RMSSM: mrssm.fr

File mrssm.fr, 55.5 KB (added by Benjamin Fuks, 7 years ago)

FeynRules model file

Line 
1(* ********************************************************* *)
2(* ***** ***** *)
3(* ***** FeynRules model file: the MRSSM ***** *)
4(* ***** Author: B. Fuks ***** *)
5(* ***** ***** *)
6(* ********************************************************* *)
7
8(* ************************** *)
9(* ***** Information ***** *)
10(* ************************** *)
11M$ModelName = "MRSSM";
12M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"fuks@cern.ch"}, Institutions->{"IPHC Strasbourg / University of Strasbourg"},
13 Date->”26.03.18”, Version->”1.2.7”,
14 References->{"B. Fuks, Int.J.Mod.Phys. A27 (2012) 1230007."},
15 URLs->{"http://feynrules.phys.ucl.ac.be/view/Main/MRSSM"} };
16
17(* v1.2.7: Small error in the single sgluon interaction fixed. *)
18(* v1.2.6: typos corrected. *)
19(* v1.2.5: public version. *)
20(* v1.2.2: small bug in the definition of the CKM matrix. Thanks Antonio Mariano. *)
21(* v1.2.1: renaming of SP to SPot (variable name clashing). Thanks to Kentarou Mawatari. *)
22
23(* ************************** *)
24(* ***** Flags ***** *)
25(* ************************** *)
26$CKMDiag = True; (* CKM = identity or not *)
27$MNSDiag = True; (* PMNS = identity or not *)
28
29
30(* ************************** *)
31(* ***** Gauge groups ***** *)
32(* ************************** *)
33M$GaugeGroups = {
34 U1Y == { Abelian->True, CouplingConstant->gp, Superfield->BSF, Charge->Y, GUTNormalization->3/5},
35 SU2L == { Abelian->False, CouplingConstant->gw, Superfield->WSF,
36 StructureConstant->ep, Representations->{Ta,SU2D}, Definitions->{Ta[a__]->PauliSigma[a]/2, ep->Eps}},
37 SU3C == { Abelian->False, CouplingConstant->gs, Superfield->GSF,
38 StructureConstant->f, Representations->{{T,Colour}, {Tb,Colourb}}, SymmetricTensor->dSUN}
39};
40
41(* ************************** *)
42(* ***** Indices ***** *)
43(* ************************** *)
44IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexStyle[SU2W,j]; IndexRange[Index[SU2D]] = Unfold[Range[2]]; IndexStyle[SU2D,k];
45IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a]; IndexRange[Index[Colour ]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
46IndexRange[Index[Colourb]] = NoUnfold[Range[3]]; IndexStyle[Colourb,m];
47IndexRange[Index[INO ]] = Range[4]; IndexStyle[INO, i];
48IndexRange[Index[GEN ]] = Range[3]; IndexStyle[GEN, f];
49IndexRange[Index[SCA ]] = Range[6]; IndexStyle[SCA, i];
50IndexRange[Index[SHig]] = Range[4]; IndexStyle[SHig,n];
51IndexRange[Index[PHig]] = Range[3]; IndexStyle[PHig,n];
52IndexRange[Index[RHig]] = Range[2]; IndexStyle[RHig,n];
53IndexRange[Index[sglu]] = Range[2]; IndexStyle[sglu,n];
54
55
56(* ************************** *)
57(* ***** Superfields ***** *)
58(* ************************** *)
59M$Superfields = {
60 VSF[1] == { ClassName->BSF, GaugeBoson->B, Gaugino->bow},
61 VSF[2] == { ClassName->WSF, GaugeBoson->Wi, Gaugino->wow, Indices->{Index[SU2W]}},
62 VSF[3] == { ClassName->GSF, GaugeBoson->G, Gaugino->gow, Indices->{Index[Gluon] }},
63 CSF[1] == { ClassName->HU, Chirality->Left, Weyl->huw, Scalar->hus, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
64 CSF[2] == { ClassName->HD, Chirality->Left, Weyl->hdw, Scalar->hds, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
65 CSF[3] == { ClassName->LL, Chirality->Left, Weyl->LLw, Scalar->LLs, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D], Index[GEN]}},
66 CSF[4] == { ClassName->ER, Chirality->Left, Weyl->ERw, Scalar->ERs, QuantumNumbers->{Y-> 1}, Indices->{Index[GEN]}},
67 CSF[5] == { ClassName->VR, Chirality->Left, Weyl->VRw, Scalar->VRs, Indices->{Index[GEN]}},
68 CSF[6] == { ClassName->QL, Chirality->Left, Weyl->QLw, Scalar->QLs, QuantumNumbers->{Y-> 1/6}, Indices->{Index[SU2D], Index[GEN], Index[Colour]}},
69 CSF[7] == { ClassName->UR, Chirality->Left, Weyl->URw, Scalar->URs, QuantumNumbers->{Y->-2/3}, Indices->{Index[GEN], Index[Colourb]} },
70 CSF[8] == { ClassName->DR, Chirality->Left, Weyl->DRw, Scalar->DRs, QuantumNumbers->{Y-> 1/3}, Indices->{Index[GEN], Index[Colourb]} },
71 CSF[9] == { ClassName->RD, Chirality->Left, Weyl->rdw, Scalar->rds, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
72 CSF[10]== { ClassName->RU, Chirality->Left, Weyl->ruw, Scalar->rus, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
73 CSF[11]== { ClassName->PhiB, Chirality->Left, Weyl->bpow, Scalar->sigB},
74 CSF[12]== { ClassName->PhiW, Chirality->Left, Weyl->wpow, Scalar->sigW, Indices->{Index[SU2W]}},
75 CSF[13]== { ClassName->PhiG, Chirality->Left, Weyl->gpow, Scalar->sigG, Indices->{Index[Gluon]}}
76};
77
78(* ************************** *)
79(* ***** Fields ***** *)
80(* ************************** *)
81M$ClassesDescription = {
82(* Gauge bosons: unphysical vector fields *)
83 V[11] == { ClassName->B, Unphysical->True, SelfConjugate->True,
84 Definitions->{B[mu_]->-sw Z[mu]+cw A[mu]} },
85 V[12] == { ClassName->Wi, Unphysical->True, SelfConjugate->True, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
86 Definitions-> {Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3]->cw Z[mu] + sw A[mu]} },
87
88(* Gauge bosons: physical vector fields *)
89 V[1] == { ClassName->A, SelfConjugate->True, Mass->0, Width->0, ParticleName->"a",
90 PDG->22, PropagatorLabel->"A", PropagatorType->Sine, PropagatorArrow->None},
91 V[2] == { ClassName->Z, SelfConjugate->True, Mass->MZ, Width->WZ, ParticleName->"Z",
92 PDG->23, PropagatorLabel->"Z", PropagatorType->Sine, PropagatorArrow->None},
93 V[3] == { ClassName->W, SelfConjugate->False, Mass->MW, Width->WW, ParticleName->"W+", AntiParticleName->"W-", QuantumNumbers->{Q->1},
94 PDG->24, PropagatorLabel->"W", PropagatorType->Sine, PropagatorArrow->Forward},
95 V[4] == { ClassName->G, SelfConjugate->True, Indices->{Index[Gluon]}, Mass->0, Width->0, ParticleName->"g",
96 PDG->21, PropagatorLabel->"G", PropagatorType->C, PropagatorArrow->None },
97
98(* Gauginos: unphysical Weyls *)
99 W[20] == { ClassName->bow, Unphysical->True, Chirality->Left, SelfConjugate->False,
100 Definitions->{bow[s_]:>Module[{i}, -I*Conjugate[NNL[i,1]]*new1[s,i]]}},
101 W[21] == { ClassName->wow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
102 Definitions->{
103 wow[s_,1]:>Module[{i},(Conjugate[UU[i,3]]*chmw[s,i]+Conjugate[VV[i,1]]*chpw[s,i])/(I*Sqrt[2])],
104 wow[s_,2]:>Module[{i},(Conjugate[UU[i,3]]*chmw[s,i]-Conjugate[VV[i,1]]*chpw[s,i])/(-Sqrt[2])],
105 wow[s_,3]:>Module[{i},-I*Conjugate[NNL[i,2]]*new1[s,i]]} },
106 W[22] == { ClassName->gow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]}, Definitions->{gow[inds__]->-I*goww[inds]} },
107
108(* Gaugino': unphysical Weyls *)
109 W[40] == { ClassName->bpow, Unphysical->True, Chirality->Left, SelfConjugate->False,
110 Definitions->{bpow[s_]:>Module[{i}, Conjugate[NNR[i,1]]*new2[s,i]]}},
111 W[41] == { ClassName->wpow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
112 Definitions->{
113 wpow[s_,1]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]+Conjugate[VV[i,3]]*chpw[s,i])/(Sqrt[2])],
114 wpow[s_,2]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]-Conjugate[VV[i,3]]*chpw[s,i])/(I Sqrt[2])],
115 wpow[s_,3]:>Module[{i},Conjugate[NNR[i,2]]*new2[s,i]]} },
116
117(* Higgsinos: unphysical Weyls *)
118 W[23] == { ClassName->huw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
119 Definitions->{
120 huw[s_,1]:> Module[{i}, Conjugate[VV[i,4]]*chpw[s,i]],
121 huw[s_,2]:> Module[{i}, Conjugate[NNR[i,4]]*new2[s,i]] } },
122 W[24] == { ClassName->hdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
123 Definitions->{
124 hdw[s_,1]:> Module[{i}, Conjugate[NNR[i,3]]*new2[s,i]],
125 hdw[s_,2]:> Module[{i}, Conjugate[UU[i,2]]*chmw[s,i]]} },
126
127(* R-Higgsinos: unphysical Weyls *)
128 W[30] == { ClassName->rdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
129 Definitions->{
130 rdw[s_,1]:> Module[{i}, Conjugate[VV[i,2]]*chpw[s,i]],
131 rdw[s_,2]:> Module[{i}, Conjugate[NNL[i,4]]*new1[s,i]] } },
132 W[31] == { ClassName->ruw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
133 Definitions->{
134 ruw[s_,1]:> Module[{i}, Conjugate[NNL[i,3]]*new1[s,i]],
135 ruw[s_,2]:> Module[{i}, Conjugate[UU[i,4]]*chmw[s,i]]} },
136
137(* Gauginos/Higgsinos: physical Weyls *)
138 W[0] == { ClassName->new1, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[INO]}, FlavorIndex->INO },
139 W[1] == { ClassName->new2, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[INO]}, FlavorIndex->INO },
140 W[2] == { ClassName->chpw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[INO]}, FlavorIndex->INO, QuantumNumbers->{Q-> 1} } ,
141 W[3] == { ClassName->chmw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[INO]}, FlavorIndex->INO, QuantumNumbers->{Q->-1} } ,
142 W[4] == { ClassName->goww, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
143 W[42]== { ClassName->gpow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
144
145(* Gauginos/Higgsinos: physical Diracs *)
146 F[1] == { ClassName->neu, SelfConjugate->False, Indices->{Index[INO]}, FlavorIndex->INO, WeylComponents->{new1,new2bar},
147 ParticleName->{"n1","n2","n3","n4"},
148 ClassMembers->{neu1,neu2,neu3,neu4}, Mass->{Mneu,Mneu1,Mneu2,Mneu3,Mneu4}, Width->{Wneu,Wneu1,Wneu2,Wneu3,Wneu4},
149 PDG->{1000022,1000023,1000025,1000035}, PropagatorLabel->{"neu","neu1","neu2","neu3","neu4"}, PropagatorType->Straight, PropagatorArrow->None },
150 F[2] == { ClassName->ch, SelfConjugate->False, Indices->{Index[INO]}, FlavorIndex->INO, WeylComponents->{chpw,chmwbar},
151 ParticleName->{"x1+","x2+","x3+","x4+"}, AntiParticleName->{"x1-","x2-","x3-","x4-"}, QuantumNumbers->{Q ->1},
152 ClassMembers->{ch1,ch2,ch3,ch4}, Mass->{Mch,Mch1,Mch2,Mch3,Mch4}, Width->{Wch,Wch1,Wch2,Wch3,Wch4},
153 PDG->{1000024,1000037,9000024,9000037}, PropagatorLabel->{"ch","ch1","ch2","ch3","ch4"}, PropagatorType->Straight, PropagatorArrow->Forward },
154 F[3] == { ClassName->go, SelfConjugate->False, Indices->{Index[Gluon]}, WeylComponents->{goww,gpowbar}, Mass->Mgo, Width->Wgo, ParticleName->"go",
155 PDG->1000021, PropagatorLabel->"go", PropagatorType->Straight, PropagatorArrow->None },
156
157(* Higgs: unphysical scalars *)
158 S[21] == { ClassName->hus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
159 Definitions->{
160 hus[1] :> Module[{mm}, Conjugate[UC[mm,1]]*H[mm]],
161 hus[2] :> Module[{mm}, (vu + Conjugate[US[mm,2]]*h0[mm] + I*Conjugate[UP[mm,2]]*A0[mm])/Sqrt[2]]}},
162 S[22] == { ClassName->hds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
163 Definitions->{
164 hds[1] :> Module[{mm}, (vd + Conjugate[US[mm,1]]*h0[mm] + I*Conjugate[UP[mm,1]]*A0[mm])/Sqrt[2]],
165 hds[2] :> Module[{mm}, UC[mm,2]*Hbar[mm]]} },
166
167(* Scalar adjoints: unphysical scalars *)
168 S[32] == { ClassName->sigB, Unphysical->True, SelfConjugate->False,
169 Definitions->{sigB:> Module[{mm},(vB + Conjugate[US[mm,3]]*h0[mm] + I*Conjugate[UP[mm,3]]*A0[mm])/Sqrt[2]]} },
170 S[33] == { ClassName->sigW, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
171 Definitions->{
172 sigW[1] :> Module[{mm},(UC[mm,3]*Hbar[mm]+Conjugate[UC[mm,4]]*H[mm])/(Sqrt[2])],
173 sigW[2] :> Module[{mm},(UC[mm,3]*Hbar[mm]-Conjugate[UC[mm,4]]*H[mm])/(I Sqrt[2])],
174 sigW[3] :> Module[{mm},(vW + Conjugate[US[mm,4]]*h0[mm] + I*Conjugate[UP[mm,4]]*A0[mm])/Sqrt[2]]} },
175 S[34] == { ClassName->sigG, Unphysical->True, SelfConjugate->False, Indices->{Index[Gluon]},
176 Definitions -> { sigG[aa_]:> Module[{mm}, (Conjugate[UG[mm,1]] sgl[mm,aa] + I*Conjugate[UG[mm,2]] sgl[mm,aa])/Sqrt[2] ] } },
177
178(* Higgs and scalar adjoints: physical fields and Goldstones *)
179 S[1] == { ClassName->h0, SelfConjugate->True, Indices->{Index[SHig]}, FlavorIndex->SHig,
180 ParticleName->{"h01","h02","h03","h04"}, ClassMembers->{h01,h02,h03,h04}, Mass->{MH0,MH01,MH02,MH03,MH04}, Width->{WH0,WH01,WH02,WH03,WH04},
181 PDG->{25,35,45,9000025}, PropagatorLabel->{"h0","h01","h02","h03","h04"}, PropagatorType->ScalarDash, PropagatorArrow->None},
182 S[2] == { ClassName->A0, SelfConjugate->True, Indices->{Index[PHig]}, FlavorIndex->PHig,
183 ParticleName->{"a01","a02","a03"}, ClassMembers->{a01,a02,a03}, Mass->{MA0,MA01,MA02,MA03}, Width->{WA0,WA01,WA02,WA03},
184 PDG->{36,46,9000036}, PropagatorLabel->{"a0","a01","a02","a03"}, PropagatorType->ScalarDash, PropagatorArrow->None},
185 S[3] == { ClassName->H, SelfConjugate->False, Indices->{Index[PHig]}, FlavorIndex->PHig, QuantumNumbers->{Q-> 1},
186 ParticleName->{"H1+","H2+","H3+"}, AntiParticleName->{"H1-","H2-","H3-"}, ClassMembers->{H1,H2,H3},
187 Mass->{MH,MH1,MH2,MH3}, Width->{WH,WH1,WH2,WH3},
188 PDG->{37,9000137,9000237}, PropagatorLabel->{"H","H1","H2","H3"}, PropagatorType->ScalarDash, PropagatorArrow->Forward},
189 S[6] == { ClassName->sgl, SelfConjugate->True, Indices->{Index[sglu],Index[Gluon]}, FlavorIndex->sglu,
190 ParticleName->{"sgl1","sgl2"}, ClassMembers->{sgl1,sgl2}, Mass->{Msgl,Msgl1,Msgl2}, Width->{Wsgl,Wsgl1,Wsgl2},
191 PDG->{9000001,9000002}, PropagatorLabel->{"sgl","sgl1","sgl2"}, PropagatorType->ScalarDash, PropagatorArrow->None},
192
193(* R-Higgs: unphysical scalars *)
194 S[40] == { ClassName->rds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
195 Definitions->{
196 rds[1] -> RH[1],
197 rds[2] :> Module[{mm}, Conjugate[URH[mm,1]]*RH0[mm] ]}},
198 S[41] == { ClassName->rus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
199 Definitions->{
200 rus[1] :> Module[{mm}, Conjugate[URH[mm,2]]*RH0[mm]],
201 rus[2] -> HC[RH[2]]} },
202
203(* R-Higgs: physical scalars *)
204 S[42] == {ClassName->RH, SelfConjugate->False, Indices->{Index[RHig]}, FlavorIndex->RHig, QuantumNumbers->{Q->1},
205 ParticleName->{"Rd+","Ru+"}, AntiParticleName->{"Rd-","Ru-"}, ClassMembers->{RHd,RHu},
206 Mass->{MRH,MRHd,MRHu}, Width->{WRH,WRHd,WRHu},
207 PDG->{9000051,9000052}, PropagatorLabel->{"RH","Rd","Ru"}, PropagatorType->ScalarDash, PropagatorArrow->Forward},
208 S[43] == {ClassName->RH0, SelfConjugate->False, Indices->{Index[RHig]}, FlavorIndex->RHig,
209 ParticleName->{"Rh01","Rh02"}, AntiParticleName->{"Rh01~","Rh02~"}, ClassMembers->{Rh01,Rh02},
210 Mass->{MRH0,MRH01,MRH02}, Width->{WRH0,WRH01,WRH02},
211 PDG->{9000003,9000004}, PropagatorLabel->{"Rh0","Rh01","Rh02"}, PropagatorType->ScalarDash, PropagatorArrow->Forward},
212
213(* Fermions: unphysical Weyls *)
214 W[25] == { ClassName->LLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN]}, FlavorIndex->SU2D,
215 QuantumNumbers->{Y->-1/2},
216 Definitions->{LLw[s_,1,ff_]:>Module[{ff2}, PMNS[ff,ff2]*vLw[s,ff2]], LLw[s_,2,ff_]->eLw[s,ff]}},
217 W[26] == { ClassName->QLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN],Index[Colour]},FlavorIndex->SU2D,
218 QuantumNumbers->{Y->1/6},
219 Definitions->{QLw[s_,1,ff_,cc_]->uLw[s,ff,cc], QLw[s_,2,ff_,cc_]:>Module[{ff2}, CKM[ff,ff2] dLw[s,ff2,cc]]}},
220
221(* Fermions: physical Weyls *)
222 W[5] == { ClassName->vLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
223 W[6] == { ClassName->eLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
224 W[7] == { ClassName->VRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
225 W[8] == { ClassName->ERw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1} },
226 W[9] == { ClassName->uLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
227 W[10]== { ClassName->dLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
228 W[11]== { ClassName->URw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3} },
229 W[12]== { ClassName->DRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3} },
230
231(* Fermions: physical Dirac *)
232 F[4] == { ClassName->vl, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{vLw,VRwbar},
233 ParticleName->{"ve","vm","vt"}, AntiParticleName->{"ve~","vm~","vt~"},
234 ClassMembers->{ve,vm,vt}, Mass->{Mvl,Mve,Mvm,Mvt}, Width->0,
235 PDG->{12,14,16}, PropagatorLabel->{"v","ve","vm","vt"}, PropagatorType->Straight, PropagatorArrow->Forward},
236 F[5] == { ClassName->l, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{eLw,ERwbar}, QuantumNumbers->{Q->-1},
237 ParticleName->{"e-","mu-","tau-"}, AntiParticleName->{"e+","mu+","tau+"},
238 ClassMembers->{e,m,ta}, Mass->{Ml,Me,Mm,Mta}, Width->0,
239 PDG->{11,13,15}, PropagatorLabel->{"l","e","mu","tau"}, PropagatorType->Straight, PropagatorArrow->Forward},
240 F[6] == { ClassName->uq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{uLw,URwbar}, QuantumNumbers->{Q-> 2/3},
241 ParticleName->{"u","c","t"}, AntiParticleName->{"u~","c~","t~"},
242 ClassMembers->{u,c,t}, Mass->{Muq,MU,MC,MT}, Width->{Wuq,0,0,WT},
243 PDG->{2,4,6}, PropagatorLabel->{"uq","u","c","t"}, PropagatorType->Straight, PropagatorArrow->Forward},
244 F[7] == { ClassName->dq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{dLw,DRwbar}, QuantumNumbers->{Q->-1/3},
245 ParticleName->{"d","s","b"}, AntiParticleName->{"d~","s~","b~"},
246 ClassMembers->{d,s,b}, Mass->{Mdq,MD,MS,MB}, Width->0,
247 PDG->{1,3,5}, PropagatorLabel->{"dq","d","s","b"}, PropagatorType->Straight, PropagatorArrow->Forward},
248
249(* Sfermion: unphysical scalars *)
250 S[23] == { ClassName->LLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
251 Definitions->{ LLs[1,ff_] :> Module[{ff2,ff3}, Conjugate[Rn[ff3,ff2]]*PMNS[ff,ff2]*sn[ff3]], LLs[2,ff_]:> Module[{ff2}, Conjugate[RlL[ff2,ff]]*sl[ff2]] } },
252 S[24] == { ClassName->ERs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1},
253 Definitions->{ ERs[ff_] :> Module[{ff2}, slbar[ff2]*RlR[ff2,ff]]} },
254 S[25] == { ClassName->VRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
255 Definitions->{ VRs[_] -> 0 } },
256 S[26] == { ClassName->QLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN],Index[Colour]}, FlavorIndex->SU2D, QuantumNumbers->{Y->1/6},
257 Definitions->{
258 QLs[1,ff_,cc_]:>Module[{ff2},Conjugate[RuL[ff2,ff]]*su[ff2,cc]],
259 QLs[2,ff_,cc_]:>Module[{ff2,ff3},Conjugate[RdL[ff2,ff3]]*CKM[ff,ff3]*sd[ff2,cc]]}},
260 S[27] == { ClassName->URs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3},
261 Definitions->{ URs[ff_,cc_]:>Module[{ff2}, subar[ff2,cc]*RuR[ff2,ff]]} },
262 S[28] == { ClassName->DRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3},
263 Definitions->{ DRs[ff_,cc_]:>Module[{ff2}, sdbar[ff2,cc]*RdR[ff2,ff]]} },
264
265(* Sfermion: physical scalars *)
266 S[7] == { ClassName->sn, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
267 ParticleName->{"sv1","sv2","sv3"}, AntiParticleName->{"sv1~","sv2~","sv3~"},
268 ClassMembers-> {sn1, sn2, sn3}, Mass->{Msn,Msn1,Msn2,Msn3}, Width->{Wsn,Wsn1,Wsn2,Wsn3},
269 PDG->{1000012,1000014,1000016}, PropagatorLabel->{"sn","sn1","sn2","sn3"}, PropagatorType->ScalarDash, PropagatorArrow->Forward },
270 S[8] == { ClassName->sl, SelfConjugate->False, Indices->{Index[SCA]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1},
271 ParticleName->{"sl1-","sl2-","sl3-","sl4-","sl5-","sl6-"}, AntiParticleName->{"sl1+","sl2+","sl3+","sl4+","sl5+","sl6+"},
272 ClassMembers->{sl1,sl2,sl3,sl4,sl5,sl6}, Mass->{Msl,Msl1,Msl2,Msl3,Msl4,Msl5,Msl6}, Width->{Wsl,Wsl1,Wsl2,Wsl3,Wsl4,Wsl5,Wsl6},
273 PDG->{1000011,1000013,1000015,2000011,2000013,2000015}, PropagatorLabel->{"sl","sl1","sl2","sl3","sl4","sl5","sl6"},
274 PropagatorType->ScalarDash, PropagatorArrow->Forward},
275 S[9] == { ClassName->su, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q-> 2/3},
276 ParticleName->{"su1","su2","su3","su4","su5","su6"}, AntiParticleName->{"su1~","su2~","su3~","su4~","su5~","su6~"},
277 ClassMembers->{su1,su2,su3,su4,su5,su6}, Mass->{Msu,Msu1,Msu2,Msu3,Msu4,Msu5,Msu6}, Width->{Wsu,Wsu1,Wsu2,Wsu3,Wsu4,Wsu5,Wsu6},
278 PDG->{1000002,1000004,1000006,2000002,2000004,2000006}, PropagatorLabel->{"su","su1","su2","su3","su4","su5","su6"},
279 PropagatorType->ScalarDash, PropagatorArrow->Forward},
280 S[10]== { ClassName->sd, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1/3},
281 ParticleName->{"sd1","sd2","sd3","sd4","sd5","sd6"}, AntiParticleName->{"sd1~","sd2~","sd3~","sd4~","sd5~","sd6~"},
282 ClassMembers->{sd1,sd2,sd3,sd4,sd5,sd6}, Mass->{Msd,Msd1,Msd2,Msd3,Msd4,Msd5,Msd6}, Width->{Wsd,Wsd1,Wsd2,Wsd3,Wsd4,Wsd5,Wsd6},
283 PDG->{1000001,1000003,1000005,2000001,2000003,2000005}, PropagatorLabel->{"sd","sd1","sd2","sd3","sd4","sd5","sd6"},
284 PropagatorType->ScalarDash, PropagatorArrow->Forward}
285};
286
287
288(* ************************** *)
289(* ***** Parameters ***** *)
290(* ************************** *)
291M$Parameters = {
292(* Mixing: external parameters *)
293 RMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->UPMNS,
294 Description->"Neutrino PMNS mixing matrix (real part)"},
295 IMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMUPMNS,
296 Description->"Neutrino PMNS mixing matrix (imaginary part)"},
297 RCKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->VCKM,
298 Description->"CKM mixing matrix (real part)"},
299 ICKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMVCKM,
300 Description->"CKM mixing matrix (imaginary part)"},
301 RNNL== { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->NLMIX,
302 Description->"Left-neutralino mixing matrix (real part)"},
303 INNL== { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->IMNLMIX,
304 Description->"Left-neutralino mixing matrix (imaginary part)"},
305 RNNR== { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->NRMIX,
306 Description->"Right-neutralino mixing matrix (real part)"},
307 INNR== { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->IMNRMIX,
308 Description->"Right-neutralino mixing matrix (imaginary part)"},
309 RUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->UMIX,
310 Description->"Chargino mixing matrix U (real part)"},
311 IUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->IMUMIX,
312 Description->"Chargino mixing matrix U (imaginary part)"},
313 RVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->VMIX,
314 Description->"Chargino mixing matrix V (real part)"},
315 IVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[INO],Index[INO]}, BlockName->IMVMIX,
316 Description->"Chargino mixing matrix V (imaginary part)"},
317 RRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->SNUMIX,
318 Description->"Sneutrino mixing matrix (real part)"},
319 IRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMSNUMIX,
320 Description->"Sneutrino mixing matrix (imaginary part)"},
321 RRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->SELMIX,
322 Description->"Slepton mixing matrix (real part)"},
323 IRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMSELMIX,
324 Description->"Slepton mixing matrix (imaginary part)"},
325 RRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->USQMIX,
326 Description->"Up squark mixing matrix (real part)"},
327 IRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMUSQMIX,
328 Description->"Up squark mixing matrix (imaginary part)"},
329 RRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->DSQMIX,
330 Description->"Down squark mixing matrix (real part)"},
331 IRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMDSQMIX,
332 Description->"Down squark mixing matrix (imaginary part)"},
333 RUS == { ParameterType->External, ComplexParameter->False, Indices->{Index[SHig],Index[SHig]}, BlockName->MRHMIX,
334 Description->"Scalar Higgses mixing matrix (real part)"},
335 IUS == { ParameterType->External, ComplexParameter->False, Indices->{Index[SHig],Index[SHig]}, BlockName->IMMRHMIX,
336 Description->"Scalar Higgses mixing matrix (imaginary part)"},
337 RUP == { ParameterType->External, ComplexParameter->False, Indices->{Index[PHig],Index[SHig]}, BlockName->MRAMIX,
338 Description->"Pseudoscalar Higgses mixing matrix (real part)"},
339 IUP == { ParameterType->External, ComplexParameter->False, Indices->{Index[PHig],Index[SHig]}, BlockName->IMMRAMIX,
340 Description->"Pseudoscalar Higgses mixing matrix (imaginary part)"},
341 RUC == { ParameterType->External, ComplexParameter->False, Indices->{Index[PHig],Index[SHig]}, BlockName->MRCHMIX,
342 Description->"Charged Higgses mixing matrix (real part)"},
343 IUC == { ParameterType->External, ComplexParameter->False, Indices->{Index[PHig],Index[SHig]}, BlockName->IMMRCHMIX,
344 Description->"Charged Higgses mixing matrix (imaginary part)"},
345 RUG == { ParameterType->External, ComplexParameter->False, Indices->{Index[sglu],Index[sglu]}, BlockName->MRSGMIX,
346 Description->"Sgluon mixing matrix (real part)"},
347 IUG == { ParameterType->External, ComplexParameter->False, Indices->{Index[sglu],Index[sglu]}, BlockName->IMMRSGMIX,
348 Description->"Sgluon mixing matrix (imaginary part)"},
349 RURH == { ParameterType->External, ComplexParameter->False, Indices->{Index[RHig],Index[RHig]}, BlockName->MRRMIX,
350 Description->"Neutral R-Higgses mixing matrix (real part)"},
351 IURH == { ParameterType->External, ComplexParameter->False, Indices->{Index[RHig],Index[RHig]}, BlockName->IMMRMIX,
352 Description->"Neutral R-Higgses mixing matrix (imaginary part)"},
353
354(* Mixing: internal parameters *)
355 cw == { TeX->Subscript[c,w], ParameterType->Internal, ComplexParameter->False, Value->MW/MZ, Description->"Cosine of the weak angle"},
356 sw == { TeX->Subscript[s,w], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[1-cw^2], Description->"Sine of the weak angle"},
357 PMNS== { TeX->Superscript[U,pmns], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
358 If[$MNSDiag, Definitions:>{PMNS[i_,j_]:>0 /;(i!=j), PMNS[i_,j_]:>1/;(i==j)}, Value->{PMNS[i_,j_]:>RMNS[i,j]+I*IMNS[i,j]}],
359 Description-> "Neutrino PMNS mixing matrix"},
360 CKM == { TeX->Superscript[V,ckm], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
361 If[$CKMDiag, Definitions:>{CKM[i_,j_]:>0 /;(i!=j), CKM[i_,j_]:>1/;(i==j)}, Value->{CKM[i_,j_]:>RCKM[i,j]+I*ICKM[i,j]}],
362 Description-> "CKM mixing matrix"},
363 NNL == { TeX->Subscript[N,L], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[INO],Index[INO]}, Unitary->True,
364 Value->{NNL[i_,j_]:>RNNL[i,j]+I*INNL[i,j]}, Description-> "Left-neutralino mixing matrix"},
365 NNR == { TeX->Subscript[N,R], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[INO],Index[INO]}, Unitary->True,
366 Value->{NNR[i_,j_]:>RNNR[i,j]+I*INNR[i,j]}, Description-> "Right-neutralino mixing matrix"},
367 UU == { TeX->U, ParameterType->Internal, ComplexParameter->True, Indices->{Index[INO],Index[INO]}, Unitary->True,
368 Value->{UU[i_,j_]:>RUU[i,j]+I*IUU[i,j]}, Description-> "Chargino mixing matrix U"},
369 VV == { TeX->V, ParameterType->Internal, ComplexParameter->True, Indices->{Index[INO],Index[INO]}, Unitary->True,
370 Value->{VV[i_,j_]:>RVV[i,j]+I*IVV[i,j]}, Description-> "Chargino mixing matrix V"},
371 Rl == { TeX->Superscript[R,l], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
372 Value->{Rl[i_,j_]:>RRl[i,j]+I*IRl[i,j]}, Description-> "Slepton mixing matrix"},
373 Rn == { TeX->Superscript[R,n], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
374 Value->{Rn[i_,j_]:>RRn[i,j]+I*IRn[i,j]}, Description-> "Sneutrino mixing matrix"},
375 Ru == { TeX->Superscript[R,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
376 Value->{Ru[i_,j_]:>RRu[i,j]+I*IRu[i,j]}, Description-> "Up squark mixing matrix"},
377 Rd == { TeX->Superscript[R,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
378 Value->{Rd[i_,j_]:>RRd[i,j]+I*IRd[i,j]}, Description-> "Down squark mixing matrix"},
379 US == { TeX->Superscript[U,S], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SHig],Index[SHig]}, Unitary->True,
380 Value->{US[i_,j_]:>RUS[i,j]+I*IUS[i,j]}, Description->"Scalar Higgs mixing matrix"},
381 UP == { TeX->Superscript[U,P], ParameterType->Internal, ComplexParameter->True, Indices->{Index[PHig],Index[SHig]},
382 Value->{UP[i_,j_]:>RUP[i,j]+I*IUP[i,j]}, Description->"Pseudoscalar Higgs mixing matrix"},
383 UC == { TeX->Superscript[U,C], ParameterType->Internal, ComplexParameter->True, Indices->{Index[PHig],Index[SHig]},
384 Value->{UC[i_,j_]:>RUC[i,j]+I*IUC[i,j]}, Description->"Charged Higgs mixing matrix"},
385 URH == { TeX->Superscript[U,R], ParameterType->Internal, ComplexParameter->True, Indices->{Index[RHig],Index[RHig]}, Unitary->True,
386 Value->{URH[i_,j_]:>RURH[i,j]+I*IURH[i,j]}, Description->"neutral R-Higgses mixing matrix"},
387 UG == { TeX->Superscript[U,G], ParameterType->Internal, ComplexParameter->True, Indices->{Index[sglu],Index[sglu]},
388 Value->{UG[i_,j_]:>RUG[i,j]+I*IUG[i,j]}, Description->"Sgluon mixing matrix"},
389
390(* Left and right parts of the sfermion mixing matrices *)
391 RlL == { TeX->Superscript[RL,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
392 Definitions->{RlL[i_,j_]:>Rl[i,j]/;NumericQ[j]}, Description-> "Slepton mixing matrix - first three columns"},
393 RlR == { TeX->Superscript[RR,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
394 Definitions->{RlR[i_,j_]:>Rl[i,j+3]/;NumericQ[j]},Description-> "Slepton mixing matrix - last three columns"},
395 RuL == { TeX->Superscript[RL,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
396 Definitions->{RuL[i_,j_]:>Ru[i,j]/;NumericQ[j]}, Description-> "Up squark mixing matrix - first three columns"},
397 RuR == { TeX->Superscript[RR,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
398 Definitions->{RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]},Description-> "Up squark mixing matrix - last three columns"},
399 RdL == { TeX->Superscript[RL,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
400 Definitions->{RdL[i_,j_]:>Rd[i,j]/;NumericQ[j]}, Description-> "Down squark mixing matrix - first three columns"},
401 RdR == { TeX->Superscript[RR,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
402 Definitions->{RdR[i_,j_]:>Rd[i,j+3]/;NumericQ[j]},Description-> "Down squark mixing matrix - last three columns"},
403
404(* Couplings constants: external parameters *)
405 aEWM1 == { TeX->Subsuperscript[\[Alpha],w,-1], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->1, InteractionOrder->{QED,-2},
406 Description->"Inverse of the EW coupling constant at the Z pole"},
407 aS == { TeX->Subscript[\[Alpha],s], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->3, InteractionOrder->{QCD, 2},
408 Description->"Strong coupling constant at the Z pole."},
409
410(* Couplings constants: internal parameters *)
411 ee == { TeX->e, ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi / aEWM1], InteractionOrder->{QED,1},
412 Description->"Electric coupling constant"},
413 gs == { TeX->Subscript[g,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi aS], InteractionOrder->{QCD,1}, ParameterName->G,
414 Description->"Strong coupling constant"},
415 gp == { TeX->g', ParameterType->Internal, ComplexParameter->False, Definitions-> {gp->ee/cw}, InteractionOrder->{QED,1},
416 Description->"Hypercharge coupling constant at the Z pole"},
417 gw == { TeX->Subscript[g,w], ParameterType->Internal, ComplexParameter->False, Definitions-> {gw->ee/sw}, InteractionOrder->{QED,1},
418 Description->"Weak coupling constant at the Z pole"},
419
420(* Higgs sector: external parameters *)
421 tb == { TeX->Subscript[t,b], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->1, Description->"Ratio of the two Higgs vevs"},
422 vB == { TeX->Subscript[v,B], ParameterType->External, ComplexParameter->False, InteractionOrder->{QED,-1}, BlockName->HMIX, OrderBlock->2,
423 Description->"B-scalar adjoint vacuum expectation value"},
424 vW == { TeX->Subscript[v,W], ParameterType->External, ComplexParameter->False, InteractionOrder->{QED,-1}, BlockName->HMIX, OrderBlock->3,
425 Description->"W3-scalar adjoint vacuum expectation value"},
426
427(* Higgs sector: internal parameters *)
428 beta == { TeX->\[Beta], ParameterType->Internal, ComplexParameter->False, Value->ArcTan[tb], Description->"Arctan of the ratio of the two Higgs vevs"},
429 vev == { TeX->v, ParameterType->Internal, ComplexParameter->False, Value->2*MZ*sw*cw/ee, InteractionOrder->{QED,-1},
430 Description->"Higgs vacuum expectation value"},
431 vd == { TeX->Subscript[v,d], ParameterType->Internal, ComplexParameter->False, Value->vev*Cos[beta], InteractionOrder->{QED,-1},
432 Description->"Down-type Higgs vacuum expectation value"},
433 vu == { TeX->Subscript[v,u], ParameterType->Internal, ComplexParameter->False, Value->vev*Sin[beta], InteractionOrder->{QED,-1},
434 Description->"Up-type Higgs vacuum expectation value"},
435
436(* Superpotential: external parameters *)
437 Ryu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YU,
438 Description->"Up-type quark Yukawa matrix (real part)"},
439 Iyu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYU,
440 Description->"Up-type quark Yukawa matrix (imaginary part)"},
441 Ryd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YD,
442 Description->"Down-type quark Yukawa matrix (real part)"},
443 Iyd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYD,
444 Description->"Down-type quark Yukawa matrix (imaginary part)"},
445 Rye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YE,
446 Description->"Charged lepton Yukawa matrix (real part)"},
447 Iye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYE,
448 Description->"Charged lepton Yukawa matrix (imaginary part)"},
449 RMUu == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->4, Description->"Uptype Higgs/R-Higgs mixing parameter (real part)"},
450 IMUu == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->4, Description->"Uptype Higgs/R-Higgs mixing parameter (imaginary part)"},
451 RMUd == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->5, Description->"Downtype Higgs/R-Higgs mixing parameter (real part)"},
452 IMUd == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->5, Description->"Downtype Higgs/R-Higgs mixing parameter (imaginary part)"},
453 RluB == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->6, Description->"Uptype Higgs/R-Higgs/chiral-B coupling (real part)"},
454 IluB == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->6, Description->"Uptype Higgs/R-Higgs/chiral-B coupling (imaginary part)"},
455 RluW == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->7, Description->"Uptype Higgs/R-Higgs/chiral-W coupling (real part)"},
456 IluW == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->7, Description->"Uptype Higgs/R-Higgs/chiral-W coupling (imaginary part)"},
457 RldB == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->8, Description->"Downtype Higgs/R-Higgs/chiral-B coupling (real part)"},
458 IldB == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->8, Description->"Downtype Higgs/R-Higgs/chiral-B coupling (imaginary part)"},
459 RldW == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->9, Description->"Downtype Higgs/R-Higgs/chiral-W coupling (real part)"},
460 IldW == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->9, Description->"Downtype Higgs/R-Higgs/chiral-W coupling (imaginary part)"},
461
462(* Superpotential: internal parameters *)
463 yu == { TeX->Superscript[y,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
464 Definitions:>{yu[i_,j_]:>0 /;(i!=j)}, Value->{yu[i_,j_]:>If[i==j,Ryu[i,j]+I*Iyu[i,j]]}, InteractionOrder->{QED,1}, Description-> "Up-type quark Yukawa matrix"},
465 yd == { TeX->Superscript[y,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
466 Definitions:>{yd[i_,j_]:>0 /;(i!=j)}, Value->{yd[i_,j_]:>If[i==j,Ryd[i,j]+I*Iyd[i,j]]}, InteractionOrder->{QED,1}, Description-> "Down-type quark Yukawa matrix"},
467 ye == { TeX->Superscript[y,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
468 Definitions:>{ye[i_,j_]:>0 /;(i!=j)}, Value->{ye[i_,j_]:>If[i==j,Rye[i,j]+I*Iye[i,j]]}, InteractionOrder->{QED,1}, Description-> "Charged lepton Yukawa matrix"},
469 MUu == { TeX->Subscript[\[Mu],u], ParameterType->Internal, ComplexParameter->True, Value->RMUu+I*IMUu, Description->"Uptype Higgs/R-Higgs mixing parameter"},
470 MUd == { TeX->Subscript[\[Mu],d], ParameterType->Internal, ComplexParameter->True, Value->RMUd+I*IMUd, Description->"Downtype Higgs/R-Higgs mixing parameter"},
471 luB == { TeX->Subsuperscript[\[Lambda],u,B], ParameterType->Internal, ComplexParameter->True, Value->RluB+I*IluB, Description->"Uptype Higgs/R-Higgs/chiral-B coupling"},
472 ldB == { TeX->Subsuperscript[\[Lambda],d,B], ParameterType->Internal, ComplexParameter->True, Value->RldB+I*IldB, Description->"Downtype Higgs/R-Higgs/chiral-B coupling"},
473 luW == { TeX->Subsuperscript[\[Lambda],u,W], ParameterType->Internal, ComplexParameter->True, Value->RluW+I*IluW, Description->"Uptype Higgs/R-Higgs/chiral-W coupling"},
474 ldW == { TeX->Subsuperscript[\[Lambda],d,W], ParameterType->Internal, ComplexParameter->True, Value->RldW+I*IldW, Description->"Downtype Higgs/R-Higgs/chiral-W coupling"},
475
476(* Soft terms: external parameters *)
477 RMx1 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->1, Description->"Bino mass (real part)"},
478 RMx2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->2, Description->"Wino mass (real part)"},
479 RMx3 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->3, Description->"Gluino mass (real part)"},
480 IMx1 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->1, Description->"Bino mass (imaginary part)"},
481 IMx2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->2, Description->"Wino mass (imaginary part)"},
482 IMx3 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->3, Description->"Gluino mass (imaginary part)"},
483 Rbb == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->8, Description->"Higgs bilinear soft term (real part)"},
484 Ibb == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->8, Description->"Higgs bilinear soft term (imaginary part)"},
485 m1G2 == { TeX->Subsuperscript[m,"1G",2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->9,
486 Description->"SU(3) scalar adjoint squared mass"},
487 m1W2 == { TeX->Subsuperscript[m,"1W",2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->10,
488 Description->"SU(2) scalar adjoint squared mass"},
489 m1B2 == { TeX->Subsuperscript[m,"1B",2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->11,
490 Description->"U(1) scalar adjoint squared mass"},
491 Rm2G2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->12, Description->"SU(3) scalar adjoint squared mass (real part)"},
492 Rm2W2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->13, Description->"SU(2) scalar adjoint squared mass (real part)"},
493 Rm2B2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->14, Description->"U(1) scalar adjoint squared mass (real part)"},
494 Im2G2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->12, Description->"SU(3) scalar adjoint squared mass (imaginary part)"},
495 Im2W2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->13, Description->"SU(2) scalar adjoint squared mass (imaginary part)"},
496 Im2B2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->14, Description->"U(1) scalar adjoint squared mass (imaginary part)"},
497 mHu2 == { TeX->Subsuperscript[m,Subscript[H,u],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->4,
498 Description->"Up-type Higgs squared mass"},
499 mHd2 == { TeX->Subsuperscript[m,Subscript[H,d],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->5,
500 Description->"Down-type Higgs squared mass"},
501 mRu2 == { TeX->Subsuperscript[m,Subscript[R,u],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->6,
502 Description->"Up-type R-Higgs squared mass"},
503 mRd2 == { TeX->Subsuperscript[m,Subscript[R,d],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->7,
504 Description->"Down-type R-Higgs squared mass"},
505 RmL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSL2,
506 Description->"Left-handed slepton squared mass matrix (real part)"},
507 ImL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSL2,
508 Description->"Left-handed slepton squared mass matrix (imaginary part)"},
509 RmE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSE2,
510 Description->"Right-handed slepton squared mass matrix (real part)"},
511 ImE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSE2,
512 Description->"Right-handed slepton squared mass matrix (imaginary part)"},
513 RmQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSQ2,
514 Description->"Left-handed squark squared mass matrix (real part)"},
515 ImQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSQ2,
516 Description->"Left-handed squark squared mass matrix (imaginary part)"},
517 RmU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSU2,
518 Description->"Right-handed up-type squark squared mass matrix (real part)"},
519 ImU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSU2,
520 Description->"Right-handed up-type squark squared mass matrix (imaginary part)"},
521 RmD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSD2,
522 Description->"Right-handed down-type squark squared mass matrix (real part)"},
523 ImD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSD2,
524 Description->"Right-handed down-type squark squared mass matrix (imaginary part)"},
525
526(* Soft terms: internal parameters *)
527 Mx1 == { TeX->Subscript[M,1], ParameterType->Internal, ComplexParameter->True, Value->RMx1+I*IMx1, Description->"Bino mass"},
528 Mx2 == { TeX->Subscript[M,2], ParameterType->Internal, ComplexParameter->True, Value->RMx2+I*IMx2, Description->"Wino mass"},
529 Mx3 == { TeX->Subscript[M,3], ParameterType->Internal, ComplexParameter->True, Value->RMx3+I*IMx3, Description->"Gluino mass"},
530 bb == { TeX->b, ParameterType->Internal, ComplexParameter->True, Value->Rbb+I*Ibb, Description->"Higgs bilinear soft term"},
531 m2G2== { TeX->Subsuperscript[m,"2G",2], ParameterType->Internal, ComplexParameter->True, Value->Rm2G2+I*Im2G2, Description->"SU(3) scalar adjoint squared mass"},
532 m2W2== { TeX->Subsuperscript[m,"2W",2], ParameterType->Internal, ComplexParameter->True, Value->Rm2W2+I*Im2W2, Description->"SU(2) scalar adjoint squared mass"},
533 m2B2== { TeX->Subsuperscript[m,"2B",2], ParameterType->Internal, ComplexParameter->True, Value->Rm2B2+I*Im2B2, Description->"U(1) scalar adjoint squared mass"},
534 mL2 == { TeX->Subsuperscript[m,OverTilde[L],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
535 Value->{mL2[i_,j_]:>RmL2[i,j]+I*ImL2[i,j]}, Description-> "Left-handed slepton squared mass matrix"},
536 mE2 == { TeX->Subsuperscript[m,OverTilde[E],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
537 Value->{mE2[i_,j_]:>RmE2[i,j]+I*ImE2[i,j]}, Description-> "Right-handed slepton squared mass matrix"},
538 mQ2 == { TeX->Subsuperscript[m,OverTilde[Q],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
539 Value->{mQ2[i_,j_]:>RmQ2[i,j]+I*ImQ2[i,j]}, Description-> "Left-handed squark squared mass matrix"},
540 mU2 == { TeX->Subsuperscript[m,OverTilde[U],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
541 Value->{mU2[i_,j_]:>RmU2[i,j]+I*ImU2[i,j]}, Description-> "Right-handed up-type squark squared mass matrix"},
542 mD2 == { TeX->Subsuperscript[m,OverTilde[D],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
543 Value->{mD2[i_,j_]:>RmD2[i,j]+I*ImD2[i,j]}, Description-> "Right-handed down-type squark squared mass matrix"},
544 lDL == {
545 TeX -> Subsuperscript[C,dds,L],
546 ParameterType -> External,
547 ComplexParameter -> False,
548 Indices -> {Index[GEN],Index[GEN]},
549 BlockName -> CLDDS,
550 Definitions -> {lDL[i_,j_]:>0},
551 InteractionOrder -> {SG,1},
552 Description -> "Sgluon coupling to left-handed down-type quarks"},
553 lDR == {
554 TeX -> Subsuperscript[C,dds,R],
555 ParameterType -> External,
556 ComplexParameter -> False,
557 Indices -> {Index[GEN],Index[GEN]},
558 BlockName -> CRDDS,
559 Definitions -> {lDR[i_,j_]:>0},
560 InteractionOrder -> {SG,1},
561 Description -> "Sgluon coupling to right-handed down-type quarks"},
562 lUL == {
563 TeX -> Subsuperscript[C,uus,L],
564 ParameterType -> External,
565 ComplexParameter -> False,
566 Indices -> {Index[GEN],Index[GEN]},
567 BlockName -> CLUUS,
568 Definitions :> {lUL[i_,j_]:>0 /; ((i!=3) && (j!=3)) },
569 Value -> {lUL[3,1]-> 0.3, lUL[3,2]-> 0.3, lUL[3,3]->0.3, lUL[1,3]-> 0.3, lUL[2,3]-> 0.3},
570 InteractionOrder -> {SG,1},
571 Description -> "Sgluon coupling to left-handed up-type quarks"},
572 lUR == {
573 TeX -> Subsuperscript[C,uus,R],
574 ParameterType -> External,
575 ComplexParameter -> False,
576 Indices -> {Index[GEN],Index[GEN]},
577 BlockName -> CRUUS,
578 Definitions :> {lUR[i_,j_]:>0 /; ((i!=3) && (j!=3)) },
579 Value -> {lUR[3,1]-> 0.3, lUR[3,2]-> 0.3, lUR[3,3]->0.3, lUR[1,3]-> 0.3, lUR[2,3]-> 0.3},
580 InteractionOrder -> {SG,1},
581 Description -> "Sgluon coupling to right-handed down-type quarks"},
582 lamG == { TeX->Subscript[\[Lambda],G], ParameterType->External, ComplexParameter->False, BlockName->CGSS, OrderBlock->1, Value->0.1, InteractionOrder->{SG,1},
583 Description->"Sgluon coupling to left-handed quarks"}
584
585};
586
587(* ************************** *)
588(* **** Diracification **** *)
589(* ************************** *)
590ToDirac[exp_]:= Module[{tmp=Expand[exp],cnt=0,prg1=0,prg2=0,prgo1=0,prgo2=0,tot},
591 Colourb=Colour;
592
593 tmp = If[Head[tmp]===Plus,List@@tmp,List[tmp]]/.Tb[a_,i_,j_]->-T[a,j,i];
594 tmp = OptimizeIndex[#] &/@ tmp;
595 tot=Length[tmp];
596 Print["Flavor expansion: ", ProgressIndicator[Dynamic[prg1]]];
597 tmp = Module[{}, cnt++; prg1=cnt/tot;
598 Expand[(ExpandIndices[#, FlavorExpand->{SU2W, SU2D}] /. {
599 gp->ee/cw,
600 gw->ee/sw,
601 cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2),
602 cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw,
603 Power[PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)],2]->PauliSigma[1,i,j]^2 + PauliSigma[3,i,j]^2 + PauliSigma[2,i,j]^2,
604 PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)] PauliSigma[a_,k_?(NumericQ[#] &),l_?(NumericQ[#] &)]->
605 PauliSigma[1,i,j] PauliSigma[1,k,l] + PauliSigma[2,i,j] PauliSigma[2,k,l] + PauliSigma[3,i,j] PauliSigma[3,k,l]})]] &/@ tmp;
606 tmp = Plus@@tmp//.{cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2), cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw};
607 cnt=0; tot=Length[tmp];
608
609 Print["Opt 1: ",ProgressIndicator[Dynamic[prgo1]]];
610 tmp = Module[{}, cnt++; prgo1=cnt/tot;OptimizeIndex[#]] &/@ (List@@tmp);
611
612 Print["Weyl2Dirac: ",ProgressIndicator[Dynamic[prg2]]];cnt=0;
613 tmp = Module[{}, cnt++; prg2=cnt/tot; WeylToDirac[#]] &/@ tmp;
614
615 Print["Opt2: ",ProgressIndicator[Dynamic[prgo2]]];cnt=0;
616 tmp = Module[{}, cnt++; prgo2=cnt/tot;OptimizeIndex[#]] &/@ tmp;
617
618 Clear[Colourb];
619Expand[Plus@@tmp]];
620
621(* ************************** *)
622(* ***** Lagrangian ***** *)
623(* ************************** *)
624(* LVector *)
625LVector := Plus@@ (Module[{tmp}, tmp = SF2Components[#]; Expand[tmp[[2, 5]] + tmp[[2, 6]]]] &/@ (List @@ VSFKineticTerms[]));
626
627(* LChiral *)
628LChiral := Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ CSFKineticTerms[]) );
629
630(* Superpotential *)
631SPot:= Module[{ff1,ff2,ff3,cc1,aa},
632 yu[ff1,ff2] UR[ff1,cc1] (QL[1,ff2,cc1] HU[2] - QL[2,ff2,cc1] HU[1]) -
633 yd[ff1,ff3] Conjugate[CKM[ff2,ff3]] DR[ff1,cc1] (QL[1,ff2,cc1] HD[2] - QL[2,ff2,cc1] HD[1]) -
634 ye[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) -
635 luB/2 (HU[1] PhiB RU[2] - HU[2] PhiB RU[1]) +
636 ldB/2 (HD[1] PhiB RD[2] - HD[2] PhiB RD[1]) +
637 luW (HU[1] PhiW[aa] Ta[aa,2,ff1] RU[ff1] - HU[2] PhiW[aa] Ta[aa,1,ff1] RU[ff1]) +
638 ldW (HD[1] PhiW[aa] Ta[aa,2,ff1] RD[ff1] - HD[2] PhiW[aa] Ta[aa,1,ff1] RD[ff1]) +
639 MUu (HU[1] RU[2] - HU[2] RU[1]) +
640 MUd (HD[1] RD[2] - HD[2] RD[1]) ];
641LSuperW:= ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[SPot+HC[SPot]])) )/.{
642 Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c],
643 Conjugate[PMNS[a_, b_]]*PMNS[a_, c_]->IndexDelta[b, c]};
644
645(* Soft SUSY-breaking Lagrangian *)
646LSoft := Module[{tmp, Mino, MSca, Tri, Bil},
647 (* Gaugino mass terms *)
648 Mino=Module[{al,be,gl},
649 Sqrt[2] Mx1 Ueps[be,al] nc[theta[al], SuperfieldStrengthL[BSF, be ], PhiB ] +
650 Mx2 Ueps[be,al] nc[theta[al], SuperfieldStrengthL[WSF, be, gl], PhiW[gl]]/(Sqrt[2] gw) +
651 Mx3 Ueps[be,al] nc[theta[al], SuperfieldStrengthL[GSF, be, gl], PhiG[gl]]/(Sqrt[2] gs)];
652 Mino = ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[Mino+HC[Mino]])) );
653 (* Bilinear couplings *)
654 Bil:=bb*(hus[1] hds[2] - hus[2] hds[1]) - m2G2/2 sigG[ii] sigG[ii] - m2W2/2 sigW[ii] sigW[ii]- m2B2/2 sigB sigB ;
655 (* Scalar mass terms *)
656 MSca:=Module[{ii,ff1,ff2,ff3,ff4,cc1},
657 - mHu2*HC[hus[ii]]*hus[ii] - mHd2*HC[hds[ii]]*hds[ii] -
658 mRu2*HC[rus[ii]]*rus[ii] - mRd2*HC[rds[ii]]*rds[ii] -
659 mL2[ff1,ff2]*HC[LLs[ii,ff1]]*LLs[ii,ff2] - mE2[ff1,ff2]*HC[ERs[ff1]]*ERs[ff2] -
660 CKM[ff1,ff2]*mQ2[ff2,ff3]*Conjugate[CKM[ff4,ff3]]*HC[QLs[ii,ff1,cc1]]*QLs[ii,ff4,cc1] -
661 mU2[ff1,ff2]*HC[URs[ff1,cc1]]*URs[ff2,cc1] - mD2[ff1,ff2]*HC[DRs[ff1,cc1]]*DRs[ff2,cc1] -
662 m1G2 sigGbar[ii] sigG[ii] - m1W2 sigWbar[ii] sigW[ii] - m1B2 sigBbar sigB];
663 (* Everything together *)
664 Mino + MSca + Bil + HC[Bil]];
665
666(* Effective Lagrangians *)
667Lsglu := Module[{Lgss, Lqqs, Lggs},
668 Lqqs:= sgl[1,a] T[a,m,n] (lDL[ff,gg] ProjM[sp,sp2] + lDR[ff,gg] ProjP[sp,sp2])*dqbar[sp,ff,m].dq[sp2,gg,n] +
669 sgl[1,a] T[a,m,n] (lUL[ff,gg] ProjM[sp,sp2] + lUR[ff,gg] ProjP[sp,sp2])*uqbar[sp,ff,m].uq[sp2,gg,n];
670 Lggs:= lamG dSUN[a,b,c] sgl[1,a] FS[G,mu,nu,b] FS[G,mu,nu,c];
671 Lqqs + Lggs + HC[Expand[Lqqs + Lggs]]];
672
673(* Collecting all the pieces together *)
674Lag := ToDirac[SolveEqMotionF[SolveEqMotionD[LVector+LChiral+LSuperW+LSoft]]] + Lsglu;
675
676
677