NMSSM: nmssm.fr

File nmssm.fr, 49.3 KB (added by Benjamin Fuks, 11 years ago)

NMSSM FR model file

Line 
1(* ********************************************************* *)
2(* ***** ***** *)
3(* ***** FeynRules model file: the NMSSM ***** *)
4(* ***** Author: B. Fuks ***** *)
5(* ***** ***** *)
6(* ********************************************************* *)
7
8(* ************************** *)
9(* ***** Information ***** *)
10(* ************************** *)
11M$ModelName = "NMSSM";
12M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"fuks@cern.ch"}, Institutions->{"IPHC Strasbourg / University of Strasbourg"},
13 Date->"31.07.12", Version->"1.0.9",
14 References->{""},
15 URLs->{"http://feynrules.phys.ucl.ac.be/view/Main/NMSSM"} };
16
17(* v1.0.1: small bug in the ghost sector corrected *)
18(* v1.0.2: change of notation for the physical fields -> matching FeynArts standards *)
19(* v1.0.3: bilinear soft higgs mixing parameter not implemented *)
20(* v1.0.4: renaming of SP to SPot (variable name clashing). Thanks to Kentarou Mawatari. *)
21(* v1.0.5: small bug in the definition of the CKM matrix. Thanks to Antonio Mariano. *)
22(* v1.0.6: Inversion of two SLHA counters for the Higgs soft masses. Thanks to Flip Tanedo. *)
23(* v1.0.7: Symbols for the pseudoscalar Higgs masses in conflict with Feynarts conventions. *)
24(* --> changed to MxA0. Rewriting of the treatment of the golstone entries of the *)
25(* pseudoscalar Higgs mixing matrix. Thanks to Markos Maniatis. *)
26(* v1.0.8: Interaction orders. *)
27(* v1.0.9: Adding the Feynman gauge flag. *)
28(* v1.0.10: The coupling order of the singlet vev was missing (thanks to Peter Richardson). *)
29
30
31(* ************************** *)
32(* ***** Flags ***** *)
33(* ************************** *)
34$CKMDiag = True; (* CKM = identity or not *)
35$MNSDiag = True; (* PMNS = identity or not *)
36FeynmanGauge = True;
37
38
39(* ************************** *)
40(* ***** Gauge groups ***** *)
41(* ************************** *)
42M$GaugeGroups = {
43 U1Y == { Abelian->True, CouplingConstant->gp, Superfield->BSF, Charge->Y, GUTNormalization->3/5},
44 SU2L == { Abelian->False, CouplingConstant->gw, Superfield->WSF,
45 StructureConstant->ep, Representations->{Ta,SU2D}, Definitions->{Ta[a__]->PauliSigma[a]/2, ep->Eps}},
46 SU3C == { Abelian->False, CouplingConstant->gs, Superfield->GSF,
47 StructureConstant->f, Representations->{{T,Colour}, {Tb,Colourb}}, DTerm->dSUN}
48};
49
50
51(* ************************** *)
52(* *** Interaction orders *** *)
53(* ************************** *)
54M$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2} };
55
56
57(* ************************** *)
58(* ***** Indices ***** *)
59(* ************************** *)
60IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexStyle[SU2W,j]; IndexRange[Index[SU2D]] = Unfold[Range[2]]; IndexStyle[SU2D,k];
61IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a]; IndexRange[Index[Colour ]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
62IndexRange[Index[Colourb]] = NoUnfold[Range[3]]; IndexStyle[Colourb,m];
63IndexRange[Index[NEU ]] = Range[5]; IndexStyle[NEU, i];
64IndexRange[Index[CHA ]] = Range[2]; IndexStyle[CHA, i];
65IndexRange[Index[GEN ]] = Range[3]; IndexStyle[GEN, f];
66IndexRange[Index[SCA ]] = Range[6]; IndexStyle[SCA, i];
67IndexRange[Index[SHig]] = Range[3]; IndexStyle[SHig,n];
68IndexRange[Index[PHig]] = Range[2]; IndexStyle[PHig,n];
69
70
71
72(* ************************** *)
73(* ***** Superfields ***** *)
74(* ************************** *)
75M$Superfields = {
76 VSF[1] == { ClassName->BSF, GaugeBoson->B, Gaugino->bow},
77 VSF[2] == { ClassName->WSF, GaugeBoson->Wi, Gaugino->wow, Indices->{Index[SU2W]}},
78 VSF[3] == { ClassName->GSF, GaugeBoson->G, Gaugino->gow, Indices->{Index[Gluon] }},
79 CSF[1] == { ClassName->HU, Chirality->Left, Weyl->huw, Scalar->hus, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
80 CSF[2] == { ClassName->HD, Chirality->Left, Weyl->hdw, Scalar->hds, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
81 CSF[3] == { ClassName->LL, Chirality->Left, Weyl->LLw, Scalar->LLs, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D], Index[GEN]}},
82 CSF[4] == { ClassName->ER, Chirality->Left, Weyl->ERw, Scalar->ERs, QuantumNumbers->{Y-> 1}, Indices->{Index[GEN]}},
83 CSF[5] == { ClassName->VR, Chirality->Left, Weyl->VRw, Scalar->VRs, Indices->{Index[GEN]}},
84 CSF[6] == { ClassName->QL, Chirality->Left, Weyl->QLw, Scalar->QLs, QuantumNumbers->{Y-> 1/6}, Indices->{Index[SU2D], Index[GEN], Index[Colour]}},
85 CSF[7] == { ClassName->UR, Chirality->Left, Weyl->URw, Scalar->URs, QuantumNumbers->{Y->-2/3}, Indices->{Index[GEN], Index[Colourb]} },
86 CSF[8] == { ClassName->DR, Chirality->Left, Weyl->DRw, Scalar->DRs, QuantumNumbers->{Y-> 1/3}, Indices->{Index[GEN], Index[Colourb]} },
87 CSF[9] == { ClassName->SPF,Chirality->Left, Weyl->SPw, Scalar->SPs}
88};
89
90(* ************************** *)
91(* ***** Fields ***** *)
92(* ************************** *)
93M$ClassesDescription = {
94(* Gauge bosons: unphysical vector fields *)
95 V[11] == { ClassName->B, Unphysical->True, SelfConjugate->True,
96 Definitions->{B[mu_]->-sw Z[mu]+cw A[mu]} },
97 V[12] == { ClassName->Wi, Unphysical->True, SelfConjugate->True, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
98 Definitions-> {Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3]->cw Z[mu] + sw A[mu]} },
99
100(* Gauge bosons: physical vector fields *)
101 V[1] == { ClassName->A, SelfConjugate->True, Mass->0, Width->0, ParticleName->"a",
102 PDG->22, PropagatorLabel->"A", PropagatorType->Sine, PropagatorArrow->None},
103 V[2] == { ClassName->Z, SelfConjugate->True, Mass->MZ, Width->WZ, ParticleName->"Z",
104 PDG->23, PropagatorLabel->"Z", PropagatorType->Sine, PropagatorArrow->None},
105 V[3] == { ClassName->W, SelfConjugate->False, Mass->MW, Width->WW, ParticleName->"W+", AntiParticleName->"W-", QuantumNumbers->{Q->1},
106 PDG->24, PropagatorLabel->"W", PropagatorType->Sine, PropagatorArrow->Forward},
107 V[5] == { ClassName->G, SelfConjugate->True, Indices->{Index[Gluon]}, Mass->0, Width->0, ParticleName->"g",
108 PDG->21, PropagatorLabel->"G", PropagatorType->C, PropagatorArrow->None },
109
110(* Gauginos: unphysical Weyls *)
111 W[20] == { ClassName->bow, Unphysical->True, Chirality->Left, SelfConjugate->False,
112 Definitions->{bow[s_]:>Module[{i}, -I*Conjugate[NN[i,1]]*neuw[s,i]]}},
113 W[21] == { ClassName->wow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
114 Definitions->{
115 wow[s_,1]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]+Conjugate[VV[i,1]]*chpw[s,i])/(I*Sqrt[2])],
116 wow[s_,2]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]-Conjugate[VV[i,1]]*chpw[s,i])/(-Sqrt[2])],
117 wow[s_,3]:>Module[{i},-I*Conjugate[NN[i,2]]*neuw[s,i]]} },
118 W[22] == { ClassName->gow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]}, Definitions->{gow[inds__]->-I*goww[inds]} },
119
120(* Higgsinos: unphysical Weyls *)
121 W[23] == { ClassName->huw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
122 Definitions->{
123 huw[s_,1]:> Module[{i}, Conjugate[VV[i,2]]*chpw[s,i]],
124 huw[s_,2]:> Module[{i}, Conjugate[NN[i,4]]*neuw[s,i]] } },
125 W[24] == { ClassName->hdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
126 Definitions->{
127 hdw[s_,1]:> Module[{i}, Conjugate[NN[i,3]]*neuw[s,i]],
128 hdw[s_,2]:> Module[{i}, Conjugate[UU[i,2]]*chmw[s,i]]} },
129(* Singlino field *)
130 W[25] == { ClassName->SPw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{SPw[s_]:>Module[{i},Conjugate[NN[i,5]]*neuw[s,i]]}},
131
132(* Gauginos/Higgsinos/singlino: physical Weyls *)
133 W[1] == { ClassName->neuw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[NEU]}, FlavorIndex->NEU },
134 W[2] == { ClassName->chpw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q-> 1} } ,
135 W[3] == { ClassName->chmw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q->-1} } ,
136 W[4] == { ClassName->goww, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
137
138(* Gauginos/Higgsinos/singlino: physical Diracs *)
139 F[11] == { ClassName->neu, SelfConjugate->True, Indices->{Index[NEU]}, FlavorIndex->NEU, WeylComponents->neuw,
140 ParticleName->{"n1","n2","n3","n4","n5"}, PDG->{1000022,1000023,1000025,1000035,1000045},
141 ClassMembers->{neu1,neu2,neu3,neu4,neu5}, Mass->{Mneu,Mneu1,Mneu2,Mneu3,Mneu4,Mneu5}, Width->{Wneu,Wneu1,Wneu2,Wneu3,Wneu4,Wneu5},
142 PropagatorLabel->{"neu","neu1","neu2","neu3","neu4","neu5"}, PropagatorType->Straight, PropagatorArrow->None},
143 F[12] == { ClassName->ch, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, WeylComponents->{chpw,chmwbar},
144 ParticleName->{"x1+","x2+"}, AntiParticleName->{"x1-","x2-"}, QuantumNumbers->{Q ->1},
145 ClassMembers->{ch1,ch2}, Mass->{Mch,Mch1,Mch2}, Width->{Wch,Wch1,Wch2},
146 PDG->{1000024,1000037}, PropagatorLabel->{"ch","ch1","ch2"}, PropagatorType->Straight, PropagatorArrow->Forward },
147 F[15] == { ClassName->go, SelfConjugate->True, Indices->{Index[Gluon]}, WeylComponents->goww, Mass->Mgo, Width->Wgo, ParticleName->"go",
148 PDG->1000021, PropagatorLabel->"go", PropagatorType->Straight, PropagatorArrow->None },
149
150(* Higgs: unphysical scalars *)
151 S[21] == { ClassName->hus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
152 Definitions->{
153 hus[1]->Cos[beta]*H + Sin[beta]*GP,
154 hus[2] :> Module[{mm},(vu + Conjugate[US[mm,2]]*h0[mm] + I*Conjugate[UP[mm,2]]*A0[mm] + I*Conjugate[UP32]*G0)/Sqrt[2]]}},
155 S[22] == { ClassName->hds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
156 Definitions->{
157 hds[1] :> Module[{mm},(vd + Conjugate[US[mm,1]]*h0[mm] + I*Conjugate[UP[mm,1]]*A0[mm] + I*Conjugate[UP31]*G0)/Sqrt[2]],
158 hds[2]->Sin[beta]*Hbar - Cos[beta]*GPbar} },
159
160(* Singlet field *)
161 S[23] == { ClassName->SPs, Unphysical->True, SelfConjugate->False,
162 Definitions->{SPs :> Module[{mm}, (vs + Conjugate[US[mm,3]]*h0[mm] + I*Conjugate[UP[mm,3]]*A0[mm] + I*Conjugate[UP33]*G0)/Sqrt[2]]} },
163
164(* Higgs: physical fields and Goldstones *)
165 S[1] == { ClassName->h0, SelfConjugate->True, Indices->{Index[SHig]}, FlavorIndex->SHig,
166 ParticleName->{"h01","h02","h03"}, ClassMembers->{h01,h02,h03}, Mass->{MH0,MH01,MH02,MH03}, Width->{WH0,WH01,WH02,WH03},
167 PDG->{25,35,45}, PropagatorLabel->{"h0","h01","h02","h03"}, PropagatorType->ScalarDash, PropagatorArrow->None},
168 S[2] == { ClassName->A0, SelfConjugate->True, Indices->{Index[PHig]}, FlavorIndex->PHig,
169 ParticleName->{"a01","a02"}, ClassMembers->{a01,a02}, Mass->{MxA0,MxA01,MxA02}, Width->{WA0,WA01,WA02},
170 PDG->{36,46}, PropagatorLabel->{"a0","a01","a02"}, PropagatorType->ScalarDash, PropagatorArrow->None},
171 S[5] == { ClassName->H, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MH, Width->WH,
172 ParticleName->"H+", AntiParticleName->"H-",
173 PDG->37, PropagatorLabel->"H", PropagatorType->ScalarDash, PropagatorArrow->Forward},
174 S[4] == { ClassName->G0, SelfConjugate->True, Mass->MZ, Width->WG0, Goldstone->Z,
175 ParticleName->"G0",
176 PDG->250, PropagatorLabel->"G0", PropagatorType->D, PropagatorArrow->None},
177 S[6] == { ClassName->GP, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MW, Width->WGP, Goldstone->W,
178 ParticleName->"G+", AntiParticleName->"G-",
179 PDG->251, PropagatorLabel->"GP", PropagatorType->D, PropagatorArrow->None },
180
181(* Fermions: unphysical Weyls *)
182 W[26] == { ClassName->LLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN]}, FlavorIndex->SU2D,
183 QuantumNumbers->{Y->-1/2},
184 Definitions->{LLw[s_,1,ff_]:>Module[{ff2}, PMNS[ff,ff2]*vLw[s,ff2]], LLw[s_,2,ff_]->eLw[s,ff]}},
185 W[27] == { ClassName->QLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN],Index[Colour]},FlavorIndex->SU2D,
186 QuantumNumbers->{Y->1/6},
187 Definitions->{QLw[s_,1,ff_,cc_]->uLw[s,ff,cc], QLw[s_,2,ff_,cc_]:>Module[{ff2}, CKM[ff,ff2] dLw[s,ff2,cc]]}},
188
189(* Fermions: physical Weyls *)
190 W[5] == { ClassName->vLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
191 W[6] == { ClassName->eLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
192 W[7] == { ClassName->VRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
193 W[8] == { ClassName->ERw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1} },
194 W[9] == { ClassName->uLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
195 W[10]== { ClassName->dLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
196 W[11]== { ClassName->URw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3} },
197 W[12]== { ClassName->DRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3} },
198
199(* Fermions: physical Dirac *)
200 F[1] == { ClassName->vl, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{vLw,VRwbar},
201 ParticleName->{"ve","vm","vt"}, AntiParticleName->{"ve~","vm~","vt~"},
202 ClassMembers->{ve,vm,vt}, Mass->{Mvl,Mve,Mvm,Mvt}, Width->0,
203 PDG->{12,14,16}, PropagatorLabel->{"v","ve","vm","vt"}, PropagatorType->Straight, PropagatorArrow->Forward},
204 F[2] == { ClassName->l, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{eLw,ERwbar}, QuantumNumbers->{Q->-1},
205 ParticleName->{"e-","mu-","tau-"}, AntiParticleName->{"e+","mu+","tau+"},
206 ClassMembers->{e,m,ta}, Mass->{Ml,Me,Mm,Mta}, Width->0,
207 PDG->{11,13,15}, PropagatorLabel->{"l","e","mu","tau"}, PropagatorType->Straight, PropagatorArrow->Forward},
208 F[3] == { ClassName->uq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{uLw,URwbar}, QuantumNumbers->{Q-> 2/3},
209 ParticleName->{"u","c","t"}, AntiParticleName->{"u~","c~","t~"},
210 ClassMembers->{u,c,t}, Mass->{Muq,MU,MC,MT}, Width->{Wuq,0,0,WT},
211 PDG->{2,4,6}, PropagatorLabel->{"uq","u","c","t"}, PropagatorType->Straight, PropagatorArrow->Forward},
212 F[4] == { ClassName->dq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{dLw,DRwbar}, QuantumNumbers->{Q->-1/3},
213 ParticleName->{"d","s","b"}, AntiParticleName->{"d~","s~","b~"},
214 ClassMembers->{d,s,b}, Mass->{Mdq,MD,MS,MB}, Width->0,
215 PDG->{1,3,5}, PropagatorLabel->{"dq","d","s","b"}, PropagatorType->Straight, PropagatorArrow->Forward},
216
217(* Sfermion: unphysical scalars *)
218 S[24] == { ClassName->LLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
219 Definitions->{ LLs[1,ff_] :> Module[{ff2,ff3}, Conjugate[Rn[ff3,ff2]]*PMNS[ff,ff2]*sn[ff3]], LLs[2,ff_]:> Module[{ff2}, Conjugate[RlL[ff2,ff]]*sl[ff2]] } },
220 S[25] == { ClassName->ERs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1},
221 Definitions->{ ERs[ff_] :> Module[{ff2}, slbar[ff2]*RlR[ff2,ff]]} },
222 S[26] == { ClassName->VRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
223 Definitions->{ VRs[_] -> 0 } },
224 S[27] == { ClassName->QLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN],Index[Colour]}, FlavorIndex->SU2D, QuantumNumbers->{Y->1/6},
225 Definitions->{
226 QLs[1,ff_,cc_]:>Module[{ff2},Conjugate[RuL[ff2,ff]]*su[ff2,cc]],
227 QLs[2,ff_,cc_]:>Module[{ff2,ff3},Conjugate[RdL[ff2,ff3]]*CKM[ff,ff3]*sd[ff2,cc]]}},
228 S[28] == { ClassName->URs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3},
229 Definitions->{ URs[ff_,cc_]:>Module[{ff2}, subar[ff2,cc]*RuR[ff2,ff]]} },
230 S[29] == { ClassName->DRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3},
231 Definitions->{ DRs[ff_,cc_]:>Module[{ff2}, sdbar[ff2,cc]*RdR[ff2,ff]]} },
232
233(* Sfermion: physical scalars *)
234 S[11] == { ClassName->sn, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
235 ParticleName->{"sv1","sv2","sv3"}, AntiParticleName->{"sv1~","sv2~","sv3~"},
236 ClassMembers-> {sn1, sn2, sn3}, Mass->{Msn,Msn1,Msn2,Msn3}, Width->{Wsn,Wsn1,Wsn2,Wsn3},
237 PDG->{1000012,1000014,1000016}, PropagatorLabel->{"sn","sn1","sn2","sn3"}, PropagatorType->ScalarDash, PropagatorArrow->Forward },
238 S[12] == { ClassName->sl, SelfConjugate->False, Indices->{Index[SCA]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1},
239 ParticleName->{"sl1-","sl2-","sl3-","sl4-","sl5-","sl6-"}, AntiParticleName->{"sl1+","sl2+","sl3+","sl4+","sl5+","sl6+"},
240 ClassMembers->{sl1,sl2,sl3,sl4,sl5,sl6}, Mass->{Msl,Msl1,Msl2,Msl3,Msl4,Msl5,Msl6}, Width->{Wsl,Wsl1,Wsl2,Wsl3,Wsl4,Wsl5,Wsl6},
241 PDG->{1000011,1000013,1000015,2000011,2000013,2000015}, PropagatorLabel->{"sl","sl1","sl2","sl3","sl4","sl5","sl6"},
242 PropagatorType->ScalarDash, PropagatorArrow->Forward},
243 S[13] == { ClassName->su, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q-> 2/3},
244 ParticleName->{"su1","su2","su3","su4","su5","su6"}, AntiParticleName->{"su1~","su2~","su3~","su4~","su5~","su6~"},
245 ClassMembers->{su1,su2,su3,su4,su5,su6}, Mass->{Msu,Msu1,Msu2,Msu3,Msu4,Msu5,Msu6}, Width->{Wsu,Wsu1,Wsu2,Wsu3,Wsu4,Wsu5,Wsu6},
246 PDG->{1000002,1000004,1000006,2000002,2000004,2000006}, PropagatorLabel->{"su","su1","su2","su3","su4","su5","su6"},
247 PropagatorType->ScalarDash, PropagatorArrow->Forward},
248 S[14]== { ClassName->sd, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1/3},
249 ParticleName->{"sd1","sd2","sd3","sd4","sd5","sd6"}, AntiParticleName->{"sd1~","sd2~","sd3~","sd4~","sd5~","sd6~"},
250 ClassMembers->{sd1,sd2,sd3,sd4,sd5,sd6}, Mass->{Msd,Msd1,Msd2,Msd3,Msd4,Msd5,Msd6}, Width->{Wsd,Wsd1,Wsd2,Wsd3,Wsd4,Wsd5,Wsd6},
251 PDG->{1000001,1000003,1000005,2000001,2000003,2000005}, PropagatorLabel->{"sd","sd1","sd2","sd3","sd4","sd5","sd6"},
252 PropagatorType->ScalarDash, PropagatorArrow->Forward},
253
254(* Ghost: related to unphysical gauge bosons *)
255 U[11] == { ClassName->ghWi, Unphysical->True, SelfConjugate->False, Ghost->Wi, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
256 Definitions->{ghWi[1]->(ghWp+ghWm)/Sqrt[2], ghWi[2]->(ghWm-ghWp)/(I*Sqrt[2]), ghWi[3]->cw ghZ+sw ghA} } ,
257 U[12] == { ClassName->ghB, Unphysical->True, SelfConjugate->False, Ghost->B,
258 Definitions->{ghB->-sw ghZ+cw ghA} },
259
260(* Ghost: related to physical gauge bosons *)
261 U[5] == { ClassName->ghG, SelfConjugate->False, Indices->{Index[Gluon]}, Ghost->G, QuantumNumbers->{GhostNumber->1},
262 Mass->0, Width->0, ParticleName->"ghG", PropagatorLabel->"uG", PropagatorType->GhostDash, PropagatorArrow->Forward},
263 U[1] == { ClassName->ghA, SelfConjugate->False, Ghost->A, QuantumNumbers->{GhostNumber->1},
264 Mass->0, Width->0, ParticleName->"ghA", PropagatorLabel->"uA", PropagatorType->GhostDash, PropagatorArrow->Forward},
265 U[2] == { ClassName->ghZ, SelfConjugate->False, Ghost->Z, QuantumNumbers->{GhostNumber->1},
266 Mass->{MZ,Internal}, Width->WZ, ParticleName->"ghZ", PropagatorLabel->"uZ", PropagatorType->GhostDash, PropagatorArrow->Forward},
267 U[4] == { ClassName->ghWp, SelfConjugate->False, Ghost->W, QuantumNumbers->{GhostNumber->1, Q->1},
268 Mass->{MW,Internal}, Width->WW, ParticleName->"ghWp", PropagatorLabel->"uWp", PropagatorType->GhostDash, PropagatorArrow->Forward},
269 U[3] == { ClassName->ghWm, SelfConjugate->False, Ghost->Wbar, QuantumNumbers->{GhostNumber->1, Q->-1},
270 Mass->{MW,Internal}, Width->WW, ParticleName->"ghWm", PropagatorLabel->"uWm", PropagatorType->GhostDash, PropagatorArrow->Forward}
271};
272
273
274(* ************************** *)
275(* ***** Parameters ***** *)
276(* ************************** *)
277M$Parameters = {
278(* Mixing: external parameters *)
279 RMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->UPMNS,
280 Description->"Neutrino PMNS mixing matrix (real part)"},
281 IMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMUPMNS,
282 Description->"Neutrino PMNS mixing matrix (imaginary part)"},
283 RCKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->VCKM,
284 Description->"CKM mixing matrix (real part)"},
285 ICKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMVCKM,
286 Description->"CKM mixing matrix (imaginary part)"},
287 RNN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->NMNMIX,
288 Description->"Neutralino mixing matrix (real part)"},
289 INN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->IMNMNMIX,
290 Description->"Neutralino mixing matrix (imaginary part)"},
291 RUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->UMIX,
292 Description->"Chargino mixing matrix U (real part)"},
293 IUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMUMIX,
294 Description->"Chargino mixing matrix U (imaginary part)"},
295 RVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->VMIX,
296 Description->"Chargino mixing matrix V (real part)"},
297 IVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMVMIX,
298 Description->"Chargino mixing matrix V (imaginary part)"},
299 RRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->SNUMIX,
300 Description->"Sneutrino mixing matrix (real part)"},
301 IRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMSNUMIX,
302 Description->"Sneutrino mixing matrix (imaginary part)"},
303 RRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->SELMIX,
304 Description->"Slepton mixing matrix (real part)"},
305 IRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMSELMIX,
306 Description->"Slepton mixing matrix (imaginary part)"},
307 RRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->USQMIX,
308 Description->"Up squark mixing matrix (real part)"},
309 IRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMUSQMIX,
310 Description->"Up squark mixing matrix (imaginary part)"},
311 RRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->DSQMIX,
312 Description->"Down squark mixing matrix (real part)"},
313 IRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMDSQMIX,
314 Description->"Down squark mixing matrix (imaginary part)"},
315
316(* Mixing: internal parameters *)
317 cw == { TeX->Subscript[c,w], ParameterType->Internal, ComplexParameter->False, Value->MW/MZ, Description->"Cosine of the weak angle"},
318 sw == { TeX->Subscript[s,w], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[1-cw^2], Description->"Sine of the weak angle"},
319 PMNS== { TeX->Superscript[U,pmns], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
320 If[$MNSDiag, Definitions:>{PMNS[i_,j_]:>0 /;(i!=j), PMNS[i_,j_]:>1/;(i==j)}, Value->{PMNS[i_,j_]:>RMNS[i,j]+I*IMNS[i,j]}],
321 Description-> "Neutrino PMNS mixing matrix"},
322 CKM == { TeX->Superscript[V,ckm], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
323 If[$CKMDiag, Definitions:>{CKM[i_,j_]:>0 /;(i!=j), CKM[i_,j_]:>1/;(i==j)}, Value->{CKM[i_,j_]:>RCKM[i,j]+I*ICKM[i,j]}],
324 Description-> "CKM mixing matrix"},
325 NN == { TeX->N, ParameterType-> Internal, ComplexParameter->True, Indices->{Index[NEU],Index[NEU]}, Unitary->True,
326 Value->{NN[i_,j_]:>RNN[i,j]+I*INN[i,j]}, Description-> "Neutralino mixing matrix"},
327 UU == { TeX->U, ParameterType-> Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
328 Value->{UU[i_,j_]:>RUU[i,j]+I*IUU[i,j]}, Description-> "Chargino mixing matrix U"},
329 VV == { TeX->V, ParameterType-> Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
330 Value->{VV[i_,j_]:>RVV[i,j]+I*IVV[i,j]}, Description-> "Chargino mixing matrix V"},
331 Rl == { TeX->Superscript[R,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
332 Value->{Rl[i_,j_]:>RRl[i,j]+I*IRl[i,j]}, Description-> "Slepton mixing matrix"},
333 Rn == { TeX->Superscript[R,n], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
334 Value->{Rn[i_,j_]:>RRn[i,j]+I*IRn[i,j]}, Description-> "Sneutrino mixing matrix"},
335 Ru == { TeX->Superscript[R,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
336 Value->{Ru[i_,j_]:>RRu[i,j]+I*IRu[i,j]}, Description-> "Up squark mixing matrix"},
337 Rd == { TeX->Superscript[R,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
338 Value->{Rd[i_,j_]:>RRd[i,j]+I*IRd[i,j]}, Description-> "Down squark mixing matrix"},
339
340(* Left and right parts of the sfermion mixing matrices *)
341 RlL == { TeX->Superscript[RL,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
342 Definitions->{RlL[i_,j_]:>Rl[i,j]/;NumericQ[j]}, Description-> "Slepton mixing matrix - first three columns"},
343 RlR == { TeX->Superscript[RR,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
344 Definitions->{RlR[i_,j_]:>Rl[i,j+3]/;NumericQ[j]},Description-> "Slepton mixing matrix - last three columns"},
345 RuL == { TeX->Superscript[RL,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
346 Definitions->{RuL[i_,j_]:>Ru[i,j]/;NumericQ[j]}, Description-> "Up squark mixing matrix - first three columns"},
347 RuR == { TeX->Superscript[RR,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
348 Definitions->{RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]},Description-> "Up squark mixing matrix - last three columns"},
349 RdL == { TeX->Superscript[RL,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
350 Definitions->{RdL[i_,j_]:>Rd[i,j]/;NumericQ[j]}, Description-> "Down squark mixing matrix - first three columns"},
351 RdR == { TeX->Superscript[RR,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
352 Definitions->{RdR[i_,j_]:>Rd[i,j+3]/;NumericQ[j]},Description-> "Down squark mixing matrix - last three columns"},
353
354(* Couplings constants: external parameters *)
355 aEWM1 == { TeX->Subsuperscript[\[Alpha],w,-1], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->1, InteractionOrder->{QED,-2},
356 Description->"Inverse of the EW coupling constant at the Z pole"},
357 aS == { TeX->Subscript[\[Alpha],s], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->3, InteractionOrder->{QCD, 2},
358 Description->"Strong coupling constant at the Z pole."},
359
360(* Couplings constants: internal parameters *)
361 ee == { TeX->e, ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi / aEWM1], InteractionOrder->{QED,1},
362 Description->"Electric coupling constant"},
363 gs == { TeX->Subscript[g,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi aS], InteractionOrder->{QCD,1}, ParameterName->G,
364 Description->"Strong coupling constant"},
365 gp == { TeX->g', ParameterType->Internal, ComplexParameter->False, Definitions-> {gp->ee/cw}, InteractionOrder->{QED,1},
366 Description->"Hypercharge coupling constant at the Z pole"},
367 gw == { TeX->Subscript[g,w], ParameterType->Internal, ComplexParameter->False, Definitions-> {gw->ee/sw}, InteractionOrder->{QED,1},
368 Description->"Weak coupling constant at the Z pole"},
369
370(* Higgs sector: external parameters *)
371 tb == { TeX->Subscript[t,b], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->2, Description->"Ratio of the two Higgs vevs"},
372
373(* Higgs sector: internal parameters *)
374 beta == { TeX->\[Beta], ParameterType->Internal, ComplexParameter->False, Value->ArcTan[tb], Description->"Arctan of the ratio of the two Higgs vevs"},
375 vev == { TeX->v, ParameterType->Internal, ComplexParameter->False, Value->2*MZ*sw*cw/ee, InteractionOrder->{QED,-1},
376 Description->"Higgs vacuum expectation value"},
377 vd == { TeX->Subscript[v,d], ParameterType->Internal, ComplexParameter->False, Value->vev*Cos[beta], InteractionOrder->{QED,-1},
378 Description->"Down-type Higgs vacuum expectation value"},
379 vu == { TeX->Subscript[v,u], ParameterType->Internal, ComplexParameter->False, Value->vev*Sin[beta], InteractionOrder->{QED,-1},
380 Description->"Up-type Higgs vacuum expectation value"},
381
382(* Superpotential: external parameters *)
383 Ryu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YU,
384 Description->"Up-type quark Yukawa matrix (real part)"},
385 Iyu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYU,
386 Description->"Up-type quark Yukawa matrix (imaginary part)"},
387 Ryd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YD,
388 Description->"Down-type quark Yukawa matrix (real part)"},
389 Iyd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYD,
390 Description->"Down-type quark Yukawa matrix (imaginary part)"},
391 Rye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YE,
392 Description->"Charged lepton Yukawa matrix (real part)"},
393 Iye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYE,
394 Description->"Charged lepton Yukawa matrix (imaginary part)"},
395
396(* Superpotential: internal parameters *)
397 yu == { TeX->Superscript[y,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
398 Definitions:>{yu[i_,j_]:>0 /;(i!=j)}, Value->{yu[i_,j_]:>If[i==j,Ryu[i,j]+I*Iyu[i,j]]}, InteractionOrder->{QED,1}, Description-> "Up-type quark Yukawa matrix"},
399 yd == { TeX->Superscript[y,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
400 Definitions:>{yd[i_,j_]:>0 /;(i!=j)}, Value->{yd[i_,j_]:>If[i==j,Ryd[i,j]+I*Iyd[i,j]]}, InteractionOrder->{QED,1}, Description-> "Down-type quark Yukawa matrix"},
401 ye == { TeX->Superscript[y,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
402 Definitions:>{ye[i_,j_]:>0 /;(i!=j)}, Value->{ye[i_,j_]:>If[i==j,Rye[i,j]+I*Iye[i,j]]}, InteractionOrder->{QED,1}, Description-> "Charged lepton Yukawa matrix"},
403
404(* Soft terms: external parameters *)
405 RMx1 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->1, Description->"Bino mass (real part)"},
406 IMx1 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->1, Description->"Bino mass (imaginary part)"},
407 RMx2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->2, Description->"Wino mass (real part)"},
408 IMx2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->2, Description->"Wino mass (imaginary part)"},
409 RMx3 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->3, Description->"Gluino mass (real part)"},
410 IMx3 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->3, Description->"Gluino mass (imaginary part)"},
411 mHu2 == { TeX->Subsuperscript[m,Subscript[H,u],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->22,
412 Description->"Up-type Higgs squared mass"},
413 mHd2 == { TeX->Subsuperscript[m,Subscript[H,d],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->21,
414 Description->"Down-type Higgs squared mass"},
415 MA2 == { TeX->Subsuperscript[m,A,2], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->4,
416 Description->"Pseudoscalar Higgs squared mass"},
417 RmL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSL2,
418 Description->"Left-handed slepton squared mass matrix (real part)"},
419 ImL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSL2,
420 Description->"Left-handed slepton squared mass matrix (imaginary part)"},
421 RmE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSE2,
422 Description->"Right-handed slepton squared mass matrix (real part)"},
423 ImE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSE2,
424 Description->"Right-handed slepton squared mass matrix (imaginary part)"},
425 RmQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSQ2,
426 Description->"Left-handed squark squared mass matrix (real part)"},
427 ImQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSQ2,
428 Description->"Left-handed squark squared mass matrix (imaginary part)"},
429 RmU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSU2,
430 Description->"Right-handed up-type squark squared mass matrix (real part)"},
431 ImU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSU2,
432 Description->"Right-handed up-type squark squared mass matrix (imaginary part)"},
433 RmD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSD2,
434 Description->"Right-handed down-type squark squared mass matrix (real part)"},
435 ImD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSD2,
436 Description->"Right-handed down-type squark squared mass matrix (imaginary part)"},
437 Rte == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TE,
438 Description->"Charged slepton trilinear coupling (real part)"},
439 Ite == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTE,
440 Description->"Charged slepton trilinear coupling (imaginary part)"},
441 Rtu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TU,
442 Description->"Up-type squark trilinear coupling (real part)"},
443 Itu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTU,
444 Description->"Up-type squark trilinear coupling (imaginary part)"},
445 Rtd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TD,
446 Description->"Down-type squark trilinear coupling (real part)"},
447 Itd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTD,
448 Description->"Down-type squark trilinear coupling (imaginary part)"},
449
450(* Soft terms: internal parameters *)
451 Mx1 == { TeX->Subscript[M,1], ParameterType->Internal, ComplexParameter->True, Value->RMx1+I*IMx1, Description->"Bino mass"},
452 Mx2 == { TeX->Subscript[M,2], ParameterType->Internal, ComplexParameter->True, Value->RMx2+I*IMx2, Description->"Wino mass"},
453 Mx3 == { TeX->Subscript[M,3], ParameterType->Internal, ComplexParameter->True, Value->RMx3+I*IMx3, Description->"Gluino mass"},
454 mL2 == { TeX->Subsuperscript[m,OverTilde[L],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
455 Value->{mL2[i_,j_]:>RmL2[i,j]+I*ImL2[i,j]}, Description-> "Left-handed slepton squared mass matrix"},
456 mE2 == { TeX->Subsuperscript[m,OverTilde[E],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
457 Value->{mE2[i_,j_]:>RmE2[i,j]+I*ImE2[i,j]}, Description-> "Right-handed slepton squared mass matrix"},
458 mQ2 == { TeX->Subsuperscript[m,OverTilde[Q],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
459 Value->{mQ2[i_,j_]:>RmQ2[i,j]+I*ImQ2[i,j]}, Description-> "Left-handed squark squared mass matrix"},
460 mU2 == { TeX->Subsuperscript[m,OverTilde[U],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
461 Value->{mU2[i_,j_]:>RmU2[i,j]+I*ImU2[i,j]}, Description-> "Right-handed up-type squark squared mass matrix"},
462 mD2 == { TeX->Subsuperscript[m,OverTilde[D],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
463 Value->{mD2[i_,j_]:>RmD2[i,j]+I*ImD2[i,j]}, Description-> "Right-handed down-type squark squared mass matrix"},
464 te == { TeX->Subscript[T,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
465 Value->{te[i_,j_]:>Rte[i,j]+I*Ite[i,j]}, Description-> "Charged slepton trilinear coupling"},
466 tu == { TeX->Subscript[T,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
467 Value->{tu[i_,j_]:>Rtu[i,j]+I*Itu[i,j]}, Description-> "Up-type squark trilinear coupling"},
468 td == { TeX->Subscript[T,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
469 Value->{td[i_,j_]:>Rtd[i,j]+I*Itd[i,j]}, Description-> "Down-type squark trilinear coupling"},
470
471(* NMSSM external parameters *)
472 NMl == { TeX->\[Lambda], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->1, InteractionOrder->{QED,1},
473 Description->"Superpotential trilinear Higgs-singlet coupling"},
474 NMk == { TeX->\[Kappa], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->2, InteractionOrder->{QED,1},
475 Description->"Superpotential cubic singlet self-interaction"},
476 NMAl== { TeX->Subscript[A,\[Lambda]], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->3,
477 Description->"Soft trilinear Higgs-singlet coupling"},
478 NMAk== { TeX->Subscript[A,\[Kappa]], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->4,
479 Description->"Soft cubic singlet self-interaction"},
480 mueff=={ TeX->Subscript[\[Mu],eff], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->5,
481 Description->"Effective mu-parameter (vev of the singlet times NMl)"},
482 NMxF== { TeX->Subscript[\[Xi],F], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->6,
483 Description->"Superpotential linear singlet term"},
484 NMxS== { TeX->Subscript[\[Xi],S], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->7,
485 Description->"Soft linear singlet term"},
486 NMmu== { TeX->\[Mu]', ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->8,
487 Description->"Superpotential quadratic singlet term"},
488 MSP2== { TeX->Subsuperscript[M',S,2], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->9,
489 Description->"Soft quadratic singlet term"},
490 MS2 == { TeX->Subsuperscript[M,S,2], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->10,
491 Description->"Soft singlet mass term"},
492 bb == { TeX->b, ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->12, Description->"Higgs bilinear soft term"},
493 US == { TeX->Superscript[U,S], ParameterType->External, ComplexParameter->False, Indices->{Index[SHig],Index[SHig]}, BlockName->NMHMIX,
494 Description->"Scalar Higgses mixing matrix"},
495 UP == { TeX->Superscript[U,P], ParameterType->External, ComplexParameter->False, Indices->{Index[PHig],Index[SHig]}, BlockName->NMAMIX,
496 Description->"Pseudoscalar Higgses mixing matrix"},
497
498(* NMSSM internal parameters *)
499 vs == { TeX->Subscript[v,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[2] mueff/NMl, InteractionOrder ->{QED,-1}, Description->"Vev of the scalar singlet"},
500
501(* NMSSM Golstone mixing parameters *)
502 UP31=={ TeX->Subsuperscript[U,P,31], ParameterType->External, ComplexParameter->False, BlockName->FRUP, OrderBlock->1, Value->0,
503 Description->"Goldstone element of the Higgs mixing matrix"},
504 UP32=={ TeX->Subsuperscript[U,P,32], ParameterType->External, ComplexParameter->False, BlockName->FRUP, OrderBlock->2, Value->0,
505 Description->"Goldstone element of the Higgs mixing matrix"},
506 UP33=={ TeX->Subsuperscript[U,P,33], ParameterType->External, ComplexParameter->False, BlockName->FRUP, OrderBlock->3, Value->0,
507 Description->"Goldstone element of the Higgs mixing matrix"}
508};
509
510(* ************************** *)
511(* **** Diracification **** *)
512(* ************************** *)
513ToDirac[exp_]:= Module[{tmp=Expand[exp],cnt=0,prg1=0,prg2=0,prgo1=0,prgo2=0,tot},
514 Colourb=Colour;
515
516 tmp = If[Head[tmp]===Plus,List@@tmp,List[tmp]]/.Tb[a_,i_,j_]->-T[a,j,i];
517
518 tmp = OptimizeIndex[#] &/@ tmp;
519 tot=Length[tmp];
520 Print["Flavor expansion: ", ProgressIndicator[Dynamic[prg1]]];
521 tmp = Module[{}, cnt++; prg1=cnt/tot;
522 Expand[(ExpandIndices[#, FlavorExpand->{SU2W, SU2D}] /. {
523 gp->ee/cw,
524 gw->ee/sw,
525 cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2),
526 cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw,
527 Power[PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)],2]->PauliSigma[1,i,j]^2 + PauliSigma[3,i,j]^2 + PauliSigma[2,i,j]^2,
528 PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)] PauliSigma[a_,k_?(NumericQ[#] &),l_?(NumericQ[#] &)]->
529 PauliSigma[1,i,j] PauliSigma[1,k,l] + PauliSigma[2,i,j] PauliSigma[2,k,l] + PauliSigma[3,i,j] PauliSigma[3,k,l]})]] &/@ tmp;
530 tmp = Plus@@tmp//.{cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2), cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw};
531 cnt=0; tot=Length[tmp];
532 Print["Opt 1: ",ProgressIndicator[Dynamic[prgo1]]];
533 tmp = Module[{}, cnt++; prgo1=cnt/tot;OptimizeIndex[#]] &/@ (List@@tmp);
534 Print["Weyl2Dirac: ",ProgressIndicator[Dynamic[prg2]]];cnt=0;
535 tmp = Module[{}, cnt++; prg2=cnt/tot; WeylToDirac[#]] &/@ tmp;
536 Print["Opt2: ",ProgressIndicator[Dynamic[prgo2]]];cnt=0;
537 tmp = Module[{}, cnt++; prgo2=cnt/tot;OptimizeIndex[#]] &/@ tmp;
538 Clear[Colourb];
539Expand[Plus@@tmp]];
540
541(* ************************** *)
542(* ***** Lagrangian ***** *)
543(* ************************** *)
544(* LVector *)
545LVector := Module[{}, Plus@@(Module[{tmp}, tmp = SF2Components[#]; Expand[tmp[[2, 5]] + tmp[[2, 6]]]] &/@ (List @@ VSFKineticTerms[]))];
546
547(* LChiral *)
548LChiral := Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ CSFKineticTerms[]) );
549
550(* Superpotential *)
551SPot:= Module[{ff1,ff2,ff3,cc1},
552 yu[ff1,ff2] UR[ff1,cc1] (QL[1,ff2,cc1] HU[2] - QL[2,ff2,cc1] HU[1]) -
553 yd[ff1,ff3] Conjugate[CKM[ff2,ff3]] DR[ff1,cc1] (QL[1,ff2,cc1] HD[2] - QL[2,ff2,cc1] HD[1]) -
554 ye[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) +
555 NMl SPF (HU[1] HD[2] - HU[2] HD[1]) + 1/3 NMk*SPF^3 + NMmu SPF^2 + NMxF SPF];
556LSuperW:= ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[SPot+HC[SPot]])) )/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
557
558(* Soft SUSY-breaking Lagrangian *)
559LSoft := Module[{Mino, MSca, Tri, Bil},
560 (* Gaugino mass terms *)
561 Mino:=Module[{s,gl}, - Mx1*bow[s].bow[s] - Mx2*wow[s,gl].wow[s,gl] - Mx3*gow[s,gl].gow[s,gl]];
562 (* Scalar mass terms *)
563 MSca:=Module[{ii,ff1,ff2,ff3,ff4,cc1},
564 - mHu2*HC[hus[ii]]*hus[ii] - mHd2*HC[hds[ii]]*hds[ii] - MS2*SPsbar*SPs -
565 mL2[ff1,ff2]*HC[LLs[ii,ff1]]*LLs[ii,ff2] - mE2[ff1,ff2]*HC[ERs[ff1]]*ERs[ff2] -
566 CKM[ff1,ff2]*mQ2[ff2,ff3]*Conjugate[CKM[ff4,ff3]]*HC[QLs[ii,ff1,cc1]]*QLs[ii,ff4,cc1] -
567 mU2[ff1,ff2]*HC[URs[ff1,cc1]]*URs[ff2,cc1] - mD2[ff1,ff2]*HC[DRs[ff1,cc1]]*DRs[ff2,cc1] ];
568 (* Trilinear couplings *)
569 Tri:=-tu[ff1,ff2]*URs[ff1,cc1] (QLs[1,ff2,cc1] hus[2] - QLs[2,ff2,cc1] hus[1]) +
570 Conjugate[CKM[ff3,ff2]]*td[ff1,ff2]*DRs[ff1,cc1] (QLs[1,ff3,cc1] hds[2] - QLs[2,ff3,cc1] hds[1]) +
571 te[ff1,ff2]*ERs[ff1] (LLs[1,ff2] hds[2] - LLs[2,ff2] hds[1]) -
572 NMl*NMAl*SPs (hus[1] hds[2] - hus[2] hds[1]) -
573 1/3 NMk*NMAk*SPs^3;
574 (* Linear and bilinear couplings *)
575 Bil:=-bb*(hus[1] hds[2] - hus[2] hds[1]) - MSP2*SPs^2 - NMxS*SPs;
576 (* Everything together *)
577 (Mino+HC[Mino])/2 + MSca + Tri + HC[Tri] + Bil + HC[Bil]];
578
579(* Ghost Lagrangian and gauge fixing terms *)
580LFeynmanGFix := Module[{VectorU,VectorD, Phiu,Phid,Phiu0,Phid0, phid1,phid2,phiu1,phiu2, GF1,GF2,GF3,LGF, nrules, kk,ll,mm, LGh1,LGh2,LGh3,LGhS,LGh, genu,gend, gh,ghbar},
581 (* Expression the doublets in the nu/nd basis *)
582 VectorU[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
583 VectorD[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
584
585 (* Higgs doublets *)
586 Phiu = Expand[ {(phiu1 + I phiu2)/Sqrt[2], (Conjugate[US[mm,2]]*h0[mm] + I*Conjugate[UP[mm,2]]*A0[mm] + I*Conjugate[UP32]*G0)/Sqrt[2]} ];
587 Phid = Expand[ {(Conjugate[US[mm,1]]*h0[mm] + I*Conjugate[UP[mm,1]]*A0[mm] + I*Conjugate[UP31]*G0)/Sqrt[2], (phid1 + I phid2)/Sqrt[2]} ];
588 (* vevs *)
589 Phiu0 = {0, vu/Sqrt[2]};
590 Phid0 = {vd/Sqrt[2], 0};
591 (* Back to the physical Higgses and Goldstones *)
592 nrules := {
593 phid1 -> (-Cos[beta]*GPbar - Cos[beta]*GP + Sin[beta]*Hbar + Sin[beta]*H)/Sqrt[2],
594 phid2 -> (-Cos[beta]*GPbar + Cos[beta]*GP + Sin[beta]*Hbar - Sin[beta]*H)/(I Sqrt[2]),
595 phiu1 -> ( Sin[beta]*GP + Sin[beta]*GPbar + Cos[beta]*H + Cos[beta]*Hbar)/Sqrt[2],
596 phiu2 -> (Sin[beta]*GP - Sin[beta]*GPbar + Cos[beta]*H - Cos[beta]*Hbar)/(I Sqrt[2])};
597
598 (* Gauge-fixing functions *)
599 GF1 := Module[{mu}, del[B[mu] , mu] - gp VectorU[-I/2 Phiu0].VectorU[Phiu] - gp VectorD[I/2 Phid0].VectorD[Phid] ];
600 GF2[k_] := Module[{mu}, del[Wi[mu,k], mu] - gw VectorU[-I/2 PauliSigma[k].Phiu0].VectorU[Phiu] - gw VectorD[-I/2 PauliSigma[k].Phid0].VectorD[Phid] ];
601 GF3[a_] := Module[{mu}, del[G[mu,a] , mu] ];
602 (* Gauge-fixing Lagrangian *)
603 LGF = Expand[-1/2*(GF1 HC[GF1] + Sum[GF2[kk] HC[GF2[kk]], {kk, 1, 3}])/.nrules /. {HC[a_]->a, h0[_]->0, A0[_]->0, H->0, Hbar->0}];
604 LGF = OptimizeIndex[Expand[ExpandIndices[LGF, FlavorExpand->SU2W]]];
605
606 (* Ghost Lagrangians *)
607 LGh1 = -ghBbar.del[DC[ghB,mu],mu];
608 LGh2 = -ghWibar[kk].del[DC[ghWi[kk], mu], mu];
609 LGh3 = -ghGbar[kk].del[DC[ghG[kk],mu],mu];
610 genu := {-I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
611 gend := { I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
612 gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
613 ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
614 LGhS = Sum[
615 -ghbar[[kk]].gh[[ll]] (VectorU[genu[[kk]].Phiu0].VectorU[genu[[ll]].(Phiu+Phiu0)] + VectorD[gend[[kk]].Phid0].VectorD[gend[[ll]].(Phid+Phid0)]),
616 {kk,1,4},{ll,1,4}];
617 LGh = ExpandIndices[LGh1+LGh2+LGh3+LGhS, FlavorExpand->SU2W] /.nrules;
618LGF+LGh];
619
620(* Collecting all the pieces together *)
621Lag := ToDirac[SolveEqMotionF[SolveEqMotionD[LVector+LChiral+LSuperW+LSoft]]] + LFeynmanGFix ;