1 | (***************************************************************************************************************)
|
---|
2 | (****** This is the FeynRules mod-file for the Large Extra Dimensions ******)
|
---|
3 | (****** ******)
|
---|
4 | (****** Author: Priscila de Aquino ******)
|
---|
5 | (****** ******)
|
---|
6 | (****** Choose whether Feynman gauge is desired. ******)
|
---|
7 | (****** If set to False, unitary gauge is assumed. ****)
|
---|
8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
---|
9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
---|
10 | (***************************************************************************************************************)
|
---|
11 |
|
---|
12 | M$ModelName = "RS";
|
---|
13 |
|
---|
14 | M$Information = {Authors -> {"Priscila de Aquino"},
|
---|
15 | Date -> "22.11.2011",
|
---|
16 | Institute -> {"Katholieke Universiteit Leuven & Universite Catholique Louvain - CP3"},
|
---|
17 | Emails -> {"priscila@itf.kuleuven.be"},
|
---|
18 | Version -> "2.1"};
|
---|
19 |
|
---|
20 | FeynmanGauge = False;
|
---|
21 |
|
---|
22 |
|
---|
23 | (*****************************************************************************************)
|
---|
24 | (****************************** Index definitions ****************************************)
|
---|
25 | (*****************************************************************************************)
|
---|
26 |
|
---|
27 | IndexRange[ Index[Generation] ] = Range[3]
|
---|
28 |
|
---|
29 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
|
---|
30 |
|
---|
31 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
|
---|
32 |
|
---|
33 | IndexRange[Index[SU2W]] = Unfold[Range[3]]
|
---|
34 |
|
---|
35 | IndexStyle[Colour, i]
|
---|
36 |
|
---|
37 | IndexStyle[Generation, f]
|
---|
38 |
|
---|
39 | IndexStyle[Gluon ,a]
|
---|
40 |
|
---|
41 | IndexStyle[SU2W ,k]
|
---|
42 |
|
---|
43 | (*****************************************************************************************)
|
---|
44 | (************************************* Parameters ***************************************)
|
---|
45 | (*****************************************************************************************)
|
---|
46 |
|
---|
47 | M$Parameters = {
|
---|
48 |
|
---|
49 | (* External parameters *)
|
---|
50 |
|
---|
51 | \[Alpha]EWM1== {
|
---|
52 | ParameterType -> External,
|
---|
53 | BlockName -> SMINPUTS,
|
---|
54 | ParameterName -> aEWM1,
|
---|
55 | InteractionOrder -> {QED, -2},
|
---|
56 | Value -> 127.9,
|
---|
57 | Description -> "Inverse of the electroweak coupling constant"},
|
---|
58 |
|
---|
59 | Gf == {
|
---|
60 | ParameterType -> External,
|
---|
61 | BlockName -> SMINPUTS,
|
---|
62 | InteractionOrder -> {QED, 2},
|
---|
63 | Value -> 1.166 * 10^(-5),
|
---|
64 | Description -> "Fermi constant"},
|
---|
65 |
|
---|
66 | \[Alpha]S == {
|
---|
67 | ParameterType -> External,
|
---|
68 | BlockName -> SMINPUTS,
|
---|
69 | ParameterName -> aS,
|
---|
70 | InteractionOrder -> {QCD, 2},
|
---|
71 | Value -> 0.118,
|
---|
72 | Description -> "Strong coupling constant at the Z pole."},
|
---|
73 |
|
---|
74 | ymc == {
|
---|
75 | ParameterType -> External,
|
---|
76 | BlockName -> YUKAWA,
|
---|
77 | Value -> 1.42,
|
---|
78 | OrderBlock -> {4},
|
---|
79 | Description -> "Charm Yukawa mass"},
|
---|
80 |
|
---|
81 | ymb == {
|
---|
82 | ParameterType -> External,
|
---|
83 | BlockName -> YUKAWA,
|
---|
84 | Value -> 4.2,
|
---|
85 | OrderBlock -> {5},
|
---|
86 | Description -> "Bottom Yukawa mass"},
|
---|
87 |
|
---|
88 | ymt == {
|
---|
89 | ParameterType -> External,
|
---|
90 | BlockName -> YUKAWA,
|
---|
91 | Value -> 174.3,
|
---|
92 | OrderBlock -> {6},
|
---|
93 | Description -> "Top Yukawa mass"},
|
---|
94 |
|
---|
95 | ymtau == {
|
---|
96 | ParameterType -> External,
|
---|
97 | BlockName -> YUKAWA,
|
---|
98 | Value -> 1.777,
|
---|
99 | OrderBlock -> {15},
|
---|
100 | Description -> "Tau Yukawa mass"},
|
---|
101 |
|
---|
102 | LRS == {
|
---|
103 | ParameterType -> External,
|
---|
104 | Value -> 3000,
|
---|
105 | Description -> "Cutoff of the theory"},
|
---|
106 |
|
---|
107 | (* Internal Parameters *)
|
---|
108 |
|
---|
109 | \[Alpha]EW == {
|
---|
110 | ParameterType -> Internal,
|
---|
111 | Value -> 1/\[Alpha]EWM1,
|
---|
112 | ParameterName -> aEW,
|
---|
113 | InteractionOrder -> {QED, 2},
|
---|
114 | Description -> "Electroweak coupling contant"},
|
---|
115 |
|
---|
116 | sw2 == {
|
---|
117 | ParameterType -> External,
|
---|
118 | (* Value -> 1-(MW/MZ)^2, *)
|
---|
119 | Value -> 0.2312,
|
---|
120 | Description -> "Squared Sin of the Weinberg angle"},
|
---|
121 |
|
---|
122 | ee == {
|
---|
123 | TeX -> e,
|
---|
124 | ParameterType -> Internal,
|
---|
125 | Value -> Sqrt[4 Pi \[Alpha]EW],
|
---|
126 | InteractionOrder -> {QED, 1},
|
---|
127 | Description -> "Electric coupling constant"},
|
---|
128 |
|
---|
129 | cw == {
|
---|
130 | TeX -> Subscript[c, w],
|
---|
131 | ParameterType -> Internal,
|
---|
132 | Value -> Sqrt[1 - sw2],
|
---|
133 | Description -> "Cos of the Weinberg angle"},
|
---|
134 |
|
---|
135 | sw == {
|
---|
136 | TeX -> Subscript[s, w],
|
---|
137 | ParameterType -> Internal,
|
---|
138 | Value -> Sqrt[sw2],
|
---|
139 | Description -> "Sin of the Weinberg angle"},
|
---|
140 |
|
---|
141 | gw == {
|
---|
142 | TeX -> Subscript[g, w],
|
---|
143 | ParameterType -> Internal,
|
---|
144 | Value -> ee / sw,
|
---|
145 | InteractionOrder -> {QED, 1},
|
---|
146 | Description -> "Weak coupling constant"},
|
---|
147 |
|
---|
148 | g1 == {
|
---|
149 | TeX -> Subscript[g, 1],
|
---|
150 | ParameterType -> Internal,
|
---|
151 | Value -> ee / cw,
|
---|
152 | InteractionOrder -> {QED, 1},
|
---|
153 | Description -> "U(1)Y coupling constant"},
|
---|
154 |
|
---|
155 | gs == {
|
---|
156 | TeX -> Subscript[g, s],
|
---|
157 | ParameterType -> Internal,
|
---|
158 | Value -> Sqrt[4 Pi \[Alpha]S],
|
---|
159 | InteractionOrder -> {QCD, 1},
|
---|
160 | ParameterName -> G,
|
---|
161 | Description -> "Strong coupling constant"},
|
---|
162 |
|
---|
163 | v == {
|
---|
164 | ParameterType -> Internal,
|
---|
165 | Value -> 2*MW*sw/ee,
|
---|
166 | InteractionOrder -> {QED, -1},
|
---|
167 | Description -> "Higgs VEV"},
|
---|
168 |
|
---|
169 | \[Lambda] == {
|
---|
170 | ParameterType -> Internal,
|
---|
171 | Value -> MH^2/(2*v^2),
|
---|
172 | InteractionOrder -> {QED, 2},
|
---|
173 | ParameterName -> lam,
|
---|
174 | Description -> "Higgs quartic coupling"},
|
---|
175 |
|
---|
176 | muH == {
|
---|
177 | ParameterType -> Internal,
|
---|
178 | Value -> Sqrt[v^2 \[Lambda]],
|
---|
179 | TeX -> \[Mu],
|
---|
180 | Description -> "Coefficient of the quadratic piece of the Higgs potential"},
|
---|
181 |
|
---|
182 |
|
---|
183 | yl == {
|
---|
184 | Indices -> {Index[Generation]},
|
---|
185 | AllowSummation -> True,
|
---|
186 | ParameterType -> Internal,
|
---|
187 | Value -> {yl[1] -> 0, yl[2] -> 0, yl[3] -> Sqrt[2] ymtau / v},
|
---|
188 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
|
---|
189 | InteractionOrder -> {QED, 1},
|
---|
190 | ComplexParameter -> False,
|
---|
191 | Description -> "Lepton Yukawa coupling"},
|
---|
192 |
|
---|
193 | yu == {
|
---|
194 | Indices -> {Index[Generation]},
|
---|
195 | AllowSummation -> True,
|
---|
196 | ParameterType -> Internal,
|
---|
197 | Value -> {yu[1] -> 0, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v},
|
---|
198 | ParameterName -> {yu[1] -> yu, yu[2] -> yc, yu[3] -> yt},
|
---|
199 | InteractionOrder -> {QED, 1},
|
---|
200 | ComplexParameter -> False,
|
---|
201 | Description -> "U-quark Yukawa coupling"},
|
---|
202 |
|
---|
203 | yd == {
|
---|
204 | Indices -> {Index[Generation]},
|
---|
205 | AllowSummation -> True,
|
---|
206 | ParameterType -> Internal,
|
---|
207 | Value -> {yd[1] -> 0, yd[2] -> 0, yd[3] -> Sqrt[2] ymb / v},
|
---|
208 | ParameterName -> {yd[1] -> yd, yd[2] -> ys, yd[3] -> yb},
|
---|
209 | InteractionOrder -> {QED, 1},
|
---|
210 | ComplexParameter -> False,
|
---|
211 | Description -> "D-quark Yukawa coupling"},
|
---|
212 |
|
---|
213 | cabi == {
|
---|
214 | TeX -> Subscript[\[Theta], c],
|
---|
215 | ParameterType -> External,
|
---|
216 | BlockName -> CKMBLOCK,
|
---|
217 | OrderBlock -> {1},
|
---|
218 | Value -> 0.488,
|
---|
219 | Description -> "Cabibbo angle"},
|
---|
220 |
|
---|
221 | CKM == {
|
---|
222 | Indices -> {Index[Generation], Index[Generation]},
|
---|
223 | TensorClass -> CKM,
|
---|
224 | Unitary -> True,
|
---|
225 | Value -> {CKM[1,1] -> 1,
|
---|
226 | CKM[1,2] -> 0,
|
---|
227 | CKM[2,1] -> 0,
|
---|
228 | CKM[2,2] -> 1,
|
---|
229 | CKM[1,3] -> 0,
|
---|
230 | CKM[3,1] -> 0,
|
---|
231 | CKM[2,3] -> 0,
|
---|
232 | CKM[3,2] -> 0,
|
---|
233 | CKM[3,3] -> 1},
|
---|
234 | Description -> "CKM-Matrix"},
|
---|
235 |
|
---|
236 | kappa == {
|
---|
237 | TeX -> \[Kappa]_F,
|
---|
238 | ParameterType -> Internal,
|
---|
239 | (* Value -> Sqrt[16 Pi GN] *)
|
---|
240 | InteractionOrder -> {QTD, 1},
|
---|
241 | Value -> 2/LRS}
|
---|
242 | }
|
---|
243 |
|
---|
244 | TeXFormat[mphi, Subscript[m, phi]]
|
---|
245 | TeXFormat[mpsi, Subscript[m, psi]]
|
---|
246 | TeXFormat[mG, Subscript[m, G]]
|
---|
247 |
|
---|
248 | (*****************************************************************************************)
|
---|
249 | (********************************* Gauge Groups ******************************************)
|
---|
250 | (*****************************************************************************************)
|
---|
251 |
|
---|
252 | M$GaugeGroups = {
|
---|
253 |
|
---|
254 | U1Y == {
|
---|
255 | Abelian -> True,
|
---|
256 | GaugeBoson -> B,
|
---|
257 | Charge -> Y,
|
---|
258 | CouplingConstant -> g1},
|
---|
259 |
|
---|
260 | SU2L == {
|
---|
261 | Abelian -> False,
|
---|
262 | GaugeBoson -> Wi,
|
---|
263 | StructureConstant -> Eps,
|
---|
264 | CouplingConstant -> gw},
|
---|
265 |
|
---|
266 | SU3C == {
|
---|
267 | Abelian -> False,
|
---|
268 | GaugeBoson -> G,
|
---|
269 | StructureConstant -> f,
|
---|
270 | SymmetricTensor -> dSUN,
|
---|
271 | Representations -> {T, Colour},
|
---|
272 | CouplingConstant -> gs}
|
---|
273 | }
|
---|
274 | (*****************************************************************************************)
|
---|
275 | (******************************* Particle Classes ****************************************)
|
---|
276 | (*****************************************************************************************)
|
---|
277 |
|
---|
278 | M$ClassesDescription = {
|
---|
279 |
|
---|
280 | (************************************ Fermions *******************************************)
|
---|
281 |
|
---|
282 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *)
|
---|
283 | F[1] == {
|
---|
284 | ClassName -> vl,
|
---|
285 | ClassMembers -> {ve,vm,vt},
|
---|
286 | FlavorIndex -> Generation,
|
---|
287 | SelfConjugate -> False,
|
---|
288 | Indices -> {Index[Generation]},
|
---|
289 | Mass -> 0,
|
---|
290 | Width -> 0,
|
---|
291 | QuantumNumbers -> {LeptonNumber -> 1},
|
---|
292 | PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
|
---|
293 | PropagatorType -> S,
|
---|
294 | PropagatorArrow -> Forward,
|
---|
295 | PDG -> {12,14,16},
|
---|
296 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
|
---|
297 |
|
---|
298 | (* Leptons (electron): I_3 = -1/2, Q = -1 *)
|
---|
299 | F[2] == {
|
---|
300 | ClassName -> l,
|
---|
301 | ClassMembers -> {e, m, tt},
|
---|
302 | FlavorIndex -> Generation,
|
---|
303 | SelfConjugate -> False,
|
---|
304 | Indices -> {Index[Generation]},
|
---|
305 | Mass -> {Ml, {ME, 0}, {MM, 0}, {MTA, 1.777}},
|
---|
306 | Width -> 0,
|
---|
307 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
|
---|
308 | PropagatorLabel -> {"l", "e", "m", "tt"},
|
---|
309 | PropagatorType -> Straight,
|
---|
310 | ParticleName -> {"e-", "m-", "tt-"},
|
---|
311 | AntiParticleName -> {"e+", "m+", "tt+"},
|
---|
312 | PropagatorArrow -> Forward,
|
---|
313 | PDG -> {11, 13, 15},
|
---|
314 | FullName -> {"Electron", "Muon", "Tau"} },
|
---|
315 |
|
---|
316 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *)
|
---|
317 | F[3] == {
|
---|
318 | ClassMembers -> {u, c, t},
|
---|
319 | ClassName -> uq,
|
---|
320 | FlavorIndex -> Generation,
|
---|
321 | SelfConjugate -> False,
|
---|
322 | Indices -> {Index[Generation], Index[Colour]},
|
---|
323 | Mass -> {Mu, {MU, 0}, {MC, 1.42}, {MT, 174.3}},
|
---|
324 | Width -> {0, 0, {WT, 1.51013490}},
|
---|
325 | QuantumNumbers -> {Q -> 2/3},
|
---|
326 | PropagatorLabel -> {"uq", "u", "c", "t"},
|
---|
327 | PropagatorType -> Straight,
|
---|
328 | PropagatorArrow -> Forward,
|
---|
329 | PDG -> {2, 4, 6},
|
---|
330 | FullName -> {"u-quark", "c-quark", "t-quark"}},
|
---|
331 |
|
---|
332 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *)
|
---|
333 | F[4] == {
|
---|
334 | ClassMembers -> {d, s, b},
|
---|
335 | ClassName -> dq,
|
---|
336 | FlavorIndex -> Generation,
|
---|
337 | SelfConjugate -> False,
|
---|
338 | Indices -> {Index[Generation], Index[Colour]},
|
---|
339 | Mass -> {Md, {MD, 0}, {MS, 0}, {MB, 4.2}},
|
---|
340 | Width -> 0,
|
---|
341 | QuantumNumbers -> {Q -> -1/3},
|
---|
342 | PropagatorLabel -> {"dq", "d", "s", "b"},
|
---|
343 | PropagatorType -> Straight,
|
---|
344 | PropagatorArrow -> Forward,
|
---|
345 | PDG -> {1,3,5},
|
---|
346 | FullName -> {"d-quark", "s-quark", "b-quark"} },
|
---|
347 |
|
---|
348 | (************************************ Gauge Bosons ***************************************)
|
---|
349 |
|
---|
350 | (* Gauge bosons: Q = 0 *)
|
---|
351 | V[1] == {
|
---|
352 | ClassName -> A,
|
---|
353 | SelfConjugate -> True,
|
---|
354 | Indices -> {},
|
---|
355 | Mass -> 0,
|
---|
356 | Width -> 0,
|
---|
357 | PropagatorLabel -> "a",
|
---|
358 | PropagatorType -> W,
|
---|
359 | PropagatorArrow -> None,
|
---|
360 | PDG -> 22,
|
---|
361 | FullName -> "Photon" },
|
---|
362 |
|
---|
363 | V[2] == {
|
---|
364 | ClassName -> Z,
|
---|
365 | SelfConjugate -> True,
|
---|
366 | Indices -> {},
|
---|
367 | Mass -> {MZ, 91.5445000},
|
---|
368 | Width -> {WZ, 2.44639985},
|
---|
369 | PropagatorLabel -> "Z",
|
---|
370 | PropagatorType -> Sine,
|
---|
371 | PropagatorArrow -> None,
|
---|
372 | PDG -> 23,
|
---|
373 | FullName -> "Z" },
|
---|
374 |
|
---|
375 | (* Gauge bosons: Q = -1 *)
|
---|
376 | V[3] == {
|
---|
377 | ClassName -> W,
|
---|
378 | SelfConjugate -> False,
|
---|
379 | Indices -> {},
|
---|
380 | Mass -> {MW, 80.2673592},
|
---|
381 | Width -> {WW, 2.03535570},
|
---|
382 | QuantumNumbers -> {Q -> 1},
|
---|
383 | PropagatorLabel -> "W",
|
---|
384 | PropagatorType -> Sine,
|
---|
385 | PropagatorArrow -> Forward,
|
---|
386 | ParticleName ->"W+",
|
---|
387 | AntiParticleName ->"W-",
|
---|
388 | PDG -> 24,
|
---|
389 | FullName -> "W" },
|
---|
390 |
|
---|
391 | V[4] == {
|
---|
392 | ClassName -> G,
|
---|
393 | SelfConjugate -> True,
|
---|
394 | Indices -> {Index[Gluon]},
|
---|
395 | Mass -> {mG,0},
|
---|
396 | Width -> 0,
|
---|
397 | PropagatorLabel -> G,
|
---|
398 | PropagatorType -> C,
|
---|
399 | PropagatorArrow -> None,
|
---|
400 | PDG -> 21,
|
---|
401 | FullName -> "G" },
|
---|
402 |
|
---|
403 | V[5] == {
|
---|
404 | ClassName -> Wi,
|
---|
405 | Unphysical -> True,
|
---|
406 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
|
---|
407 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
|
---|
408 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]},
|
---|
409 | SelfConjugate -> True,
|
---|
410 | Indices -> {Index[SU2W]},
|
---|
411 | FlavorIndex -> SU2W,
|
---|
412 | Mass -> 0,
|
---|
413 | PDG -> {1,2,3}},
|
---|
414 |
|
---|
415 | V[6] == {
|
---|
416 | ClassName -> B,
|
---|
417 | SelfConjugate -> True,
|
---|
418 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]},
|
---|
419 | Indices -> {},
|
---|
420 | Mass -> 0,
|
---|
421 | Unphysical -> True},
|
---|
422 |
|
---|
423 | (********** Ghosts **********)
|
---|
424 | U[1] == {
|
---|
425 | ClassName -> ghA,
|
---|
426 | SelfConjugate -> False,
|
---|
427 | Indices -> {},
|
---|
428 | Ghost -> A,
|
---|
429 | Mass -> 0,
|
---|
430 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
431 | PropagatorLabel -> uA,
|
---|
432 | PropagatorType -> GhostDash,
|
---|
433 | PropagatorArrow -> Forward},
|
---|
434 |
|
---|
435 | U[2] == {
|
---|
436 | ClassName -> ghZ,
|
---|
437 | SelfConjugate -> False,
|
---|
438 | Indices -> {},
|
---|
439 | Mass -> {MZ, 91.188},
|
---|
440 | Ghost -> Z,
|
---|
441 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
442 | PropagatorLabel -> uZ,
|
---|
443 | PropagatorType -> GhostDash,
|
---|
444 | PropagatorArrow -> Forward},
|
---|
445 |
|
---|
446 | U[31] == {
|
---|
447 | ClassName -> ghWp,
|
---|
448 | SelfConjugate -> False,
|
---|
449 | Indices -> {},
|
---|
450 | Mass -> {MW, 80.2673592},
|
---|
451 | Ghost -> W,
|
---|
452 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1},
|
---|
453 | PropagatorLabel -> uWp,
|
---|
454 | PropagatorType -> GhostDash,
|
---|
455 | PropagatorArrow -> Forward},
|
---|
456 |
|
---|
457 | U[32] == {
|
---|
458 | ClassName -> ghWm,
|
---|
459 | SelfConjugate -> False,
|
---|
460 | Indices -> {},
|
---|
461 | Mass -> {MW, 80.2673592},
|
---|
462 | Ghost -> Wbar,
|
---|
463 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1},
|
---|
464 | PropagatorLabel -> uWm,
|
---|
465 | PropagatorType -> GhostDash,
|
---|
466 | PropagatorArrow -> Forward},
|
---|
467 |
|
---|
468 | U[4] == {
|
---|
469 | ClassName -> ghG,
|
---|
470 | SelfConjugate -> False,
|
---|
471 | Indices -> {Index[Gluon]},
|
---|
472 | Ghost -> G,
|
---|
473 | Mass -> 0,
|
---|
474 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
475 | PropagatorLabel -> uG,
|
---|
476 | PropagatorType -> GhostDash,
|
---|
477 | PropagatorArrow -> Forward},
|
---|
478 |
|
---|
479 | U[5] == {
|
---|
480 | ClassName -> ghWi,
|
---|
481 | Unphysical -> True,
|
---|
482 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2],
|
---|
483 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I,
|
---|
484 | ghWi[3] -> cw ghZ + sw ghA},
|
---|
485 | SelfConjugate -> False,
|
---|
486 | Ghost -> Wi,
|
---|
487 | Indices -> {Index[SU2W]},
|
---|
488 | FlavorIndex -> SU2W},
|
---|
489 |
|
---|
490 | U[6] == {
|
---|
491 | ClassName -> ghB,
|
---|
492 | SelfConjugate -> False,
|
---|
493 | Definitions -> {ghB -> -sw ghZ + cw ghA},
|
---|
494 | Indices -> {},
|
---|
495 | Ghost -> B,
|
---|
496 | Unphysical -> True},
|
---|
497 |
|
---|
498 | (****************************** Scalar Fields *********************************************)
|
---|
499 |
|
---|
500 | (* physical Higgs: Q = 0 *)
|
---|
501 | S[1] == {
|
---|
502 | ClassName -> H,
|
---|
503 | SelfConjugate -> True,
|
---|
504 | Mass -> {MH, 100},
|
---|
505 | Width -> {WH, 0.004276087},
|
---|
506 | PropagatorLabel -> "H",
|
---|
507 | PropagatorType -> D,
|
---|
508 | PropagatorArrow -> None,
|
---|
509 | PDG -> 25,
|
---|
510 | TeXParticleName -> "\\phi",
|
---|
511 | TeXClassName -> "\\phi",
|
---|
512 | FullName -> "H" },
|
---|
513 |
|
---|
514 | S[2] == {
|
---|
515 | ClassName -> phi,
|
---|
516 | SelfConjugate -> True,
|
---|
517 | Mass -> {MZ, 91.188},
|
---|
518 | Width -> Wphi,
|
---|
519 | PropagatorLabel -> "Phi",
|
---|
520 | PropagatorType -> D,
|
---|
521 | PropagatorArrow -> None,
|
---|
522 | ParticleName ->"phi0",
|
---|
523 | PDG -> 250,
|
---|
524 | FullName -> "Phi",
|
---|
525 | Goldstone -> Z },
|
---|
526 |
|
---|
527 | S[3] == {
|
---|
528 | ClassName -> phi2,
|
---|
529 | SelfConjugate -> False,
|
---|
530 | Mass -> {MW, 80.2673592},
|
---|
531 | Width -> Wphi2,
|
---|
532 | PropagatorLabel -> "Phi2",
|
---|
533 | PropagatorType -> D,
|
---|
534 | PropagatorArrow -> None,
|
---|
535 | ParticleName ->"phi+",
|
---|
536 | AntiParticleName ->"phi-",
|
---|
537 | PDG -> 251,
|
---|
538 | FullName -> "Phi2",
|
---|
539 | TeXClassName -> "\\phi^+",
|
---|
540 | TeXParticleName -> "\\phi^+",
|
---|
541 | TeXAntiParticleName -> "\\phi^-",
|
---|
542 | Goldstone -> W,
|
---|
543 | QuantumNumbers -> {Q -> 1}},
|
---|
544 |
|
---|
545 | (******************************* Spin 2 particles: graviton *****************************)
|
---|
546 |
|
---|
547 | T[1] == {
|
---|
548 | ClassName -> Gr,
|
---|
549 | SelfConjugate -> True,
|
---|
550 | ParticleName ->"y",
|
---|
551 | PDG -> 39,
|
---|
552 | Symmetric -> True,
|
---|
553 | Mass -> {MGr, 1000},
|
---|
554 | Width -> {WGr,10.6689}}
|
---|
555 |
|
---|
556 | }
|
---|
557 |
|
---|
558 | (*****************************************************************************************)
|
---|
559 | (* *)
|
---|
560 | (* The Lagrangian *)
|
---|
561 | (* *)
|
---|
562 | (*****************************************************************************************)
|
---|
563 |
|
---|
564 | (* Some shorthands (for nicer printing) *)
|
---|
565 |
|
---|
566 | Format[mu, TraditionalForm] = \[Mu];
|
---|
567 | Format[nu, TraditionalForm] = \[Nu];
|
---|
568 | Format[lam, TraditionalForm] = \[Lambda];
|
---|
569 | Format[rho, TraditionalForm] = \[Rho];
|
---|
570 |
|
---|
571 | psi = \[Psi];
|
---|
572 | psibar = \[Psi]bar;
|
---|
573 | phi = \[Phi];
|
---|
574 | phibar = \[Phi]bar;
|
---|
575 | phiK = \[Sigma];
|
---|
576 |
|
---|
577 | (******************** SM Lagrangian *************************************)
|
---|
578 |
|
---|
579 | (******************** Gauge F^2 Lagrangian terms*************************)
|
---|
580 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
581 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])*
|
---|
582 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) -
|
---|
583 |
|
---|
584 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 -
|
---|
585 |
|
---|
586 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])*
|
---|
587 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]);
|
---|
588 |
|
---|
589 |
|
---|
590 | (********************* Fermion Lagrangian terms*************************)
|
---|
591 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
592 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright},
|
---|
593 |
|
---|
594 | Lkin = I uqbar.Ga[mu].del[uq, mu] +
|
---|
595 | I dqbar.Ga[mu].del[dq, mu] +
|
---|
596 | I lbar.Ga[mu].del[l, mu] +
|
---|
597 | I vlbar.Ga[mu].del[vl, mu];
|
---|
598 |
|
---|
599 | LQCD = gs (uqbar.Ga[mu].T[a].uq +
|
---|
600 | dqbar.Ga[mu].T[a].dq)G[mu, a];
|
---|
601 |
|
---|
602 | LBright =
|
---|
603 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*)
|
---|
604 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*)
|
---|
605 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*)
|
---|
606 |
|
---|
607 | LBleft =
|
---|
608 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*)
|
---|
609 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*)
|
---|
610 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*)
|
---|
611 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*)
|
---|
612 |
|
---|
613 | LWleft = ee/sw/2(
|
---|
614 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
615 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
616 |
|
---|
617 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] +
|
---|
618 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+
|
---|
619 |
|
---|
620 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
621 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
622 |
|
---|
623 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] +
|
---|
624 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu]
|
---|
625 | );
|
---|
626 |
|
---|
627 | Lkin + LQCD + LBright + LBleft + LWleft];
|
---|
628 |
|
---|
629 | (******************** Higgs Lagrangian terms****************************)
|
---|
630 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
|
---|
631 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
|
---|
632 |
|
---|
633 |
|
---|
634 |
|
---|
635 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi},
|
---|
636 |
|
---|
637 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
638 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
639 |
|
---|
640 | (*Y_phi=1*)
|
---|
641 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
642 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
643 |
|
---|
644 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
|
---|
645 |
|
---|
646 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]];
|
---|
647 |
|
---|
648 |
|
---|
649 | (*************** Yukawa Lagrangian***********************)
|
---|
650 | LYuk := If[FeynmanGauge,
|
---|
651 |
|
---|
652 | Module[{s,r,n,m,i}, -
|
---|
653 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) -
|
---|
654 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] -
|
---|
655 |
|
---|
656 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*)
|
---|
657 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) -
|
---|
658 |
|
---|
659 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) -
|
---|
660 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2]
|
---|
661 | ],
|
---|
662 |
|
---|
663 | Module[{s,r,n,m,i}, -
|
---|
664 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] -
|
---|
665 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] -
|
---|
666 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2]
|
---|
667 | ]
|
---|
668 | ];
|
---|
669 |
|
---|
670 | LYukawa := LYuk + HC[LYuk];
|
---|
671 |
|
---|
672 |
|
---|
673 |
|
---|
674 | (**************Ghost terms**************************)
|
---|
675 | (* Now we need the ghost terms which are of the form: *)
|
---|
676 | (* - g * antighost * d_BRST G *)
|
---|
677 | (* where d_BRST G is BRST transform of the gauge fixing function. *)
|
---|
678 |
|
---|
679 | LGhost := If[FeynmanGauge,
|
---|
680 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB},
|
---|
681 |
|
---|
682 | (***********First the pure gauge piece.**********************)
|
---|
683 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
---|
684 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
---|
685 |
|
---|
686 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ];
|
---|
687 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu];
|
---|
688 |
|
---|
689 | dBRSTB[mu_] := cw/ee del[ghB, mu];
|
---|
690 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu];
|
---|
691 |
|
---|
692 | (***********Next the piece from the scalar field.************)
|
---|
693 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) +
|
---|
694 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) -
|
---|
695 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) -
|
---|
696 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) -
|
---|
697 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ;
|
---|
698 |
|
---|
699 |
|
---|
700 | (***********Now add the pieces together.********************)
|
---|
701 | LGhostG + LGhostWi + LGhostB + LGhostphi]
|
---|
702 |
|
---|
703 | , 0];
|
---|
704 |
|
---|
705 | (*********Total SM Lagrangian*******)
|
---|
706 | LSM := LGauge + LHiggs + LFermions + LYukawa + LGhost;
|
---|
707 |
|
---|
708 |
|
---|
709 | (********************** Gravitational Coupling ******************************************)
|
---|
710 |
|
---|
711 | (*****************************************************************************************)
|
---|
712 | (********************** Defining the cov derivatives *************************************)
|
---|
713 | (*****************************************************************************************)
|
---|
714 |
|
---|
715 | covdelU[field_, mu_] :=
|
---|
716 | Module[{j, a}, del[field, mu] - I gs G[mu, a] T[a].field
|
---|
717 | - I ee/cw 4/3 B[mu]/2 ProjP.field - I ee/cw/3 B[mu]/2 ProjM.field - I ee/sw/2 ProjM.field Wi[mu,3]];
|
---|
718 |
|
---|
719 | covdelD[field_, mu_] :=
|
---|
720 | Module[{j, a}, del[field, mu] - I gs G[mu, a] T[a].field
|
---|
721 | + I ee/cw 2/3 B[mu]/2 ProjP.field - I ee/cw/3 B[mu]/2 ProjM.field + I ee/sw/2 ProjM.field Wi[mu,3]];
|
---|
722 |
|
---|
723 | covdelE[field_, mu_] :=
|
---|
724 | Module[{j, a}, del[field, mu]
|
---|
725 | + I ee/cw 2 B[mu]/2 ProjP.field + I ee/cw B[mu]/2 ProjM.field + I ee/sw/2 ProjM.field Wi[mu,3]];
|
---|
726 |
|
---|
727 | (* Version 2.0 => fixed a sign problem and a factor 2 missing in the above derivative *)
|
---|
728 |
|
---|
729 | covdelN[field_, mu_] :=
|
---|
730 | Module[{j, a}, del[field, mu] + I ee/cw B[mu]/2 ProjM.field - I ee/sw/2 ProjM.field Wi[mu,3]];
|
---|
731 |
|
---|
732 | (*****************************************************************************************)
|
---|
733 | (******************** Defining the field strenght tensors:********************************)
|
---|
734 | (*****************************************************************************************)
|
---|
735 |
|
---|
736 | FG[mu_,nu_,a1_,a2_,a3_] := del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3];
|
---|
737 |
|
---|
738 | FA[mu_,nu_] := del[B[nu], mu] - del[B[mu], nu];
|
---|
739 |
|
---|
740 | FW[mu_,nu_,i1_,i2_,i3_] := del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + ee/sw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3];
|
---|
741 |
|
---|
742 |
|
---|
743 |
|
---|
744 | (*****************************************************************************************)
|
---|
745 | (******************* Defining the energy-momentum tensor T[mu,nu] ************************)
|
---|
746 | (*****************************************************************************************)
|
---|
747 |
|
---|
748 | (* Gauge bosons *)
|
---|
749 |
|
---|
750 | TG[mu_,nu_]:= ( -ME[mu,nu]. (-1/4 FA[rho, sig] FA[rho,sig] - 1/4 FW[rho,sig,i1,i2,i3] FW[rho,sig, i1,i4,i5] - 1/4 FG[rho,sig,a1,a2,a3] FG[rho,sig, a1,a4,a5])
|
---|
751 | -FA[mu,rho] FA[nu,rho] - FW[mu,rho,i1,i2,i3] FW[nu,rho, i1,i4,i5] - FG[mu,rho,a1,a2,a3] FG[nu,rho, a1,a2,a3]);
|
---|
752 |
|
---|
753 | (* Fermions *)
|
---|
754 |
|
---|
755 | TF[mu_,nu_] := (-ME[mu,nu] (I uqbar.(Ga[rho].covdelU[uq, rho]) -1/2 del[I uqbar.Ga[rho].uq, rho]
|
---|
756 | + I dqbar.(Ga[rho].covdelD[dq, rho]) -1/2 del[I dqbar.Ga[rho].dq, rho]
|
---|
757 | + I vlbar.(Ga[rho].covdelN[vl, rho]) -1/2 del[I vlbar.Ga[rho].vl, rho]
|
---|
758 | + I lbar.(Ga[rho].covdelE[l, rho] ) -1/2 del[I lbar.Ga[rho].l, rho]
|
---|
759 |
|
---|
760 | + ee/sw/Sqrt[2] (uqbar.Ga[rho].ProjM.CKM.dq W[rho] + dqbar.Ga[rho].ProjM.HC[CKM].uq Wbar[rho]
|
---|
761 | + vlbar.Ga[rho].ProjM.l W[rho] + lbar.Ga[rho].ProjM.vl Wbar[rho]) )
|
---|
762 | + ( I/2 uqbar.Ga[mu].covdelU[uq, nu] - 1/4 I del[uqbar.Ga[nu].uq, mu]
|
---|
763 | + I/2 uqbar.Ga[nu].covdelU[uq, mu] - 1/4 I del[uqbar.Ga[mu].uq, nu]
|
---|
764 | + I/2 dqbar.Ga[mu].covdelD[dq, nu] - 1/4 I del[dqbar.Ga[nu].dq, mu]
|
---|
765 | + I/2 dqbar.Ga[nu].covdelD[dq, mu] - 1/4 I del[dqbar.Ga[mu].dq, nu]
|
---|
766 | + I/2 vlbar.Ga[mu].covdelN[vl, nu] - 1/4 I del[vlbar.Ga[nu].vl, mu]
|
---|
767 | + I/2 vlbar.Ga[nu].covdelN[vl, mu] - 1/4 I del[vlbar.Ga[mu].vl, nu]
|
---|
768 | + I/2 lbar.Ga[mu].covdelE[l, nu] - 1/4 I del[lbar.Ga[nu].l, mu]
|
---|
769 | + I/2 lbar.Ga[nu].covdelE[l, mu] - 1/4 I del[lbar.Ga[mu].l, nu] )
|
---|
770 |
|
---|
771 | + ee/sw/2/Sqrt[2] (uqbar.Ga[mu].ProjM.CKM.dq W[nu] + dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[nu]
|
---|
772 | + uqbar.Ga[nu].ProjM.CKM.dq W[mu] + dqbar.Ga[nu].ProjM.HC[CKM].uq Wbar[mu]
|
---|
773 | + vlbar.Ga[mu].ProjM.l W[nu] + lbar.Ga[mu].ProjM.vl Wbar[nu]
|
---|
774 | + vlbar.Ga[nu].ProjM.l W[mu] + lbar.Ga[nu].ProjM.vl Wbar[mu]));
|
---|
775 |
|
---|
776 | (* Definitions for Higgs and Yukawa *)
|
---|
777 |
|
---|
778 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
|
---|
779 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
|
---|
780 |
|
---|
781 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
782 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
783 |
|
---|
784 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
785 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
786 |
|
---|
787 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
|
---|
788 |
|
---|
789 |
|
---|
790 | (* Higgs *)
|
---|
791 |
|
---|
792 | TH[mu_, nu_] := (-ME[mu,nu].(Dcbar[Phibar, rho]).Dc[Phi, rho] + ME[mu,nu] Vphi[Phi, Phibar] +
|
---|
793 | (Dcbar[Phibar, mu]).Dc[Phi, nu] + (Dcbar[Phibar, nu]).Dc[Phi, mu] );
|
---|
794 |
|
---|
795 | (* Yukawa *)
|
---|
796 |
|
---|
797 | TYuk:= Module[{s,r,n,m,i}, -
|
---|
798 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] -
|
---|
799 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] -
|
---|
800 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2]];
|
---|
801 |
|
---|
802 | TY[mu_,nu_] := -ME[mu,nu](TYuk + HC[TYuk]);
|
---|
803 |
|
---|
804 |
|
---|
805 | (* Gauge fixing term is here because Madgraph takes the Feynman gauge for massless gauge boson propagators and unitary gauge for massive gauge boson propagators. *)
|
---|
806 |
|
---|
807 | TGF[mu_, nu_]:= (-ME[mu,nu].(del[del[G[sig, a1], sig], rho].G[rho, a1] + del[del[A[sig], sig], rho].A[rho] +
|
---|
808 | 1/2 del[G[rho, a1], rho].del[G[rho, a1], rho] + 1/2 del[A[rho], rho].del[A[rho], rho])
|
---|
809 | + (del[del[G[rho, a1], rho], mu].G[nu, a1] + del[del[A[rho], rho], mu].A[nu] +
|
---|
810 | del[del[G[rho, a1], rho], nu].G[mu, a1] + del[del[A[rho], rho], nu].A[mu] ));
|
---|
811 |
|
---|
812 | (*****************************************************************************************)
|
---|
813 | (******************************* Writing the lagrangian *********************************)
|
---|
814 | (*****************************************************************************************)
|
---|
815 |
|
---|
816 | LagH := -kappa/2 (Gr[mu,nu] TH[mu,nu]);
|
---|
817 |
|
---|
818 | LagG := -kappa/2 (Gr[mu,nu] (TG[mu,nu] + TGF[mu,nu]));
|
---|
819 |
|
---|
820 | LagF := -kappa/2 (Gr[mu,nu] TF[mu,nu]);
|
---|
821 |
|
---|
822 | LagY := -kappa/2 (Gr[mu,nu] TY[mu,nu]);
|
---|
823 |
|
---|
824 | LagRS := LagH + LagG + LagF + LagY;
|
---|
825 |
|
---|
826 | LagTot := LagRS + LSM;
|
---|
827 |
|
---|
828 | (*****************************************************************************************)
|
---|
829 |
|
---|