y123 == {
631 ParameterType -> External,
632 ComplexParameter -> True,
633 Indices -> {},
634 BlockName -> Y123,
635 TeX -> Subscript[Y, "123"],
636 Value -> 1.0,
637 InteractionOrder -> {NP, 1},
638 Description -> "S1-R2-S3 scalar leptoquark coupling"
639},
640Y11t2 == {
641 ParameterType -> External,
642 ComplexParameter -> True,
643 Indices -> {},
644 BlockName -> Y11t2,
645 TeX -> Subscript[Y, "11t2"],
646 Value -> 1.0,
647 InteractionOrder -> {NP, 1},
648 Description -> "S1-S1t-R2 scalar leptoquark coupling"
649},
650Y12t3 == {
651 ParameterType -> External,
652 ComplexParameter -> True,
653 Indices -> {},
654 BlockName -> Y12t3,
655 TeX -> Subscript[Y, "12t3"],
656 Value -> 1.0,
657 InteractionOrder -> {NP, 1},
658 Description -> "S1-R2t-S3 scalar leptoquark coupling"
659},
660Y1t23 == {
661 ParameterType -> External,
662 ComplexParameter -> True,
663 Indices -> {},
664 BlockName -> Y1t23,
665 TeX -> Subscript[Y, "1t23"],
666 Value -> 1.0,
667 InteractionOrder -> {NP, 1},
668 Description -> "S1t-R2-S3 scalar leptoquark coupling"
669},
670Y233 == {
671 ParameterType -> External,
672 ComplexParameter -> True,
673 Indices -> {},
674 BlockName -> Y223,
675 TeX -> Subscript[Y, "233"],
676 Value -> 1.0,
677 InteractionOrder -> {NP, 1},
678 Description -> "R2-R2-S3 scalar leptoquark coupling"
679},
680Y2t33 == {
681 ParameterType -> External,
682 ComplexParameter -> True,
683 Indices -> {},
684 BlockName -> Y2t23,
685 TeX -> Subscript[Y, "2t33"],
686 Value -> 1.0,
687 InteractionOrder -> {NP, 1},
688 Description -> "R2t-R2-S3 scalar leptoquark coupling"
689},
690
691
692(*****************************)
693(* LQ Quartic Interactions *)
694(*****************************)
695
696Yo1 == {
697 ParameterType -> External,
698 ComplexParameter -> True,
699 Indices -> {},
700 BlockName -> Yo1,
701 TeX -> Superscript[Subscript[Y, "1"], "(1)"],
702 Value -> 1.0,
703 InteractionOrder -> {NP, 1},
704 Description -> "S1-S1-S1-S1 scalar leptoquark coupling"
705},
706Yo11t == {
707 ParameterType -> External,
708 ComplexParameter -> True,
709 Indices -> {},
710 BlockName -> Yo11t,
711 TeX -> Superscript[Subscript[Y, "11t"], "(1)"],
712 Value -> 1.0,
713 InteractionOrder -> {NP, 1},
714 Description -> "S1-S1-S1t-S1t scalar leptoquark coupling"
715},
716Yo11tprime == {
717 ParameterType -> External,
718 ComplexParameter -> True,
719 Indices -> {},
720 BlockName -> Yo11tprime,
721 TeX -> Superscript[Subscript[Yp, "11t"], "(1)"],
722 Value -> 1.0,
723 InteractionOrder -> {NP, 1},
724 Description -> "S1-S1-S1t-S1t scalar leptoquark coupling"
725},
726Yo12 == {
727 ParameterType -> External,
728 ComplexParameter -> True,
729 Indices -> {},
730 BlockName -> Yo12,
731 TeX -> Superscript[Subscript[Y, "12"], "(1)"],
732 Value -> 1.0,
733 InteractionOrder -> {NP, 1},
734 Description -> "S1-S1-R2-R2 scalar leptoquark coupling"
735},
736Yo12prime == {
737 ParameterType -> External,
738 ComplexParameter -> True,
739 Indices -> {},
740 BlockName -> Yo12prime,
741 TeX -> Superscript[Subscript[Yp, "12"], "(1)"],
742 Value -> 1.0,
743 InteractionOrder -> {NP, 1},
744 Description -> "S1-S1-R2-R2 scalar leptoquark coupling"
745},
746Yo12t == {
747 ParameterType -> External,
748 ComplexParameter -> True,
749 Indices -> {},
750 BlockName -> Yo12t,
751 TeX -> Superscript[Subscript[Y, "12t"], "(1)"],
752 Value -> 1.0,
753 InteractionOrder -> {NP, 1},
754 Description -> "S1-S1-R2t-R2t scalar leptoquark coupling"
755},
756Yo12tprime == {
757 ParameterType -> External,
758 ComplexParameter -> True,
759 Indices -> {},
760 BlockName -> Yo12tprime,
761 TeX -> Superscript[Subscript[Yp, "12t"], "(1)"],
762 Value -> 1.0,
763 InteractionOrder -> {NP, 1},
764 Description -> "S1-S1-R2t-R2t scalar leptoquark coupling"
765},
766Yo13 == {
767 ParameterType -> External,
768 ComplexParameter -> True,
769 Indices -> {},
770 BlockName -> Yo13,
771 TeX -> Superscript[Subscript[Y, "13"], "(1)"],
772 Value -> 1.0,
773 InteractionOrder -> {NP, 1},
774 Description -> "S1-S1-S3-S3 scalar leptoquark coupling"
775},
776Yo13prime == {
777 ParameterType -> External,
778 ComplexParameter -> True,
779 Indices -> {},
780 BlockName -> Yo13prime,
781 TeX -> Superscript[Subscript[Yp, "13"], "(1)"],
782 Value -> 1.0,
783 InteractionOrder -> {NP, 1},
784 Description -> "S1-S1-S3-S3 scalar leptoquark coupling"
785},
786Yo1t == {
787 ParameterType -> External,
788 ComplexParameter -> True,
789 Indices -> {},
790 BlockName -> Yo1t,
791 TeX -> Superscript[Subscript[Y, "1t"], "(1)"],
792 Value -> 1.0,
793 InteractionOrder -> {NP, 1},
794 Description -> "S1t-S1t-S1t-S1t scalar leptoquark coupling"
795},
796Yo1t2 == {
797 ParameterType -> External,
798 ComplexParameter -> True,
799 Indices -> {},
800 BlockName -> Yo1t2,
801 TeX -> Superscript[Subscript[Y, "1t2"], "(1)"],
802 Value -> 1.0,
803 InteractionOrder -> {NP, 1},
804 Description -> "S1t-S1t-R2-R2 scalar leptoquark coupling"
805},
806Yo1t2prime == {
807 ParameterType -> External,
808 ComplexParameter -> True,
809 Indices -> {},
810 BlockName -> Yo1t2prime,
811 TeX -> Superscript[Subscript[Yp, "1t2"], "(1)"],
812 Value -> 1.0,
813 InteractionOrder -> {NP, 1},
814 Description -> "S1t-S1t-R2-R2 scalar leptoquark coupling"
815},
816Yo1t2t == {
817 ParameterType -> External,
818 ComplexParameter -> True,
819 Indices -> {},
820 BlockName -> Yo1t2t,
821 TeX -> Superscript[Subscript[Y, "1t2t"], "(1)"],
822 Value -> 1.0,
823 InteractionOrder -> {NP, 1},
824 Description -> "S1t-S1t-R2t-R2t scalar leptoquark coupling"
825},
826Yo1t2tprime == {
827 ParameterType -> External,
828 ComplexParameter -> True,
829 Indices -> {},
830 BlockName -> Yo1t2tprime,
831 TeX -> Superscript[Subscript[Yp, "1t2t"], "(1)"],
832 Value -> 1.0,
833 InteractionOrder -> {NP, 1},
834 Description -> "S1t-S1t-R2t-R2t scalar leptoquark coupling"
835},
836Yo1t3 == {
837 ParameterType -> External,
838 ComplexParameter -> True,
839 Indices -> {},
840 BlockName -> Yo1t3,
841 TeX -> Superscript[Subscript[Y, "1t3"], "(1)"],
842 Value -> 1.0,
843 InteractionOrder -> {NP, 1},
844 Description -> "S1t-S1t-S3-S3 scalar leptoquark coupling"
845},
846Yo1t3prime == {
847 ParameterType -> External,
848 ComplexParameter -> True,
849 Indices -> {},
850 BlockName -> Yo1t3prime,
851 TeX -> Superscript[Subscript[Yp, "1t3"], "(1)"],
852 Value -> 1.0,
853 InteractionOrder -> {NP, 1},
854 Description -> "S1t-S1t-S3-S3 scalar leptoquark coupling"
855},
856Yo2 == {
857 ParameterType -> External,
858 ComplexParameter -> True,
859 Indices -> {},
860 BlockName -> Yo2,
861 TeX -> Superscript[Subscript[Y, "2"], "(1)"],
862 Value -> 1.0,
863 InteractionOrder -> {NP, 1},
864 Description -> "R2-R2-R2-R2 scalar leptoquark coupling"
865},
866Yo22t == {
867 ParameterType -> External,
868 ComplexParameter -> True,
869 Indices -> {},
870 BlockName -> Yo22t,
871 TeX -> Superscript[Subscript[Y, "22t"], "(1)"],
872 Value -> 1.0,
873 InteractionOrder -> {NP, 1},
874 Description -> "R2-R2-R2t-R2t scalar leptoquark coupling"
875},
876Yo22tprime == {
877 ParameterType -> External,
878 ComplexParameter -> True,
879 Indices -> {},
880 BlockName -> Yo22tprime,
881 TeX -> Superscript[Subscript[Yp, "22t"], "(1)"],
882 Value -> 1.0,
883 InteractionOrder -> {NP, 1},
884 Description -> "R2-R2-R2t-R2t scalar leptoquark coupling"
885},
886Yo23 == {
887 ParameterType -> External,
888 ComplexParameter -> True,
889 Indices -> {},
890 BlockName -> Yo23,
891 TeX -> Superscript[Subscript[Y, "23"], "(1)"],
892 Value -> 1.0,
893 InteractionOrder -> {NP, 1},
894 Description -> "R2-R2-S3-S3 scalar leptoquark coupling"
895},
896Yo23prime == {
897 ParameterType -> External,
898 ComplexParameter -> True,
899 Indices -> {},
900 BlockName -> Yo23prime,
901 TeX -> Superscript[Subscript[Yp, "23"], "(1)"],
902 Value -> 1.0,
903 InteractionOrder -> {NP, 1},
904 Description -> "R2-R2-S3-S3 scalar leptoquark coupling"
905},
906Yo2t == {
907 ParameterType -> External,
908 ComplexParameter -> True,
909 Indices -> {},
910 BlockName -> Yo2t,
911 TeX -> Superscript[Subscript[Y, "2t"], "(1)"],
912 Value -> 1.0,
913 InteractionOrder -> {NP, 1},
914 Description -> "R2t-R2t-R2t-R2t scalar leptoquark coupling"
915},
916Yo2t3 == {
917 ParameterType -> External,
918 ComplexParameter -> True,
919 Indices -> {},
920 BlockName -> Yo2t3,
921 TeX -> Superscript[Subscript[Y, "2t3"], "(1)"],
922 Value -> 1.0,
923 InteractionOrder -> {NP, 1},
924 Description -> "R2t-R2t-S3-S3 scalar leptoquark coupling"
925},
926Yo2t3prime == {
927 ParameterType -> External,
928 ComplexParameter -> True,
929 Indices -> {},
930 BlockName -> Yo2t3prime,
931 TeX -> Superscript[Subscript[Yp, "2t3"], "(1)"],
932 Value -> 1.0,
933 InteractionOrder -> {NP, 1},
934 Description -> "R2t-R2t-S3-S3 scalar leptoquark coupling"
935},
936Yo3 == {
937 ParameterType -> External,
938 ComplexParameter -> True,
939 Indices -> {},
940 BlockName -> Yo3,
941 TeX -> Superscript[Subscript[Y, "3"], "(1)"],
942 Value -> 1.0,
943 InteractionOrder -> {NP, 1},
944 Description -> "S3-S3-S3-S3 scalar leptoquark coupling"
945},
946Yt2 == {
947 ParameterType -> External,
948 ComplexParameter -> True,
949 Indices -> {},
950 BlockName -> Yt2,
951 TeX -> Superscript[Subscript[Y, "2"], "(3)"],
952 Value -> 1.0,
953 InteractionOrder -> {NP, 1},
954 Description -> "R2-R2-R2-R2 scalar leptoquark coupling"
955},
956Yt2t == {
957 ParameterType -> External,
958 ComplexParameter -> True,
959 Indices -> {},
960 BlockName -> Yt2t,
961 TeX -> Superscript[Subscript[Y, "2t"], "(3)"],
962 Value -> 1.0,
963 InteractionOrder -> {NP, 1},
964 Description -> "R2t-R2t-R2t-R2t scalar leptoquark coupling"
965},
966Yt3 == {
967 ParameterType -> External,
968 ComplexParameter -> True,
969 Indices -> {},
970 BlockName -> Yt3,
971 TeX -> Superscript[Subscript[Y, "3"], "(3)"],
972 Value -> 1.0,
973 InteractionOrder -> {NP, 1},
974 Description -> "S3-S3-S3-S3 scalar leptoquark coupling"
975},
976Yf3 == {
977 ParameterType -> External,
978 ComplexParameter -> True,
979 Indices -> {},
980 BlockName -> Yf3,
981 TeX -> Superscript[Subscript[Y, "3"], "(5)"],
982 Value -> 1.0,
983 InteractionOrder -> {NP, 1},
984 Description -> "S3-S3-S3-S3 scalar leptoquark coupling"
985},
986Yt22t == {
987 ParameterType -> External,
988 ComplexParameter -> True,
989 Indices -> {},
990 BlockName -> Yt22t,
991 TeX -> Superscript[Subscript[Y, "22t"], "(3)"],
992 Value -> 1.0,
993 InteractionOrder -> {NP, 1},
994 Description -> "R2-R2-R2t-R2t scalar leptoquark coupling"
995},
996Yt22tprime == {
997 ParameterType -> External,
998 ComplexParameter -> True,
999 Indices -> {},
1000 BlockName -> Yt22tprime,
1001 TeX -> Superscript[Subscript[Yp, "22t"], "(3)"],
1002 Value -> 1.0,
1003 InteractionOrder -> {NP, 1},
1004 Description -> "R2-R2-R2t-R2t scalar leptoquark coupling"
1005},
1006Yt23 == {
1007 ParameterType -> External,
1008 ComplexParameter -> True,
1009 Indices -> {},
1010 BlockName -> Yt23,
1011 TeX -> Superscript[Subscript[Y, "23"], "(3)"],
1012 Value -> 1.0,
1013 InteractionOrder -> {NP, 1},
1014 Description -> "R2-R2-S3-S3 scalar leptoquark coupling"
1015},
1016Yt23prime == {
1017 ParameterType -> External,
1018 ComplexParameter -> True,
1019 Indices -> {},
1020 BlockName -> Yt23prime,
1021 TeX -> Superscript[Subscript[Yp, "23"], "(3)"],
1022 Value -> 1.0,
1023 InteractionOrder -> {NP, 1},
1024 Description -> "R2-R2-S3-S3 scalar leptoquark coupling"
1025},
1026Yt2t3 == {
1027 ParameterType -> External,
1028 ComplexParameter -> True,
1029 Indices -> {},
1030 BlockName -> Yt2t3,
1031 TeX -> Superscript[Subscript[Y, "2t3"], "(3)"],
1032 Value -> 1.0,
1033 InteractionOrder -> {NP, 1},
1034 Description -> "R2t-R2t-S3-S3 scalar leptoquark coupling"
1035},
1036Yt2t3prime == {
1037 ParameterType -> External,
1038 ComplexParameter -> True,
1039 Indices -> {},
1040 BlockName -> Yt2t3prime,
1041 TeX -> Superscript[Subscript[Yp, "2t3"], "(3)"],
1042 Value -> 1.0,
1043 InteractionOrder -> {NP, 1},
1044 Description -> "R2t-R2t-S3-S3 scalar leptoquark coupling"
1045},
1046Y1223 == {
1047 ParameterType -> External,
1048 ComplexParameter -> True,
1049 Indices -> {},
1050 BlockName -> Y1223,
1051 TeX -> Subscript[Y, "1223"],
1052 Value -> 1.0,
1053 InteractionOrder -> {NP, 1},
1054 Description -> "S1-R2-R2-S3 scalar leptoquark coupling"
1055},
1056Y1223prime == {
1057 ParameterType -> External,
1058 ComplexParameter -> True,
1059 Indices -> {},
1060 BlockName -> Y1223prime,
1061 TeX -> Subscript[Yp, "1223"],
1062 Value -> 1.0,
1063 InteractionOrder -> {NP, 1},
1064 Description -> "S1-R2-R2-S3 scalar leptoquark coupling"
1065},
1066Y12t2t3 == {
1067 ParameterType -> External,
1068 ComplexParameter -> True,
1069 Indices -> {},
1070 BlockName -> Y12t2t3,
1071 TeX -> Subscript[Y, "12t2t3"],
1072 Value -> 1.0,
1073 InteractionOrder -> {NP, 1},
1074 Description -> "S1-R2t-R2t-S3 scalar leptoquark coupling"
1075},
1076Y12t2t3prime == {
1077 ParameterType -> External,
1078 ComplexParameter -> True,
1079 Indices -> {},
1080 BlockName -> Y12t2t3prime,
1081 TeX -> Subscript[Yp, "12t2t3"],
1082 Value -> 1.0,
1083 InteractionOrder -> {NP, 1},
1084 Description -> "S1-R2t-R2t-S3 scalar leptoquark coupling"
1085},
1086Y11t2t2 == {
1087 ParameterType -> External,
1088 ComplexParameter -> True,
1089 Indices -> {},
1090 BlockName -> Y11t2t2,
1091 TeX -> Subscript[Y, "11t2t2"],
1092 Value -> 1.0,
1093 InteractionOrder -> {NP, 1},
1094 Description -> "S1-S1t-R2-R2t scalar leptoquark coupling"
1095},
1096Y11t2t2prime == {
1097 ParameterType -> External,
1098 ComplexParameter -> True,
1099 Indices -> {},
1100 BlockName -> Y11t2t2prime,
1101 TeX -> Subscript[Yp, "11t2t2"],
1102 Value -> 1.0,
1103 InteractionOrder -> {NP, 1},
1104 Description -> "S1-S1t-R2-R2t scalar leptoquark coupling"
1105},
1106Y1t2t23 == {
1107 ParameterType -> External,
1108 ComplexParameter -> True,
1109 Indices -> {},
1110 BlockName -> Y1t32t23,
1111 TeX -> Subscript[Y, "1t2t23"],
1112 Value -> 1.0,
1113 InteractionOrder -> {NP, 1},
1114 Description -> "S1-R2-R2t-S3 scalar leptoquark coupling"
1115},
1116Y1t2t23prime == {
1117 ParameterType -> External,
1118 ComplexParameter -> True,
1119 Indices -> {},
1120 BlockName -> Y1t2t23prime,
1121 TeX -> Subscript[Yp, "1t2t23"],
1122 Value -> 1.0,
1123 InteractionOrder -> {NP, 1},
1124 Description -> "S1-R2-R2t-S3 scalar leptoquark coupling"
1125},
1126Y1313 == {
1127 ParameterType -> External,
1128 ComplexParameter -> True,
1129 Indices -> {},
1130 BlockName -> Y1313,
1131 TeX -> Subscript[Y, "1313"],
1132 Value -> 1.0,
1133 InteractionOrder -> {NP, 1},
1134 Description -> "S1-S3-S1-S3 scalar leptoquark coupling"
1135},
1136Y1333 == {
1137 ParameterType -> External,
1138 ComplexParameter -> True,
1139 Indices -> {},
1140 BlockName -> Y1333,
1141 TeX -> Subscript[Y, "1333"],
1142 Value -> 1.0,
1143 InteractionOrder -> {NP, 1},
1144 Description -> "S1-S3-S3-S3 scalar leptoquark coupling"
1145}
1146};
1147
1148
1149(******************************************)
1150(******************************************)
1151(* Field Definitions *)
1152(******************************************)
1153(******************************************)
1154
1155M$ClassesDescription = {
1156
1157(**********************************)
1158(* Scalar singlet S1 = (3,1,-1/3) *)
1159(**********************************)
1160
1161(* physical fields *)
1162S[100] == {
1163 ClassName -> S1m13hat,
1164 Mass -> {m1m13hat, Internal},
1165 Width -> {W1m13hat, Internal},
1166 SelfConjugate -> False,
1167 PropagatorLabel -> "S1m13hat",
1168 PropagatorType -> ScalarDash,
1169 PropagatorArrow -> None,
1170 QuantumNumbers -> {Q -> -1/3},
1171 Indices -> {Index[Colour]},
1172 ParticleName -> "S1m13hat",
1173 AntiParticleName -> "S1m13hat~",
1174 FullName -> "S1m13hat"
1175},
1176
1177(* unphysical fields *)
1178S[101] == {
1179 ClassName -> S1m13,
1180 Unphysical -> True,
1181 SelfConjugate -> False,
1182 QuantumNumbers -> {Y -> -1/3},
1183 Indices -> {Index[Colour]},
1184 Definitions -> { S1m13[cc_] :> HC[W13mat[1,1]] S1m13hat[cc] + HC[W13mat[2,1]] R2tm13hat[cc] + HC[W13mat[3,1]] S3m13hat[cc]}
1185},
1186
1187(***********************************)
1188(* Scalar singlet S1t = (3,1,-4/3) *)
1189(***********************************)
1190
1191(* physical fields *)
1192S[200] == {
1193 ClassName -> S1tm43hat,
1194 Mass -> {m1tm43hat, Internal},
1195 Width -> {W1tm43hat, Internal},
1196 SelfConjugate -> False,
1197 PropagatorLabel -> "S1tm43hat",
1198 PropagatorType -> D,
1199 PropagatorArrow -> None,
1200 QuantumNumbers -> {Q -> -4/3},
1201 Indices -> {Index[Colour]},
1202 ParticleName -> "S1tm43hat",
1203 AntiParticleName -> "S1tm43hat~",
1204 FullName -> "S1tm43hat"
1205},
1206
1207(* unphysical fields *)
1208S[201] == {
1209 ClassName -> S1tm43,
1210 Unphysical -> True,
1211 SelfConjugate -> False,
1212 QuantumNumbers -> {Y -> -4/3},
1213 Indices -> {Index[Colour]},
1214 Definitions -> { S1tm43[cc_] :> HC[W43mat[1,1]] S1tm43hat[cc] + HC[W43mat[2,1]] S3m43hat[cc]}
1215},
1216
1217(*********************************)
1218(* Scalar doublet R2 = (3,2,7/6)*)
1219(*********************************)
1220
1221(* physical fields *)
1222S[300] == {
1223 ClassName -> R2p53hat,
1224 Mass -> {m2p53hat, Internal},
1225 Width -> {W2p53hat, Internal},
1226 SelfConjugate -> False,
1227 PropagatorLabel -> "R2p53hat",
1228 PropagatorType -> D,
1229 PropagatorArrow -> None,
1230 QuantumNumbers -> {Q -> 5/3},
1231 Indices -> {Index[Colour]},
1232 ParticleName -> "R2p53hat",
1233 AntiParticleName -> "R2p53hat~",
1234 FullName -> "R53hat"
1235},
1236
1237S[301] == {
1238 ClassName -> R2p23hat,
1239 Mass -> {m2p23hat, Internal},
1240 Width -> {W2p23hat, Internal},
1241 SelfConjugate -> False,
1242 PropagatorLabel -> "R2p23hat",
1243 PropagatorType -> D,
1244 PropagatorArrow -> None,
1245 QuantumNumbers -> {Q -> 2/3},
1246 Indices -> {Index[Colour]},
1247 ParticleName -> "R2p23hat",
1248 AntiParticleName -> "R2p23hat~",
1249 FullName -> "R23hat"
1250},
1251
1252(* unphysical fields *)
1253S[303] == {
1254 ClassName -> R2,
1255 Unphysical -> True,
1256 Indices -> {Index[SU2D], Index[Colour]},
1257 FlavorIndex -> SU2D,
1258 SelfConjugate -> False,
1259 QuantumNumbers -> {Y -> 7/6},
1260 Definitions -> { R2[1,cc_] :> R2p53hat[cc], R2[2,cc_] :> HC[W23mat[1,1]] R2p23hat[cc] + HC[W23mat[2,1]] R2tp23hat[cc] + HC[W23mat[3,1]] S3p23hat[cc]}
1261},
1262
1263
1264(**********************************)
1265(* Scalar doublet R2t = (3,2,1/6)*)
1266(**********************************)
1267
1268(* physical fields *)
1269S[402] == {
1270 ClassName -> R2tm13hat,
1271 Mass -> {m2tm13hat, Internal},
1272 Width -> {W2tm13hat, Internal},
1273 SelfConjugate -> False,
1274 PropagatorLabel -> "R2t13hat",
1275 PropagatorType -> D,
1276 PropagatorArrow -> None,
1277 QuantumNumbers -> {Q -> -1/3},
1278 Indices -> {Index[Colour]},
1279 ParticleName -> "R2tm13hat",
1280 AntiParticleName -> "R2tm13hat~",
1281 FullName -> "R13hat"
1282},
1283
1284S[403] == {
1285 ClassName -> R2tp23hat,
1286 Mass -> {m2tp23hat, Internal},
1287 Width -> {W2tp23hat, Internal},
1288 SelfConjugate -> False,
1289 PropagatorLabel -> "R2tp23hat",
1290 PropagatorType -> D,
1291 PropagatorArrow -> None,
1292 QuantumNumbers -> {Q -> 2/3},
1293 Indices -> {Index[Colour]},
1294 ParticleName -> "R2tp23hat",
1295 AntiParticleName -> "R2tp23hat~",
1296 FullName -> "R23hat"
1297},
1298
1299(* unphysical fields *)
1300S[405] == {
1301 ClassName -> R2t,
1302 Unphysical -> True,
1303 SelfConjugate -> False,
1304 QuantumNumbers -> {Y -> 1/6},
1305 Indices -> {Index[SU2D], Index[Colour]},
1306 FlavorIndex -> SU2D,
1307 Definitions -> {R2t[1,cc_] :> HC[W23mat[1,2]] R2p23hat[cc] + HC[W23mat[2,2]] R2tp23hat[cc] + HC[W23mat[3,2]] S3p23hat[cc], R2t[2,cc_] :> HC[W13mat][1,2] S1m13hat[cc] + HC[W13mat][2,2] R2tm13hat[cc] + HC[W13mat][3,2] S3m13hat[cc]}
1308},
1309
1310(**********************************)
1311(* Scalar triplet S3 = (3,3,-1/3) *)
1312(**********************************)
1313
1314(* physical fields *)
1315S[502] == {
1316 ClassName -> S3m13hat,
1317 Mass -> {m3m13hat, Internal},
1318 Width -> {W3m13hat, Internal},
1319 SelfConjugate -> False,
1320 PropagatorLabel -> "S3m13hat",
1321 PropagatorType -> D,
1322 PropagatorArrow -> None,
1323 QuantumNumbers -> {Q -> -1/3},
1324 Indices -> {Index[Colour]},
1325 ParticleName -> "S3m13hat",
1326 AntiParticleName -> "S3m13hat~",
1327 FullName -> "S313hat"
1328},
1329
1330S[504] == {
1331 ClassName -> S3p23hat,
1332 Mass -> {m3p23hat, Internal},
1333 Width -> {W3p23hat, Internal},
1334 SelfConjugate -> False,
1335 PropagatorLabel -> "S3p23hat",
1336 PropagatorType -> D,
1337 PropagatorArrow -> None,
1338 QuantumNumbers -> {Q -> 2/3},
1339 Indices -> {Index[Colour]},
1340 ParticleName -> "S3p23hat",
1341 AntiParticleName -> "S3p23hat~",
1342 FullName -> "S323hat"
1343},
1344
1345S[506] == {
1346 ClassName -> S3m43hat,
1347 Mass -> {m3m43hat, Internal},
1348 Width -> {W3m43hat, Internal},
1349 SelfConjugate -> False,
1350 PropagatorLabel -> "S3m43hat",
1351 PropagatorType -> D,
1352 PropagatorArrow -> None,
1353 QuantumNumbers -> {Q -> -4/3},
1354 Indices -> {Index[Colour]},
1355 ParticleName -> "S3m43hat",
1356 AntiParticleName -> "S3m43hat~",
1357 FullName -> "S343hat"
1358},
1359
1360(* unphysical fields *)
1361S[507] == {
1362 ClassName -> S3,
1363 Unphysical -> True,
1364 SelfConjugate -> False,
1365 QuantumNumbers -> {Y -> -1/3},
1366 Indices -> {Index[SU2W], Index[Colour]},
1367 FlavorIndex -> SU2W,
1368 Definitions -> {S3[1,cc_] -> (HC[W43mat[1,2]] S1tm43hat[cc] + HC[W43mat[2,2]] S3m43hat[cc] + HC[W23mat[3,3]] S3p23hat[cc] + HC[W23mat[2,3]] R2tp23hat[cc] + HC[W23mat[1,3]] R2p23hat[cc])/Sqrt[2],
1369 S3[2,cc_] -> (HC[W43mat[1,2]] S1tm43hat[cc] + HC[W43mat[2,2]] S3m43hat[cc] - HC[W23mat[3,3]] S3p23hat[cc] - HC[W23mat[2,3]] R2tp23hat[cc] - HC[W23mat[1,3]] R2p23hat[cc])/(I*Sqrt[2]),
1370 S3[3,cc_] -> HC[W13mat[1,3]] S1m13hat[cc] + HC[W13mat[2,3]] R2tm13hat[cc] + HC[W13mat[3,3]] S3m13hat[cc]}
1371}
1372};
1373
1374
1375(******************************************)
1376(******************************************)
1377(* Lagrangians *)
1378(******************************************)
1379(******************************************)
1380
1381(**********************************)
1382(* Scalar singlet S1 = (3,1,-1/3) *)
1383(**********************************)
1384
1385(* Kinetic term *)
1386L1Kin := Module[ {mu,aa}, DC[S1m13bar[aa],mu] DC[S1m13[aa],mu]];
1387
1388(* LQ-quark-lepton interactions *)
1389L1YukLLNonHC := Module[ {a,b,sp,i,j,aa}, ExpandIndices[Y1LL[i,j] anti[CC[QL]][sp,a,i,aa].LL[sp,b,j] S1m13bar[aa] Eps[a,b], FlavorExpand->{SU2D}]];
1390L1YukLL := L1YukLLNonHC + HC[L1YukLLNonHC];
1391
1392L1YukRRNonHC := Module[ {sp,i,j,aa}, Y1RR[i,j] anti[CC[uR]][sp,i,aa].lR[sp,j] S1m13bar[aa]];
1393L1YukRR := L1YukRRNonHC + HC[L1YukRRNonHC];
1394
1395(* LQ-quark-quark interactions *)
1396L1YukQLLNonHC := Module[ {a,b,sp,i,j,aa,bb,cc}, ExpandIndices[(Y1QLL[i,j] + Y1QLL[j,i])/2 * anti[CC[QL]][sp,a,i,aa].QL[sp,b,j,bb] S1m13[cc] Eps[a,b] Eps[aa,bb,cc], FlavorExpand->{SU2D}]];
1397L1YukQLL := L1YukQLLNonHC + HC[L1YukQLLNonHC];
1398
1399L1YukQRRNonHC := Module[ {sp,i,j,aa,bb,cc}, ExpandIndices[Y1QRR[i,j] anti[CC[uR]][sp,i,aa].dR[sp,j,bb] S1m13[cc] Eps[aa,bb,cc], FlavorExpand->{SU2D}]];
1400L1YukQRR := L1YukQRRNonHC + HC[L1YukQRRNonHC];
1401
1402(* Complete S1 Lagrangian *)
1403L1 := L1Kin + L1YukLL + L1YukRR + L1YukQLL + L1YukQRR;
1404
1405
1406(***********************************)
1407(* Scalar singlet S1t = (3,1,-4/3) *)
1408(***********************************)
1409
1410(* Kinetic term *)
1411L1tKin := Module[ {mu,aa}, DC[S1tm43bar[aa],mu] DC[S1tm43[aa],mu]];
1412
1413(* LQ-quark-lepton interactions *)
1414L1tYukRRNonHC := Module[ {sp,i,j,aa}, Y1tRR[i,j] anti[CC[dR]][sp,i,aa].lR[sp,j] S1tm43bar[aa]];
1415L1tYukRR := L1tYukRRNonHC + HC[L1tYukRRNonHC];
1416
1417(* LQ-quark-quark interactions *)
1418L1tYukQRRNonHC := Module[ {sp,i,j,aa,bb,cc}, (Y1tQRR[i,j] - Y1tQRR[j,i])/2 * anti[CC[uR]][sp,i,aa].uR[sp,j,bb] S1tm43[cc] Eps[aa,bb,cc]];
1419L1tYukQRR := L1tYukQRRNonHC + HC[L1tYukQRRNonHC];
1420
1421(* Complete S1~ = S1t Lagrangian *)
1422L1t := L1tKin + L1tYukRR + L1tYukQRR;
1423
1424
1425(*********************************)
1426(* Scalar doublet R2 = (3,2,7/6) *)
1427(*********************************)
1428
1429(* Kinetic term *)
1430L2Kin := Module[ {mu,a,aa}, ExpandIndices[DC[R2bar[a,aa],mu] DC[R2[a,aa],mu], FlavorExpand->{SU2W,SU2D}]];
1431
1432(* LQ-quark-lepton interactions *)
1433L2YukRLNonHC := Module[ {a,sp,i,j,aa}, ExpandIndices[Y2RL[i,j] R2[a,aa] Eps[a,b] uRbar[sp,i,aa].LL[sp,b,j], FlavorExpand->{SU2D}]];
1434L2YukRL := L2YukRLNonHC + HC[L2YukRLNonHC];
1435
1436L2YukLRNonHC := Module[ {a,b,sp,i,j,aa}, ExpandIndices[Y2LR[i,j] QLbar[sp,a,i,aa].lR[sp,j] R2[a,aa], FlavorExpand->{SU2D}]];
1437L2YukLR := L2YukLRNonHC + HC[L2YukLRNonHC];
1438
1439(* Complete R2 Lagrangian *)
1440L2 := L2Kin + L2YukRL + L2YukLR;
1441
1442
1443(**********************************)
1444(* Scalar doublet R2t = (3,2,1/6) *)
1445(**********************************)
1446
1447(* Kinetic term *)
1448L2tKin := Module[ {mu,a,aa},
1449ExpandIndices[DC[R2tbar[a,aa],mu] DC[R2t[a,aa],mu], FlavorExpand->{SU2W,SU2D}]];
1450
1451(* LQ-quark-lepton interactions *)
1452L2tYukRLNonHC := Module[ {a,sp,i,j,aa}, ExpandIndices[Y2tRL[i,j] R2t[a,aa] Eps[a,b] dRbar[sp,i,aa].LL[sp,b,j], FlavorExpand->{SU2D}]];
1453L2tYukRL := L2tYukRLNonHC + HC[L2tYukRLNonHC];
1454
1455(* Complete R2~ = R2t Lagrangian *)
1456L2t := L2tKin + L2tYukRL;
1457
1458(**********************************)
1459(* Scalar triplet S3 = (3,3,-1/3) *)
1460(**********************************)
1461
1462(* Kinetic term *)
1463L3Kin := Module[ {mu,a,aa}, ExpandIndices[DC[S3bar[a,aa],mu] DC[S3[a,aa],mu], FlavorExpand->{SU2W,SU2D}]];
1464
1465(* LQ-quark-lepton interactions *)
1466L3YukLLNonHC := Module[ {a,b,c,D,sp,i,j,aa}, ExpandIndices[Y3LL[i,j] anti[CC[QL]][sp,a,i,aa].LL[sp,c,j] S3bar[D,aa] 2*Ta[D,b,c] Eps[a,b], FlavorExpand->{SU2W,SU2D}]];
1467L3YukLL := L3YukLLNonHC + HC[L3YukLLNonHC];
1468
1469(* LQ-quark-quark interactions *)
1470L3YukQLLNonHC := Module[ {a,b,c,D,sp,i,j,aa,bb,cc}, ExpandIndices[(Y3QLL[i,j] - Y3QLL[j,i])/2 anti[CC[QL]][sp,a,i,aa].QL[sp,c,j,bb] Eps[a,b] 2*Ta[D,b,c] S3[D,cc] Eps[aa,bb,cc], FlavorExpand->{SU2W,SU2D}]];
1471L3YukQLL := L3YukQLLNonHC + HC[L3YukQLLNonHC];
1472
1473(* Complete S3 Lagrangian *)
1474L3 := L3Kin + L3YukLL + L3YukQLL;
1475
1476(************************************)
1477(* LQ Bilinear Interactions *)
1478(************************************)
1479
1480L12tNonHC := Module[ {a, aa},
1481ExpandIndices[ -A12t R2tbar[a,aa] Phi[a] S1m13[aa], FlavorExpand->{SU2D}]];
1482L12t := L12tNonHC + HC[L12tNonHC];
1483
1484L2t3NonHC := Module[ {a,b,C,aa},
1485ExpandIndices[ A2t3 R2tbar[a,aa] 2*Ta[C,a,b] S3[C,aa] Phi[b], FlavorExpand->{SU2D, SU2W}]];
1486L2t3 := L2t3NonHC + HC[L2t3NonHC];
1487
1488L22tNonHC := Module[ {a,b,c,aa},
1489ExpandIndices[ Y22t R2bar[a,aa] Phi[a] Phi[b] Eps[b,c] R2t[c,aa], FlavorExpand->{SU2D}]];
1490L22t := L22tNonHC + HC[L22tNonHC];
1491
1492L1t3NonHC := Module[ {a,b,c,D,aa},
1493ExpandIndices[ Y1t3 Phi[a]*Eps[a,b]*2*Ta[D,b,c] S3bar[D,aa] Phi[c] S1tm43[aa], FlavorExpand->{SU2D, SU2W}]];
1494L1t3 := L1t3NonHC + HC[L1t3NonHC];
1495
1496L13NonHC := Module[ {a,b,C,aa},
1497ExpandIndices[ Y13 HC[Phi][a] (2*Ta[C,a,b] S3[C,aa]) Phi[b] S1m13bar[aa], FlavorExpand->{SU2D, SU2W}]];
1498L13 := L13NonHC + HC[L13NonHC];
1499
1500L22 := Module[ {a,b,c,d,aa},
1501ExpandIndices[ - Y22 HC[Phi[a] Eps[a,b] R2[b,aa]] Phi[c] Eps[c,d] R2[d,aa], FlavorExpand->{SU2D}]];
1502
1503L2t2t := Module[ {a,b,c,d,aa},
1504ExpandIndices[ - Y2t2t HC[Phi[a] Eps[a,b] R2t[b,aa]] Phi[c] Eps[c,d] R2t[d,aa], FlavorExpand->{SU2D}]];
1505
1506L33 := Module[ {a,b,C,D,E,aa},
1507ExpandIndices[ - Y33*I*Eps[C,D,E]*(HC[Phi][a]*2*Ta[C,a,b]*Phi[b])*S3bar[D,aa]*S3[E,aa], FlavorExpand->{SU2D, SU2W}]];
1508
1509Lm1 := Module[ {a,aa},ExpandIndices[ - m1 m1 S1m13bar[aa] S1m13[aa] - Y1*HC[Phi[a]]Phi[a] S1m13bar[aa] S1m13[aa], FlavorExpand->{SU2D}]];
1510Lm1t := Module[ {a,aa},ExpandIndices[ - m1t m1t HC[S1tm43][aa] S1tm43[aa] - Y1t*HC[Phi][a]Phi[a] HC[S1tm43][aa] S1tm43[aa], FlavorExpand->{SU2D}]];
1511Lm2 := Module[ {a,b,c,aa,bb},ExpandIndices[- m2 m2 HC[R2][a,aa] R2[a,aa] - Y2*HC[Phi][b]Phi[b] HC[R2][c,bb] R2[c,bb], FlavorExpand->{SU2D}]];
1512Lm2t := Module[ {a,b,c,aa,bb},ExpandIndices[- m2t m2t HC[R2t][a,aa] R2t[a,aa] - Y2t*HC[Phi][b]Phi[b] HC[R2t][c,bb] R2t[c,bb], FlavorExpand->{SU2D}]];
1513Lm3 := Module[ {a,b,c,aa,bb},ExpandIndices[- m3 m3 HC[S3][a,aa] S3[a,aa] - Y3*HC[Phi][b]Phi[b] HC[S3][c,bb] S3[c,bb], FlavorExpand->{SU2D, SU2W}]];
1514
1515(**********************************)
1516(* LQ Triple Interactions *)
1517(**********************************)
1518
1519(* Without Higgs Field *)
1520L12t2tNonHC := Module[ {a,b,aa,bb,cc},
1521ExpandIndices[ A12t2t S1m13[aa] R2t[a,bb] Eps[a,b] R2t[b,cc] Eps[aa,bb,cc], FlavorExpand->{SU2D}]];
1522L12t2t := L12t2tNonHC + HC[L12t2tNonHC];
1523
1524L1t22tNonHC := Module[ {a,b,aa,bb,cc},
1525ExpandIndices[ A1t22t S1tm43[aa] R2[a,bb] Eps[a,b] R2t[b,cc] Eps[aa,bb,cc], FlavorExpand->{SU2D}]];
1526L1t22t := L1t22tNonHC + HC[L1t22tNonHC];
1527
1528(* With Higgs Field *)
1529L11t2NonHC := Module[ {a,b,aa,bb,cc},
1530ExpandIndices[ Y11t2 S1m13[aa] S1tm43[bb] R2[a,cc] Eps[a,b] Phi[b] Eps[aa,bb,cc], FlavorExpand->{SU2D}]];
1531L11t2 := L11t2NonHC + HC[L11t2NonHC];
1532
1533L123NonHC := Module[ {a,b,C,aa,bb,cc},
1534ExpandIndices[ Y123 S1m13[aa] HC[Phi][a] 2*Ta[C,a,b] S3[C,cc] R2[b,bb] Eps[aa,bb,cc], FlavorExpand->{SU2D, SU2W}]];
1535L123 := L123NonHC + HC[L123NonHC];
1536
1537L12t3NonHC := Module[ {a,b,c,D,aa,bb,cc},
1538ExpandIndices[ Y12t3 S1m13[aa] R2t[a,bb] Eps[a,b] 2*Ta[D,b,c] S3[D,cc] Phi[c] Eps[aa,bb,cc], FlavorExpand->{SU2D, SU2W}]];
1539L12t3 := L12t3NonHC + HC[L12t3NonHC];
1540
1541L1t23NonHC := Module[ {a,b,c,D,aa,bb,cc},
1542ExpandIndices[ Y1t23 S1tm43[aa] R2[a,bb] Eps[a,b] 2*Ta[D,b,c] S3[D,cc] Phi[c] Eps[aa,bb,cc], FlavorExpand->{SU2D, SU2W}]];
1543L1t23 := L1t23NonHC + HC[L1t23NonHC];
1544
1545L233NonHC := Module[ {a,b,C,D,E,aa,bb,cc},
1546ExpandIndices[ Y233 HC[Phi][a] 2*Ta[C,a,b] R2[b,aa] S3[D,bb] I*Eps[C,D,E] S3[E,cc] Eps[aa,bb,cc], FlavorExpand->{SU2D, SU2W}]];
1547L233 := L233NonHC + HC[L233NonHC];
1548
1549L2t33NonHC := Module[ {a,b,c,D,E,F,aa,bb,cc},
1550ExpandIndices[ Y2t33 R2t[a,aa] Eps[a,b] 2*Ta[D,b,c] Phi[c] S3[E,bb] I*Eps[D,E,F] S3[F,cc] Eps[aa,bb,cc], FlavorExpand->{SU2D, SU2W}]];
1551L2t33 := L2t33NonHC + HC[L2t33NonHC];
1552
1553
1554(**********************************)
1555(* LQ Quartic Interactions *)
1556(**********************************)
1557
1558(* Trivial quartic interactions *)
1559Lo1 := Module[ {aa,bb},
1560ExpandIndices[ 1/2 * Yo1 S1m13bar[aa] S1m13[aa] S1m13bar[bb] S1m13[bb] ]];
1561
1562Lo11t := Module[ {aa,bb},
1563ExpandIndices[ Yo11t S1m13bar[aa] S1m13[aa] S1tm43bar[bb] S1tm43[bb] ]];
1564Lo11tprime := Module[ {aa,bb},
1565ExpandIndices[ Yo11tprime S1m13bar[aa] S1m13[bb] S1tm43bar[bb] S1tm43[aa] ]];
1566
1567Lo12 := Module[ {a, aa, bb},
1568ExpandIndices[ Yo12 S1m13bar[aa] S1m13[aa] R2bar[a, bb] R2[a, bb], FlavorExpand->{SU2D} ]];
1569Lo12prime := Module[ {a, aa, bb},
1570ExpandIndices[ Yo12prime S1m13bar[aa] S1m13[bb] R2bar[a, bb] R2[a, aa], FlavorExpand->{SU2D}]];
1571
1572Lo12t := Module[ {a, aa, bb},
1573ExpandIndices[ Yo12t S1m13bar[aa] S1m13[aa] R2tbar[a, bb] R2t[a, bb], FlavorExpand->{SU2D} ]];
1574Lo12tprime := Module[ {a, aa, bb},
1575ExpandIndices[ Yo12tprime S1m13bar[aa] S1m13[bb] R2tbar[a, bb] R2t[a, aa], FlavorExpand->{SU2D} ]];
1576
1577Lo13 := Module[ {A, aa, bb},
1578ExpandIndices[ Yo13 S1m13bar[aa] S1m13[aa] S3bar[A, bb] S3[A, bb], FlavorExpand->{SU2W} ]];
1579Lo13prime := Module[ {A, aa, bb},
1580ExpandIndices[ Yo13prime S1m13bar[aa] S1m13[bb] S3bar[A, bb] S3[A, aa], FlavorExpand->{SU2W} ]];
1581
1582Lo1t := Module[ {aa,bb},
1583ExpandIndices[1/2 * Yo1t S1tm43bar[aa] S1tm43[aa] S1tm43bar[bb] S1tm43[bb] ]];
1584
1585Lo1t2 := Module[ {a, aa, bb},
1586ExpandIndices[ Yo1t2 S1tm43bar[aa] S1tm43[aa] R2bar[a, bb] R2[a, bb], FlavorExpand->{SU2D} ]];
1587Lo1t2prime := Module[ {a, aa, bb},
1588ExpandIndices[ Yo1t2prime S1tm43bar[aa] S1tm43[bb] R2bar[a, bb] R2[a, aa], FlavorExpand->{SU2D} ]];
1589
1590Lo1t2t := Module[ {a, aa, bb},
1591ExpandIndices[ Yo1t2t S1tm43bar[aa] S1tm43[aa] R2tbar[a, bb] R2t[a, bb], FlavorExpand->{SU2D} ]];
1592Lo1t2tprime := Module[ {a, aa, bb},
1593ExpandIndices[ Yo1t2tprime S1tm43bar[aa] S1tm43[bb] R2tbar[a, bb] R2t[a, aa], FlavorExpand->{SU2D} ]];
1594
1595Lo1t3 := Module[ {A, aa, bb},
1596ExpandIndices[ Yo1t3 S1tm43bar[aa] S1tm43[aa] S3bar[A, bb] S3[A, bb], FlavorExpand->{SU2W} ]];
1597Lo1t3prime := Module[ {A, aa, bb},
1598ExpandIndices[ Yo1t3prime S1tm43bar[aa] S1tm43[bb] S3bar[A, bb] S3[A, aa], FlavorExpand->{SU2W} ]];
1599
1600Lo2 := Module[ {a, b, aa, bb},
1601ExpandIndices[1/2 * Yo2 R2bar[b, aa] R2[b, aa] R2bar[a, bb] R2[a, bb], FlavorExpand->{SU2D} ]];
1602
1603Lo22t := Module[ {a, b, aa, bb},
1604ExpandIndices[ Yo22t R2bar[b, aa] R2[b, aa] R2tbar[a, bb] R2t[a, bb], FlavorExpand->{SU2D} ]];
1605Lo22tprime := Module[ {a, b, aa, bb},
1606ExpandIndices[ Yo22tprime R2bar[b, aa] R2[b, bb] R2tbar[a, bb] R2t[a, aa], FlavorExpand->{SU2D} ]];
1607
1608Lo23 := Module[ {a, B, aa, bb},
1609ExpandIndices[ Yo23 R2bar[a, aa] R2[a, aa] S3bar[B, bb] S3[B, bb], FlavorExpand->{SU2D, SU2W} ]];
1610Lo23prime := Module[ {a, B, aa, bb},
1611ExpandIndices[ Yo23prime R2bar[a, aa] R2[a, bb] S3bar[B, bb] S3[B, aa], FlavorExpand->{SU2D, SU2W} ]];
1612
1613Lo2t := Module[ {a, b, aa, bb},
1614ExpandIndices[1/2 * Yo2t R2tbar[b, aa] R2t[b, aa] R2tbar[a, bb] R2t[a, bb], FlavorExpand->{SU2D} ]];
1615
1616Lo2t3 := Module[ {a, B, aa, bb},
1617ExpandIndices[ Yo2t3 R2tbar[a, aa] R2t[a, aa] S3bar[B, bb] S3[B, bb], FlavorExpand->{SU2D, SU2W} ]];
1618Lo2t3prime := Module[ {a, B, aa, bb},
1619ExpandIndices[ Yo2t3prime R2tbar[a, aa] R2t[a, bb] S3bar[B, bb] S3[B, aa], FlavorExpand->{SU2D, SU2W} ]];
1620
1621Lo3 := Module[ {A, B, aa, bb},
1622ExpandIndices[1/2 * Yo3 S3bar[A, aa] S3[A, aa] S3bar[B, bb] S3[B, bb], FlavorExpand->{SU2W} ]];
1623
1624
1625(* Non-trivial quartic interactions *)
1626
1627Lt2 := Module[ {a, b, aa, bb},
1628ExpandIndices[ 1/2*Yt2 R2bar[b, aa] R2[b, bb] R2bar[a, bb] R2[a, aa], FlavorExpand->{SU2D} ]];
1629
1630Lt2t := Module[ {a, b, aa, bb},
1631ExpandIndices[ 1/2*Yt2t R2tbar[b, aa] R2t[b, bb] R2tbar[a, bb] R2t[a, aa], FlavorExpand->{SU2D} ]];
1632
1633Lt3 := Module[ {A, B, aa, bb},
1634ExpandIndices[1/2 * Yt3 S3bar[A, aa] S3[A, bb] S3bar[B, bb] S3[B, aa], FlavorExpand->{SU2W} ]];
1635
1636Lf3 := Module[ {A, B, aa, bb},
1637ExpandIndices[ 1/2*Yf3 S3bar[A, aa] S3[B, aa] S3bar[A, bb] S3[B, bb], FlavorExpand->{SU2W} ]];
1638
1639Lt22t := Module[ {a, b, aa, bb},
1640ExpandIndices[ Yt22t R2bar[a, aa] R2t[a, aa] R2tbar[b, bb] R2[b, bb], FlavorExpand->{SU2D}]];
1641Lt22tprime := Module[ {a, b, aa, bb},
1642ExpandIndices[ Yt22tprime R2bar[a, aa] R2t[a, bb] R2tbar[b, bb] R2[b, aa], FlavorExpand->{SU2D} ]];
1643
1644Lt23 := Module[ {A,B,C,a,b,aa,bb},
1645ExpandIndices[ Yt23 R2bar[a, aa] 2*Ta[A,a,b] R2[b, aa] S3bar[B, bb] I*Eps[A,B,C] S3[C, bb], FlavorExpand->{SU2D, SU2W}]];
1646Lt23prime := Module[ {A,B,C,a,b,aa,bb},
1647ExpandIndices[ Yt23prime R2bar[a, aa] 2*Ta[A,a,b] R2[b, bb] S3bar[B, bb] I*Eps[A,B,C] S3[C, aa], FlavorExpand->{SU2D, SU2W}]];
1648
1649Lt2t3 := Module[ {A,B,C,a,b,aa,bb},
1650ExpandIndices[ Yt23 R2tbar[a, aa] 2*Ta[A,a,b] R2t[b, aa] S3bar[B, bb] I*Eps[A,B,C] S3[C, bb], FlavorExpand->{SU2D, SU2W}]];
1651Lt2t3prime := Module[ {A,B,C,a,b,aa,bb},
1652ExpandIndices[ Yt23prime R2tbar[a, aa] 2*Ta[A,a,b] R2t[b, bb] S3bar[B, bb] I*Eps[A,B,C] S3[C, aa], FlavorExpand->{SU2D, SU2W}]];
1653
1654L1223NonHC := Module[ {a, b, C, aa, bb},
1655ExpandIndices[ Y1223 S1m13bar[aa] R2bar[a,bb] 2*Ta[C,a,b] S3[C,bb] R2[b,aa], FlavorExpand->{SU2D, SU2W} ]];
1656L1223 := L1223NonHC + HC[L1223NonHC]
1657L1223primeNonHC := Module[ {a, b, C, aa, bb},
1658ExpandIndices[ Y1223prime S1m13bar[aa] R2bar[a,bb] 2*Ta[C,a,b] S3[C,aa] R2[b,bb], FlavorExpand->{SU2D, SU2W} ]];
1659L1223prime := L1223primeNonHC + HC[L1223primeNonHC]
1660
1661L12t2t3NonHC := Module[ {a, b, C, aa, bb},
1662ExpandIndices[ Y12t2t3 S1m13bar[aa] R2tbar[a,bb] 2*Ta[C,a,b] S3[C,bb] R2t[b,aa], FlavorExpand->{SU2D, SU2W} ]];
1663L12t2t3 := L12t2t3NonHC + HC[L12t2t3NonHC]
1664L12t2t3primeNonHC := Module[ {a, b, C, aa, bb},
1665ExpandIndices[ Y12t2t3prime S1m13bar[aa] R2tbar[a,bb] 2*Ta[C,a,b]S3[C,aa] R2t[b,bb], FlavorExpand->{SU2D, SU2W} ]];
1666L12t2t3prime := L12t2t3primeNonHC + HC[L12t2t3primeNonHC]
1667
1668L11t2t2NonHC := Module[ {a, aa, bb},
1669ExpandIndices[ Y11t2t2 S1m13bar[aa] S1tm43[aa] R2tbar[a,bb] R2[a,bb], FlavorExpand->{SU2D} ]];
1670L11t2t2 := L11t2t2NonHC + HC[L11t2t2NonHC]
1671L11t2t2primeNonHC := Module[ {a, aa, bb},
1672ExpandIndices[ Y11t2t2prime S1m13bar[aa] S1tm43[bb] R2tbar[a,bb] R2[a,aa], FlavorExpand->{SU2D} ]];
1673L11t2t2prime := L11t2t2primeNonHC + HC[L11t2t2primeNonHC]
1674
1675L1t2t23NonHC := Module[ {a, b, C, aa, bb},
1676ExpandIndices[ Y1t2t23 S1tm43bar[aa] R2bar[a,bb] 2*Ta[C,a,b] S3[C,bb] R2t[b,aa], FlavorExpand->{SU2D, SU2W} ]];
1677L1t2t23 := L1t2t23NonHC + HC[L1t2t23NonHC]
1678L1t2t23primeNonHC := Module[ {a, b, C, aa, bb},
1679ExpandIndices[ Y1t2t23prime S1tm43bar[aa] R2bar[a,bb] 2*Ta[C,a,b] S3[C,aa] R2t[b,bb], FlavorExpand->{SU2D, SU2W} ]];
1680L1t2t23prime := L1t2t23primeNonHC + HC[L1t2t23primeNonHC]
1681
1682L1313NonHC := Module[ {A, aa, bb},
1683ExpandIndices[ 1/2*Y1313 S1m13bar[aa] S3[A,aa] S1m13bar[bb] S3[A,bb], FlavorExpand->{SU2D, SU2W} ]];
1684L1313 := L1313NonHC + HC[L1313NonHC]
1685
1686L1333NonHC := Module[ {A, B, C, aa, bb},
1687ExpandIndices[ Y1333 S1m13bar[aa] S3[A,aa] S3bar[B,bb] S3[C,bb] I*Eps[A,B,C], FlavorExpand->{SU2W} ]];
1688L1333 := L1333NonHC + HC[L1333NonHC]
1689
1690(**********************************)
1691(* Total Lagrangian *)
1692(**********************************)
1693LQ2Phi := L12t + L2t3 + L22t + L1t3 + L13 + L22 + L2t2t + L33 + Lm1 + Lm1t + Lm2 + Lm2t + Lm3;
1694LQkin := L1Kin + L1tKin + L2Kin + L2tKin + L3Kin;
1695LQf := L1YukLL + L1YukRR + L1tYukRR + L2YukRL + L2YukLR + L2tYukRL + L3YukLL + L1YukQLL + L1tYukQRR + L1YukQRR + L3YukQLL;
1696LQ3Phi := L12t2t + L1t22t + L11t2 + L123 + L12t3 + L1t23 + L233 + L2t33;
1697LQ4Phi := Lo1 + Lo11t + Lo12 + Lo12t + Lo13 + Lo1t + Lo1t2 + Lo1t2t + Lo1t3 + Lo2 + Lo22t + Lo23 + Lo2t + Lo2t3 + Lo3 + Lt2 + Lt2t + Lt3 + Lf3 + Lt22t + Lt23 + Lt2t3 + L1223 + L12t2t3 + L11t2t2 + L1t2t23 + L1313 + L1333;
1698
1699LQall := LQ2Phi + LQkin + LQf + LQ3Phi + LQ4Phi;
1700(***********************************************************)