1 | (* ********************************************************* *)
|
---|
2 | (* ***** ***** *)
|
---|
3 | (* ***** FeynRules model file: the NMSSM ***** *)
|
---|
4 | (* ***** Author: B. Fuks ***** *)
|
---|
5 | (* ***** ***** *)
|
---|
6 | (* ********************************************************* *)
|
---|
7 |
|
---|
8 | (* ************************** *)
|
---|
9 | (* ***** Information ***** *)
|
---|
10 | (* ************************** *)
|
---|
11 | M$ModelName = "NMSSM";
|
---|
12 | M$Information = { Authors->{"Benjamin Fuks"}, Emails->{"fuks@cern.ch"}, Institutions->{"IPHC Strasbourg / University of Strasbourg"},
|
---|
13 | Date->"31.07.12", Version->"1.0.9",
|
---|
14 | References->{""},
|
---|
15 | URLs->{"http://feynrules.phys.ucl.ac.be/view/Main/NMSSM"} };
|
---|
16 |
|
---|
17 | (* v1.0.1: small bug in the ghost sector corrected *)
|
---|
18 | (* v1.0.2: change of notation for the physical fields -> matching FeynArts standards *)
|
---|
19 | (* v1.0.3: bilinear soft higgs mixing parameter not implemented *)
|
---|
20 | (* v1.0.4: renaming of SP to SPot (variable name clashing). Thanks to Kentarou Mawatari. *)
|
---|
21 | (* v1.0.5: small bug in the definition of the CKM matrix. Thanks to Antonio Mariano. *)
|
---|
22 | (* v1.0.6: Inversion of two SLHA counters for the Higgs soft masses. Thanks to Flip Tanedo. *)
|
---|
23 | (* v1.0.7: Symbols for the pseudoscalar Higgs masses in conflict with Feynarts conventions. *)
|
---|
24 | (* --> changed to MxA0. Rewriting of the treatment of the golstone entries of the *)
|
---|
25 | (* pseudoscalar Higgs mixing matrix. Thanks to Markos Maniatis. *)
|
---|
26 | (* v1.0.8: Interaction orders. *)
|
---|
27 | (* v1.0.9: Adding the Feynman gauge flag. *)
|
---|
28 | (* v1.0.10: The coupling order of the singlet vev was missing (thanks to Peter Richardson). *)
|
---|
29 |
|
---|
30 |
|
---|
31 | (* ************************** *)
|
---|
32 | (* ***** Flags ***** *)
|
---|
33 | (* ************************** *)
|
---|
34 | $CKMDiag = True; (* CKM = identity or not *)
|
---|
35 | $MNSDiag = True; (* PMNS = identity or not *)
|
---|
36 | FeynmanGauge = True;
|
---|
37 |
|
---|
38 |
|
---|
39 | (* ************************** *)
|
---|
40 | (* ***** Gauge groups ***** *)
|
---|
41 | (* ************************** *)
|
---|
42 | M$GaugeGroups = {
|
---|
43 | U1Y == { Abelian->True, CouplingConstant->gp, Superfield->BSF, Charge->Y, GUTNormalization->3/5},
|
---|
44 | SU2L == { Abelian->False, CouplingConstant->gw, Superfield->WSF,
|
---|
45 | StructureConstant->ep, Representations->{Ta,SU2D}, Definitions->{Ta[a__]->PauliSigma[a]/2, ep->Eps}},
|
---|
46 | SU3C == { Abelian->False, CouplingConstant->gs, Superfield->GSF,
|
---|
47 | StructureConstant->f, Representations->{{T,Colour}, {Tb,Colourb}}, DTerm->dSUN}
|
---|
48 | };
|
---|
49 |
|
---|
50 |
|
---|
51 | (* ************************** *)
|
---|
52 | (* *** Interaction orders *** *)
|
---|
53 | (* ************************** *)
|
---|
54 | M$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2} };
|
---|
55 |
|
---|
56 |
|
---|
57 | (* ************************** *)
|
---|
58 | (* ***** Indices ***** *)
|
---|
59 | (* ************************** *)
|
---|
60 | IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexStyle[SU2W,j]; IndexRange[Index[SU2D]] = Unfold[Range[2]]; IndexStyle[SU2D,k];
|
---|
61 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a]; IndexRange[Index[Colour ]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
|
---|
62 | IndexRange[Index[Colourb]] = NoUnfold[Range[3]]; IndexStyle[Colourb,m];
|
---|
63 | IndexRange[Index[NEU ]] = Range[5]; IndexStyle[NEU, i];
|
---|
64 | IndexRange[Index[CHA ]] = Range[2]; IndexStyle[CHA, i];
|
---|
65 | IndexRange[Index[GEN ]] = Range[3]; IndexStyle[GEN, f];
|
---|
66 | IndexRange[Index[SCA ]] = Range[6]; IndexStyle[SCA, i];
|
---|
67 | IndexRange[Index[SHig]] = Range[3]; IndexStyle[SHig,n];
|
---|
68 | IndexRange[Index[PHig]] = Range[2]; IndexStyle[PHig,n];
|
---|
69 |
|
---|
70 |
|
---|
71 |
|
---|
72 | (* ************************** *)
|
---|
73 | (* ***** Superfields ***** *)
|
---|
74 | (* ************************** *)
|
---|
75 | M$Superfields = {
|
---|
76 | VSF[1] == { ClassName->BSF, GaugeBoson->B, Gaugino->bow},
|
---|
77 | VSF[2] == { ClassName->WSF, GaugeBoson->Wi, Gaugino->wow, Indices->{Index[SU2W]}},
|
---|
78 | VSF[3] == { ClassName->GSF, GaugeBoson->G, Gaugino->gow, Indices->{Index[Gluon] }},
|
---|
79 | CSF[1] == { ClassName->HU, Chirality->Left, Weyl->huw, Scalar->hus, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
|
---|
80 | CSF[2] == { ClassName->HD, Chirality->Left, Weyl->hdw, Scalar->hds, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
|
---|
81 | CSF[3] == { ClassName->LL, Chirality->Left, Weyl->LLw, Scalar->LLs, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D], Index[GEN]}},
|
---|
82 | CSF[4] == { ClassName->ER, Chirality->Left, Weyl->ERw, Scalar->ERs, QuantumNumbers->{Y-> 1}, Indices->{Index[GEN]}},
|
---|
83 | CSF[5] == { ClassName->VR, Chirality->Left, Weyl->VRw, Scalar->VRs, Indices->{Index[GEN]}},
|
---|
84 | CSF[6] == { ClassName->QL, Chirality->Left, Weyl->QLw, Scalar->QLs, QuantumNumbers->{Y-> 1/6}, Indices->{Index[SU2D], Index[GEN], Index[Colour]}},
|
---|
85 | CSF[7] == { ClassName->UR, Chirality->Left, Weyl->URw, Scalar->URs, QuantumNumbers->{Y->-2/3}, Indices->{Index[GEN], Index[Colourb]} },
|
---|
86 | CSF[8] == { ClassName->DR, Chirality->Left, Weyl->DRw, Scalar->DRs, QuantumNumbers->{Y-> 1/3}, Indices->{Index[GEN], Index[Colourb]} },
|
---|
87 | CSF[9] == { ClassName->SPF,Chirality->Left, Weyl->SPw, Scalar->SPs}
|
---|
88 | };
|
---|
89 |
|
---|
90 | (* ************************** *)
|
---|
91 | (* ***** Fields ***** *)
|
---|
92 | (* ************************** *)
|
---|
93 | M$ClassesDescription = {
|
---|
94 | (* Gauge bosons: unphysical vector fields *)
|
---|
95 | V[11] == { ClassName->B, Unphysical->True, SelfConjugate->True,
|
---|
96 | Definitions->{B[mu_]->-sw Z[mu]+cw A[mu]} },
|
---|
97 | V[12] == { ClassName->Wi, Unphysical->True, SelfConjugate->True, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
---|
98 | Definitions-> {Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3]->cw Z[mu] + sw A[mu]} },
|
---|
99 |
|
---|
100 | (* Gauge bosons: physical vector fields *)
|
---|
101 | V[1] == { ClassName->A, SelfConjugate->True, Mass->0, Width->0, ParticleName->"a",
|
---|
102 | PDG->22, PropagatorLabel->"A", PropagatorType->Sine, PropagatorArrow->None},
|
---|
103 | V[2] == { ClassName->Z, SelfConjugate->True, Mass->MZ, Width->WZ, ParticleName->"Z",
|
---|
104 | PDG->23, PropagatorLabel->"Z", PropagatorType->Sine, PropagatorArrow->None},
|
---|
105 | V[3] == { ClassName->W, SelfConjugate->False, Mass->MW, Width->WW, ParticleName->"W+", AntiParticleName->"W-", QuantumNumbers->{Q->1},
|
---|
106 | PDG->24, PropagatorLabel->"W", PropagatorType->Sine, PropagatorArrow->Forward},
|
---|
107 | V[5] == { ClassName->G, SelfConjugate->True, Indices->{Index[Gluon]}, Mass->0, Width->0, ParticleName->"g",
|
---|
108 | PDG->21, PropagatorLabel->"G", PropagatorType->C, PropagatorArrow->None },
|
---|
109 |
|
---|
110 | (* Gauginos: unphysical Weyls *)
|
---|
111 | W[20] == { ClassName->bow, Unphysical->True, Chirality->Left, SelfConjugate->False,
|
---|
112 | Definitions->{bow[s_]:>Module[{i}, -I*Conjugate[NN[i,1]]*neuw[s,i]]}},
|
---|
113 | W[21] == { ClassName->wow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
---|
114 | Definitions->{
|
---|
115 | wow[s_,1]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]+Conjugate[VV[i,1]]*chpw[s,i])/(I*Sqrt[2])],
|
---|
116 | wow[s_,2]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]-Conjugate[VV[i,1]]*chpw[s,i])/(-Sqrt[2])],
|
---|
117 | wow[s_,3]:>Module[{i},-I*Conjugate[NN[i,2]]*neuw[s,i]]} },
|
---|
118 | W[22] == { ClassName->gow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]}, Definitions->{gow[inds__]->-I*goww[inds]} },
|
---|
119 |
|
---|
120 | (* Higgsinos: unphysical Weyls *)
|
---|
121 | W[23] == { ClassName->huw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
|
---|
122 | Definitions->{
|
---|
123 | huw[s_,1]:> Module[{i}, Conjugate[VV[i,2]]*chpw[s,i]],
|
---|
124 | huw[s_,2]:> Module[{i}, Conjugate[NN[i,4]]*neuw[s,i]] } },
|
---|
125 | W[24] == { ClassName->hdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
---|
126 | Definitions->{
|
---|
127 | hdw[s_,1]:> Module[{i}, Conjugate[NN[i,3]]*neuw[s,i]],
|
---|
128 | hdw[s_,2]:> Module[{i}, Conjugate[UU[i,2]]*chmw[s,i]]} },
|
---|
129 | (* Singlino field *)
|
---|
130 | W[25] == { ClassName->SPw, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{SPw[s_]:>Module[{i},Conjugate[NN[i,5]]*neuw[s,i]]}},
|
---|
131 |
|
---|
132 | (* Gauginos/Higgsinos/singlino: physical Weyls *)
|
---|
133 | W[1] == { ClassName->neuw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[NEU]}, FlavorIndex->NEU },
|
---|
134 | W[2] == { ClassName->chpw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q-> 1} } ,
|
---|
135 | W[3] == { ClassName->chmw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q->-1} } ,
|
---|
136 | W[4] == { ClassName->goww, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
|
---|
137 |
|
---|
138 | (* Gauginos/Higgsinos/singlino: physical Diracs *)
|
---|
139 | F[11] == { ClassName->neu, SelfConjugate->True, Indices->{Index[NEU]}, FlavorIndex->NEU, WeylComponents->neuw,
|
---|
140 | ParticleName->{"n1","n2","n3","n4","n5"}, PDG->{1000022,1000023,1000025,1000035,1000045},
|
---|
141 | ClassMembers->{neu1,neu2,neu3,neu4,neu5}, Mass->{Mneu,Mneu1,Mneu2,Mneu3,Mneu4,Mneu5}, Width->{Wneu,Wneu1,Wneu2,Wneu3,Wneu4,Wneu5},
|
---|
142 | PropagatorLabel->{"neu","neu1","neu2","neu3","neu4","neu5"}, PropagatorType->Straight, PropagatorArrow->None},
|
---|
143 | F[12] == { ClassName->ch, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, WeylComponents->{chpw,chmwbar},
|
---|
144 | ParticleName->{"x1+","x2+"}, AntiParticleName->{"x1-","x2-"}, QuantumNumbers->{Q ->1},
|
---|
145 | ClassMembers->{ch1,ch2}, Mass->{Mch,Mch1,Mch2}, Width->{Wch,Wch1,Wch2},
|
---|
146 | PDG->{1000024,1000037}, PropagatorLabel->{"ch","ch1","ch2"}, PropagatorType->Straight, PropagatorArrow->Forward },
|
---|
147 | F[15] == { ClassName->go, SelfConjugate->True, Indices->{Index[Gluon]}, WeylComponents->goww, Mass->Mgo, Width->Wgo, ParticleName->"go",
|
---|
148 | PDG->1000021, PropagatorLabel->"go", PropagatorType->Straight, PropagatorArrow->None },
|
---|
149 |
|
---|
150 | (* Higgs: unphysical scalars *)
|
---|
151 | S[21] == { ClassName->hus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
|
---|
152 | Definitions->{
|
---|
153 | hus[1]->Cos[beta]*H + Sin[beta]*GP,
|
---|
154 | hus[2] :> Module[{mm},(vu + Conjugate[US[mm,2]]*h0[mm] + I*Conjugate[UP[mm,2]]*A0[mm] + I*Conjugate[UP32]*G0)/Sqrt[2]]}},
|
---|
155 | S[22] == { ClassName->hds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
---|
156 | Definitions->{
|
---|
157 | hds[1] :> Module[{mm},(vd + Conjugate[US[mm,1]]*h0[mm] + I*Conjugate[UP[mm,1]]*A0[mm] + I*Conjugate[UP31]*G0)/Sqrt[2]],
|
---|
158 | hds[2]->Sin[beta]*Hbar - Cos[beta]*GPbar} },
|
---|
159 |
|
---|
160 | (* Singlet field *)
|
---|
161 | S[23] == { ClassName->SPs, Unphysical->True, SelfConjugate->False,
|
---|
162 | Definitions->{SPs :> Module[{mm}, (vs + Conjugate[US[mm,3]]*h0[mm] + I*Conjugate[UP[mm,3]]*A0[mm] + I*Conjugate[UP33]*G0)/Sqrt[2]]} },
|
---|
163 |
|
---|
164 | (* Higgs: physical fields and Goldstones *)
|
---|
165 | S[1] == { ClassName->h0, SelfConjugate->True, Indices->{Index[SHig]}, FlavorIndex->SHig,
|
---|
166 | ParticleName->{"h01","h02","h03"}, ClassMembers->{h01,h02,h03}, Mass->{MH0,MH01,MH02,MH03}, Width->{WH0,WH01,WH02,WH03},
|
---|
167 | PDG->{25,35,45}, PropagatorLabel->{"h0","h01","h02","h03"}, PropagatorType->ScalarDash, PropagatorArrow->None},
|
---|
168 | S[2] == { ClassName->A0, SelfConjugate->True, Indices->{Index[PHig]}, FlavorIndex->PHig,
|
---|
169 | ParticleName->{"a01","a02"}, ClassMembers->{a01,a02}, Mass->{MxA0,MxA01,MxA02}, Width->{WA0,WA01,WA02},
|
---|
170 | PDG->{36,46}, PropagatorLabel->{"a0","a01","a02"}, PropagatorType->ScalarDash, PropagatorArrow->None},
|
---|
171 | S[5] == { ClassName->H, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MH, Width->WH,
|
---|
172 | ParticleName->"H+", AntiParticleName->"H-",
|
---|
173 | PDG->37, PropagatorLabel->"H", PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
---|
174 | S[4] == { ClassName->G0, SelfConjugate->True, Mass->MZ, Width->WG0, Goldstone->Z,
|
---|
175 | ParticleName->"G0",
|
---|
176 | PDG->250, PropagatorLabel->"G0", PropagatorType->D, PropagatorArrow->None},
|
---|
177 | S[6] == { ClassName->GP, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MW, Width->WGP, Goldstone->W,
|
---|
178 | ParticleName->"G+", AntiParticleName->"G-",
|
---|
179 | PDG->251, PropagatorLabel->"GP", PropagatorType->D, PropagatorArrow->None },
|
---|
180 |
|
---|
181 | (* Fermions: unphysical Weyls *)
|
---|
182 | W[26] == { ClassName->LLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN]}, FlavorIndex->SU2D,
|
---|
183 | QuantumNumbers->{Y->-1/2},
|
---|
184 | Definitions->{LLw[s_,1,ff_]:>Module[{ff2}, PMNS[ff,ff2]*vLw[s,ff2]], LLw[s_,2,ff_]->eLw[s,ff]}},
|
---|
185 | W[27] == { ClassName->QLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN],Index[Colour]},FlavorIndex->SU2D,
|
---|
186 | QuantumNumbers->{Y->1/6},
|
---|
187 | Definitions->{QLw[s_,1,ff_,cc_]->uLw[s,ff,cc], QLw[s_,2,ff_,cc_]:>Module[{ff2}, CKM[ff,ff2] dLw[s,ff2,cc]]}},
|
---|
188 |
|
---|
189 | (* Fermions: physical Weyls *)
|
---|
190 | W[5] == { ClassName->vLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
---|
191 | W[6] == { ClassName->eLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
---|
192 | W[7] == { ClassName->VRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
---|
193 | W[8] == { ClassName->ERw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1} },
|
---|
194 | W[9] == { ClassName->uLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
|
---|
195 | W[10]== { ClassName->dLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
|
---|
196 | W[11]== { ClassName->URw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3} },
|
---|
197 | W[12]== { ClassName->DRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3} },
|
---|
198 |
|
---|
199 | (* Fermions: physical Dirac *)
|
---|
200 | F[1] == { ClassName->vl, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{vLw,VRwbar},
|
---|
201 | ParticleName->{"ve","vm","vt"}, AntiParticleName->{"ve~","vm~","vt~"},
|
---|
202 | ClassMembers->{ve,vm,vt}, Mass->{Mvl,Mve,Mvm,Mvt}, Width->0,
|
---|
203 | PDG->{12,14,16}, PropagatorLabel->{"v","ve","vm","vt"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
---|
204 | F[2] == { ClassName->l, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{eLw,ERwbar}, QuantumNumbers->{Q->-1},
|
---|
205 | ParticleName->{"e-","mu-","tau-"}, AntiParticleName->{"e+","mu+","tau+"},
|
---|
206 | ClassMembers->{e,m,ta}, Mass->{Ml,Me,Mm,Mta}, Width->0,
|
---|
207 | PDG->{11,13,15}, PropagatorLabel->{"l","e","mu","tau"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
---|
208 | F[3] == { ClassName->uq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{uLw,URwbar}, QuantumNumbers->{Q-> 2/3},
|
---|
209 | ParticleName->{"u","c","t"}, AntiParticleName->{"u~","c~","t~"},
|
---|
210 | ClassMembers->{u,c,t}, Mass->{Muq,MU,MC,MT}, Width->{Wuq,0,0,WT},
|
---|
211 | PDG->{2,4,6}, PropagatorLabel->{"uq","u","c","t"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
---|
212 | F[4] == { ClassName->dq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{dLw,DRwbar}, QuantumNumbers->{Q->-1/3},
|
---|
213 | ParticleName->{"d","s","b"}, AntiParticleName->{"d~","s~","b~"},
|
---|
214 | ClassMembers->{d,s,b}, Mass->{Mdq,MD,MS,MB}, Width->0,
|
---|
215 | PDG->{1,3,5}, PropagatorLabel->{"dq","d","s","b"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
---|
216 |
|
---|
217 | (* Sfermion: unphysical scalars *)
|
---|
218 | S[24] == { ClassName->LLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
---|
219 | Definitions->{ LLs[1,ff_] :> Module[{ff2,ff3}, Conjugate[Rn[ff3,ff2]]*PMNS[ff,ff2]*sn[ff3]], LLs[2,ff_]:> Module[{ff2}, Conjugate[RlL[ff2,ff]]*sl[ff2]] } },
|
---|
220 | S[25] == { ClassName->ERs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1},
|
---|
221 | Definitions->{ ERs[ff_] :> Module[{ff2}, slbar[ff2]*RlR[ff2,ff]]} },
|
---|
222 | S[26] == { ClassName->VRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
|
---|
223 | Definitions->{ VRs[_] -> 0 } },
|
---|
224 | S[27] == { ClassName->QLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN],Index[Colour]}, FlavorIndex->SU2D, QuantumNumbers->{Y->1/6},
|
---|
225 | Definitions->{
|
---|
226 | QLs[1,ff_,cc_]:>Module[{ff2},Conjugate[RuL[ff2,ff]]*su[ff2,cc]],
|
---|
227 | QLs[2,ff_,cc_]:>Module[{ff2,ff3},Conjugate[RdL[ff2,ff3]]*CKM[ff,ff3]*sd[ff2,cc]]}},
|
---|
228 | S[28] == { ClassName->URs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3},
|
---|
229 | Definitions->{ URs[ff_,cc_]:>Module[{ff2}, subar[ff2,cc]*RuR[ff2,ff]]} },
|
---|
230 | S[29] == { ClassName->DRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3},
|
---|
231 | Definitions->{ DRs[ff_,cc_]:>Module[{ff2}, sdbar[ff2,cc]*RdR[ff2,ff]]} },
|
---|
232 |
|
---|
233 | (* Sfermion: physical scalars *)
|
---|
234 | S[11] == { ClassName->sn, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
|
---|
235 | ParticleName->{"sv1","sv2","sv3"}, AntiParticleName->{"sv1~","sv2~","sv3~"},
|
---|
236 | ClassMembers-> {sn1, sn2, sn3}, Mass->{Msn,Msn1,Msn2,Msn3}, Width->{Wsn,Wsn1,Wsn2,Wsn3},
|
---|
237 | PDG->{1000012,1000014,1000016}, PropagatorLabel->{"sn","sn1","sn2","sn3"}, PropagatorType->ScalarDash, PropagatorArrow->Forward },
|
---|
238 | S[12] == { ClassName->sl, SelfConjugate->False, Indices->{Index[SCA]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1},
|
---|
239 | ParticleName->{"sl1-","sl2-","sl3-","sl4-","sl5-","sl6-"}, AntiParticleName->{"sl1+","sl2+","sl3+","sl4+","sl5+","sl6+"},
|
---|
240 | ClassMembers->{sl1,sl2,sl3,sl4,sl5,sl6}, Mass->{Msl,Msl1,Msl2,Msl3,Msl4,Msl5,Msl6}, Width->{Wsl,Wsl1,Wsl2,Wsl3,Wsl4,Wsl5,Wsl6},
|
---|
241 | PDG->{1000011,1000013,1000015,2000011,2000013,2000015}, PropagatorLabel->{"sl","sl1","sl2","sl3","sl4","sl5","sl6"},
|
---|
242 | PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
---|
243 | S[13] == { ClassName->su, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q-> 2/3},
|
---|
244 | ParticleName->{"su1","su2","su3","su4","su5","su6"}, AntiParticleName->{"su1~","su2~","su3~","su4~","su5~","su6~"},
|
---|
245 | ClassMembers->{su1,su2,su3,su4,su5,su6}, Mass->{Msu,Msu1,Msu2,Msu3,Msu4,Msu5,Msu6}, Width->{Wsu,Wsu1,Wsu2,Wsu3,Wsu4,Wsu5,Wsu6},
|
---|
246 | PDG->{1000002,1000004,1000006,2000002,2000004,2000006}, PropagatorLabel->{"su","su1","su2","su3","su4","su5","su6"},
|
---|
247 | PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
---|
248 | S[14]== { ClassName->sd, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1/3},
|
---|
249 | ParticleName->{"sd1","sd2","sd3","sd4","sd5","sd6"}, AntiParticleName->{"sd1~","sd2~","sd3~","sd4~","sd5~","sd6~"},
|
---|
250 | ClassMembers->{sd1,sd2,sd3,sd4,sd5,sd6}, Mass->{Msd,Msd1,Msd2,Msd3,Msd4,Msd5,Msd6}, Width->{Wsd,Wsd1,Wsd2,Wsd3,Wsd4,Wsd5,Wsd6},
|
---|
251 | PDG->{1000001,1000003,1000005,2000001,2000003,2000005}, PropagatorLabel->{"sd","sd1","sd2","sd3","sd4","sd5","sd6"},
|
---|
252 | PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
---|
253 |
|
---|
254 | (* Ghost: related to unphysical gauge bosons *)
|
---|
255 | U[11] == { ClassName->ghWi, Unphysical->True, SelfConjugate->False, Ghost->Wi, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
---|
256 | Definitions->{ghWi[1]->(ghWp+ghWm)/Sqrt[2], ghWi[2]->(ghWm-ghWp)/(I*Sqrt[2]), ghWi[3]->cw ghZ+sw ghA} } ,
|
---|
257 | U[12] == { ClassName->ghB, Unphysical->True, SelfConjugate->False, Ghost->B,
|
---|
258 | Definitions->{ghB->-sw ghZ+cw ghA} },
|
---|
259 |
|
---|
260 | (* Ghost: related to physical gauge bosons *)
|
---|
261 | U[5] == { ClassName->ghG, SelfConjugate->False, Indices->{Index[Gluon]}, Ghost->G, QuantumNumbers->{GhostNumber->1},
|
---|
262 | Mass->0, Width->0, ParticleName->"ghG", PropagatorLabel->"uG", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
---|
263 | U[1] == { ClassName->ghA, SelfConjugate->False, Ghost->A, QuantumNumbers->{GhostNumber->1},
|
---|
264 | Mass->0, Width->0, ParticleName->"ghA", PropagatorLabel->"uA", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
---|
265 | U[2] == { ClassName->ghZ, SelfConjugate->False, Ghost->Z, QuantumNumbers->{GhostNumber->1},
|
---|
266 | Mass->{MZ,Internal}, Width->WZ, ParticleName->"ghZ", PropagatorLabel->"uZ", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
---|
267 | U[4] == { ClassName->ghWp, SelfConjugate->False, Ghost->W, QuantumNumbers->{GhostNumber->1, Q->1},
|
---|
268 | Mass->{MW,Internal}, Width->WW, ParticleName->"ghWp", PropagatorLabel->"uWp", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
---|
269 | U[3] == { ClassName->ghWm, SelfConjugate->False, Ghost->Wbar, QuantumNumbers->{GhostNumber->1, Q->-1},
|
---|
270 | Mass->{MW,Internal}, Width->WW, ParticleName->"ghWm", PropagatorLabel->"uWm", PropagatorType->GhostDash, PropagatorArrow->Forward}
|
---|
271 | };
|
---|
272 |
|
---|
273 |
|
---|
274 | (* ************************** *)
|
---|
275 | (* ***** Parameters ***** *)
|
---|
276 | (* ************************** *)
|
---|
277 | M$Parameters = {
|
---|
278 | (* Mixing: external parameters *)
|
---|
279 | RMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->UPMNS,
|
---|
280 | Description->"Neutrino PMNS mixing matrix (real part)"},
|
---|
281 | IMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMUPMNS,
|
---|
282 | Description->"Neutrino PMNS mixing matrix (imaginary part)"},
|
---|
283 | RCKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->VCKM,
|
---|
284 | Description->"CKM mixing matrix (real part)"},
|
---|
285 | ICKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMVCKM,
|
---|
286 | Description->"CKM mixing matrix (imaginary part)"},
|
---|
287 | RNN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->NMNMIX,
|
---|
288 | Description->"Neutralino mixing matrix (real part)"},
|
---|
289 | INN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->IMNMNMIX,
|
---|
290 | Description->"Neutralino mixing matrix (imaginary part)"},
|
---|
291 | RUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->UMIX,
|
---|
292 | Description->"Chargino mixing matrix U (real part)"},
|
---|
293 | IUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMUMIX,
|
---|
294 | Description->"Chargino mixing matrix U (imaginary part)"},
|
---|
295 | RVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->VMIX,
|
---|
296 | Description->"Chargino mixing matrix V (real part)"},
|
---|
297 | IVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMVMIX,
|
---|
298 | Description->"Chargino mixing matrix V (imaginary part)"},
|
---|
299 | RRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->SNUMIX,
|
---|
300 | Description->"Sneutrino mixing matrix (real part)"},
|
---|
301 | IRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMSNUMIX,
|
---|
302 | Description->"Sneutrino mixing matrix (imaginary part)"},
|
---|
303 | RRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->SELMIX,
|
---|
304 | Description->"Slepton mixing matrix (real part)"},
|
---|
305 | IRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMSELMIX,
|
---|
306 | Description->"Slepton mixing matrix (imaginary part)"},
|
---|
307 | RRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->USQMIX,
|
---|
308 | Description->"Up squark mixing matrix (real part)"},
|
---|
309 | IRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMUSQMIX,
|
---|
310 | Description->"Up squark mixing matrix (imaginary part)"},
|
---|
311 | RRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->DSQMIX,
|
---|
312 | Description->"Down squark mixing matrix (real part)"},
|
---|
313 | IRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMDSQMIX,
|
---|
314 | Description->"Down squark mixing matrix (imaginary part)"},
|
---|
315 |
|
---|
316 | (* Mixing: internal parameters *)
|
---|
317 | cw == { TeX->Subscript[c,w], ParameterType->Internal, ComplexParameter->False, Value->MW/MZ, Description->"Cosine of the weak angle"},
|
---|
318 | sw == { TeX->Subscript[s,w], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[1-cw^2], Description->"Sine of the weak angle"},
|
---|
319 | PMNS== { TeX->Superscript[U,pmns], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
|
---|
320 | If[$MNSDiag, Definitions:>{PMNS[i_,j_]:>0 /;(i!=j), PMNS[i_,j_]:>1/;(i==j)}, Value->{PMNS[i_,j_]:>RMNS[i,j]+I*IMNS[i,j]}],
|
---|
321 | Description-> "Neutrino PMNS mixing matrix"},
|
---|
322 | CKM == { TeX->Superscript[V,ckm], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
|
---|
323 | If[$CKMDiag, Definitions:>{CKM[i_,j_]:>0 /;(i!=j), CKM[i_,j_]:>1/;(i==j)}, Value->{CKM[i_,j_]:>RCKM[i,j]+I*ICKM[i,j]}],
|
---|
324 | Description-> "CKM mixing matrix"},
|
---|
325 | NN == { TeX->N, ParameterType-> Internal, ComplexParameter->True, Indices->{Index[NEU],Index[NEU]}, Unitary->True,
|
---|
326 | Value->{NN[i_,j_]:>RNN[i,j]+I*INN[i,j]}, Description-> "Neutralino mixing matrix"},
|
---|
327 | UU == { TeX->U, ParameterType-> Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
|
---|
328 | Value->{UU[i_,j_]:>RUU[i,j]+I*IUU[i,j]}, Description-> "Chargino mixing matrix U"},
|
---|
329 | VV == { TeX->V, ParameterType-> Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
|
---|
330 | Value->{VV[i_,j_]:>RVV[i,j]+I*IVV[i,j]}, Description-> "Chargino mixing matrix V"},
|
---|
331 | Rl == { TeX->Superscript[R,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
---|
332 | Value->{Rl[i_,j_]:>RRl[i,j]+I*IRl[i,j]}, Description-> "Slepton mixing matrix"},
|
---|
333 | Rn == { TeX->Superscript[R,n], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
|
---|
334 | Value->{Rn[i_,j_]:>RRn[i,j]+I*IRn[i,j]}, Description-> "Sneutrino mixing matrix"},
|
---|
335 | Ru == { TeX->Superscript[R,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
---|
336 | Value->{Ru[i_,j_]:>RRu[i,j]+I*IRu[i,j]}, Description-> "Up squark mixing matrix"},
|
---|
337 | Rd == { TeX->Superscript[R,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
---|
338 | Value->{Rd[i_,j_]:>RRd[i,j]+I*IRd[i,j]}, Description-> "Down squark mixing matrix"},
|
---|
339 |
|
---|
340 | (* Left and right parts of the sfermion mixing matrices *)
|
---|
341 | RlL == { TeX->Superscript[RL,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
---|
342 | Definitions->{RlL[i_,j_]:>Rl[i,j]/;NumericQ[j]}, Description-> "Slepton mixing matrix - first three columns"},
|
---|
343 | RlR == { TeX->Superscript[RR,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
---|
344 | Definitions->{RlR[i_,j_]:>Rl[i,j+3]/;NumericQ[j]},Description-> "Slepton mixing matrix - last three columns"},
|
---|
345 | RuL == { TeX->Superscript[RL,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
---|
346 | Definitions->{RuL[i_,j_]:>Ru[i,j]/;NumericQ[j]}, Description-> "Up squark mixing matrix - first three columns"},
|
---|
347 | RuR == { TeX->Superscript[RR,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
---|
348 | Definitions->{RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]},Description-> "Up squark mixing matrix - last three columns"},
|
---|
349 | RdL == { TeX->Superscript[RL,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
---|
350 | Definitions->{RdL[i_,j_]:>Rd[i,j]/;NumericQ[j]}, Description-> "Down squark mixing matrix - first three columns"},
|
---|
351 | RdR == { TeX->Superscript[RR,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
---|
352 | Definitions->{RdR[i_,j_]:>Rd[i,j+3]/;NumericQ[j]},Description-> "Down squark mixing matrix - last three columns"},
|
---|
353 |
|
---|
354 | (* Couplings constants: external parameters *)
|
---|
355 | aEWM1 == { TeX->Subsuperscript[\[Alpha],w,-1], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->1, InteractionOrder->{QED,-2},
|
---|
356 | Description->"Inverse of the EW coupling constant at the Z pole"},
|
---|
357 | aS == { TeX->Subscript[\[Alpha],s], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->3, InteractionOrder->{QCD, 2},
|
---|
358 | Description->"Strong coupling constant at the Z pole."},
|
---|
359 |
|
---|
360 | (* Couplings constants: internal parameters *)
|
---|
361 | ee == { TeX->e, ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi / aEWM1], InteractionOrder->{QED,1},
|
---|
362 | Description->"Electric coupling constant"},
|
---|
363 | gs == { TeX->Subscript[g,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi aS], InteractionOrder->{QCD,1}, ParameterName->G,
|
---|
364 | Description->"Strong coupling constant"},
|
---|
365 | gp == { TeX->g', ParameterType->Internal, ComplexParameter->False, Definitions-> {gp->ee/cw}, InteractionOrder->{QED,1},
|
---|
366 | Description->"Hypercharge coupling constant at the Z pole"},
|
---|
367 | gw == { TeX->Subscript[g,w], ParameterType->Internal, ComplexParameter->False, Definitions-> {gw->ee/sw}, InteractionOrder->{QED,1},
|
---|
368 | Description->"Weak coupling constant at the Z pole"},
|
---|
369 |
|
---|
370 | (* Higgs sector: external parameters *)
|
---|
371 | tb == { TeX->Subscript[t,b], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->2, Description->"Ratio of the two Higgs vevs"},
|
---|
372 |
|
---|
373 | (* Higgs sector: internal parameters *)
|
---|
374 | beta == { TeX->\[Beta], ParameterType->Internal, ComplexParameter->False, Value->ArcTan[tb], Description->"Arctan of the ratio of the two Higgs vevs"},
|
---|
375 | vev == { TeX->v, ParameterType->Internal, ComplexParameter->False, Value->2*MZ*sw*cw/ee, InteractionOrder->{QED,-1},
|
---|
376 | Description->"Higgs vacuum expectation value"},
|
---|
377 | vd == { TeX->Subscript[v,d], ParameterType->Internal, ComplexParameter->False, Value->vev*Cos[beta], InteractionOrder->{QED,-1},
|
---|
378 | Description->"Down-type Higgs vacuum expectation value"},
|
---|
379 | vu == { TeX->Subscript[v,u], ParameterType->Internal, ComplexParameter->False, Value->vev*Sin[beta], InteractionOrder->{QED,-1},
|
---|
380 | Description->"Up-type Higgs vacuum expectation value"},
|
---|
381 |
|
---|
382 | (* Superpotential: external parameters *)
|
---|
383 | Ryu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YU,
|
---|
384 | Description->"Up-type quark Yukawa matrix (real part)"},
|
---|
385 | Iyu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYU,
|
---|
386 | Description->"Up-type quark Yukawa matrix (imaginary part)"},
|
---|
387 | Ryd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YD,
|
---|
388 | Description->"Down-type quark Yukawa matrix (real part)"},
|
---|
389 | Iyd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYD,
|
---|
390 | Description->"Down-type quark Yukawa matrix (imaginary part)"},
|
---|
391 | Rye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YE,
|
---|
392 | Description->"Charged lepton Yukawa matrix (real part)"},
|
---|
393 | Iye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYE,
|
---|
394 | Description->"Charged lepton Yukawa matrix (imaginary part)"},
|
---|
395 |
|
---|
396 | (* Superpotential: internal parameters *)
|
---|
397 | yu == { TeX->Superscript[y,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
398 | Definitions:>{yu[i_,j_]:>0 /;(i!=j)}, Value->{yu[i_,j_]:>If[i==j,Ryu[i,j]+I*Iyu[i,j]]}, InteractionOrder->{QED,1}, Description-> "Up-type quark Yukawa matrix"},
|
---|
399 | yd == { TeX->Superscript[y,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
400 | Definitions:>{yd[i_,j_]:>0 /;(i!=j)}, Value->{yd[i_,j_]:>If[i==j,Ryd[i,j]+I*Iyd[i,j]]}, InteractionOrder->{QED,1}, Description-> "Down-type quark Yukawa matrix"},
|
---|
401 | ye == { TeX->Superscript[y,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
402 | Definitions:>{ye[i_,j_]:>0 /;(i!=j)}, Value->{ye[i_,j_]:>If[i==j,Rye[i,j]+I*Iye[i,j]]}, InteractionOrder->{QED,1}, Description-> "Charged lepton Yukawa matrix"},
|
---|
403 |
|
---|
404 | (* Soft terms: external parameters *)
|
---|
405 | RMx1 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->1, Description->"Bino mass (real part)"},
|
---|
406 | IMx1 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->1, Description->"Bino mass (imaginary part)"},
|
---|
407 | RMx2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->2, Description->"Wino mass (real part)"},
|
---|
408 | IMx2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->2, Description->"Wino mass (imaginary part)"},
|
---|
409 | RMx3 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->3, Description->"Gluino mass (real part)"},
|
---|
410 | IMx3 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->3, Description->"Gluino mass (imaginary part)"},
|
---|
411 | mHu2 == { TeX->Subsuperscript[m,Subscript[H,u],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->22,
|
---|
412 | Description->"Up-type Higgs squared mass"},
|
---|
413 | mHd2 == { TeX->Subsuperscript[m,Subscript[H,d],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->21,
|
---|
414 | Description->"Down-type Higgs squared mass"},
|
---|
415 | MA2 == { TeX->Subsuperscript[m,A,2], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->4,
|
---|
416 | Description->"Pseudoscalar Higgs squared mass"},
|
---|
417 | RmL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSL2,
|
---|
418 | Description->"Left-handed slepton squared mass matrix (real part)"},
|
---|
419 | ImL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSL2,
|
---|
420 | Description->"Left-handed slepton squared mass matrix (imaginary part)"},
|
---|
421 | RmE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSE2,
|
---|
422 | Description->"Right-handed slepton squared mass matrix (real part)"},
|
---|
423 | ImE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSE2,
|
---|
424 | Description->"Right-handed slepton squared mass matrix (imaginary part)"},
|
---|
425 | RmQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSQ2,
|
---|
426 | Description->"Left-handed squark squared mass matrix (real part)"},
|
---|
427 | ImQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSQ2,
|
---|
428 | Description->"Left-handed squark squared mass matrix (imaginary part)"},
|
---|
429 | RmU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSU2,
|
---|
430 | Description->"Right-handed up-type squark squared mass matrix (real part)"},
|
---|
431 | ImU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSU2,
|
---|
432 | Description->"Right-handed up-type squark squared mass matrix (imaginary part)"},
|
---|
433 | RmD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSD2,
|
---|
434 | Description->"Right-handed down-type squark squared mass matrix (real part)"},
|
---|
435 | ImD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSD2,
|
---|
436 | Description->"Right-handed down-type squark squared mass matrix (imaginary part)"},
|
---|
437 | Rte == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TE,
|
---|
438 | Description->"Charged slepton trilinear coupling (real part)"},
|
---|
439 | Ite == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTE,
|
---|
440 | Description->"Charged slepton trilinear coupling (imaginary part)"},
|
---|
441 | Rtu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TU,
|
---|
442 | Description->"Up-type squark trilinear coupling (real part)"},
|
---|
443 | Itu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTU,
|
---|
444 | Description->"Up-type squark trilinear coupling (imaginary part)"},
|
---|
445 | Rtd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TD,
|
---|
446 | Description->"Down-type squark trilinear coupling (real part)"},
|
---|
447 | Itd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTD,
|
---|
448 | Description->"Down-type squark trilinear coupling (imaginary part)"},
|
---|
449 |
|
---|
450 | (* Soft terms: internal parameters *)
|
---|
451 | Mx1 == { TeX->Subscript[M,1], ParameterType->Internal, ComplexParameter->True, Value->RMx1+I*IMx1, Description->"Bino mass"},
|
---|
452 | Mx2 == { TeX->Subscript[M,2], ParameterType->Internal, ComplexParameter->True, Value->RMx2+I*IMx2, Description->"Wino mass"},
|
---|
453 | Mx3 == { TeX->Subscript[M,3], ParameterType->Internal, ComplexParameter->True, Value->RMx3+I*IMx3, Description->"Gluino mass"},
|
---|
454 | mL2 == { TeX->Subsuperscript[m,OverTilde[L],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
455 | Value->{mL2[i_,j_]:>RmL2[i,j]+I*ImL2[i,j]}, Description-> "Left-handed slepton squared mass matrix"},
|
---|
456 | mE2 == { TeX->Subsuperscript[m,OverTilde[E],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
457 | Value->{mE2[i_,j_]:>RmE2[i,j]+I*ImE2[i,j]}, Description-> "Right-handed slepton squared mass matrix"},
|
---|
458 | mQ2 == { TeX->Subsuperscript[m,OverTilde[Q],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
459 | Value->{mQ2[i_,j_]:>RmQ2[i,j]+I*ImQ2[i,j]}, Description-> "Left-handed squark squared mass matrix"},
|
---|
460 | mU2 == { TeX->Subsuperscript[m,OverTilde[U],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
461 | Value->{mU2[i_,j_]:>RmU2[i,j]+I*ImU2[i,j]}, Description-> "Right-handed up-type squark squared mass matrix"},
|
---|
462 | mD2 == { TeX->Subsuperscript[m,OverTilde[D],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
---|
463 | Value->{mD2[i_,j_]:>RmD2[i,j]+I*ImD2[i,j]}, Description-> "Right-handed down-type squark squared mass matrix"},
|
---|
464 | te == { TeX->Subscript[T,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
|
---|
465 | Value->{te[i_,j_]:>Rte[i,j]+I*Ite[i,j]}, Description-> "Charged slepton trilinear coupling"},
|
---|
466 | tu == { TeX->Subscript[T,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
|
---|
467 | Value->{tu[i_,j_]:>Rtu[i,j]+I*Itu[i,j]}, Description-> "Up-type squark trilinear coupling"},
|
---|
468 | td == { TeX->Subscript[T,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
|
---|
469 | Value->{td[i_,j_]:>Rtd[i,j]+I*Itd[i,j]}, Description-> "Down-type squark trilinear coupling"},
|
---|
470 |
|
---|
471 | (* NMSSM external parameters *)
|
---|
472 | NMl == { TeX->\[Lambda], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->1, InteractionOrder->{QED,1},
|
---|
473 | Description->"Superpotential trilinear Higgs-singlet coupling"},
|
---|
474 | NMk == { TeX->\[Kappa], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->2, InteractionOrder->{QED,1},
|
---|
475 | Description->"Superpotential cubic singlet self-interaction"},
|
---|
476 | NMAl== { TeX->Subscript[A,\[Lambda]], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->3,
|
---|
477 | Description->"Soft trilinear Higgs-singlet coupling"},
|
---|
478 | NMAk== { TeX->Subscript[A,\[Kappa]], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->4,
|
---|
479 | Description->"Soft cubic singlet self-interaction"},
|
---|
480 | mueff=={ TeX->Subscript[\[Mu],eff], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->5,
|
---|
481 | Description->"Effective mu-parameter (vev of the singlet times NMl)"},
|
---|
482 | NMxF== { TeX->Subscript[\[Xi],F], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->6,
|
---|
483 | Description->"Superpotential linear singlet term"},
|
---|
484 | NMxS== { TeX->Subscript[\[Xi],S], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->7,
|
---|
485 | Description->"Soft linear singlet term"},
|
---|
486 | NMmu== { TeX->\[Mu]', ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->8,
|
---|
487 | Description->"Superpotential quadratic singlet term"},
|
---|
488 | MSP2== { TeX->Subsuperscript[M',S,2], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->9,
|
---|
489 | Description->"Soft quadratic singlet term"},
|
---|
490 | MS2 == { TeX->Subsuperscript[M,S,2], ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->10,
|
---|
491 | Description->"Soft singlet mass term"},
|
---|
492 | bb == { TeX->b, ParameterType->External, ComplexParameter->False, BlockName->NMSSMRUN, OrderBlock->12, Description->"Higgs bilinear soft term"},
|
---|
493 | US == { TeX->Superscript[U,S], ParameterType->External, ComplexParameter->False, Indices->{Index[SHig],Index[SHig]}, BlockName->NMHMIX,
|
---|
494 | Description->"Scalar Higgses mixing matrix"},
|
---|
495 | UP == { TeX->Superscript[U,P], ParameterType->External, ComplexParameter->False, Indices->{Index[PHig],Index[SHig]}, BlockName->NMAMIX,
|
---|
496 | Description->"Pseudoscalar Higgses mixing matrix"},
|
---|
497 |
|
---|
498 | (* NMSSM internal parameters *)
|
---|
499 | vs == { TeX->Subscript[v,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[2] mueff/NMl, InteractionOrder ->{QED,-1}, Description->"Vev of the scalar singlet"},
|
---|
500 |
|
---|
501 | (* NMSSM Golstone mixing parameters *)
|
---|
502 | UP31=={ TeX->Subsuperscript[U,P,31], ParameterType->External, ComplexParameter->False, BlockName->FRUP, OrderBlock->1, Value->0,
|
---|
503 | Description->"Goldstone element of the Higgs mixing matrix"},
|
---|
504 | UP32=={ TeX->Subsuperscript[U,P,32], ParameterType->External, ComplexParameter->False, BlockName->FRUP, OrderBlock->2, Value->0,
|
---|
505 | Description->"Goldstone element of the Higgs mixing matrix"},
|
---|
506 | UP33=={ TeX->Subsuperscript[U,P,33], ParameterType->External, ComplexParameter->False, BlockName->FRUP, OrderBlock->3, Value->0,
|
---|
507 | Description->"Goldstone element of the Higgs mixing matrix"}
|
---|
508 | };
|
---|
509 |
|
---|
510 | (* ************************** *)
|
---|
511 | (* **** Diracification **** *)
|
---|
512 | (* ************************** *)
|
---|
513 | ToDirac[exp_]:= Module[{tmp=Expand[exp],cnt=0,prg1=0,prg2=0,prgo1=0,prgo2=0,tot},
|
---|
514 | Colourb=Colour;
|
---|
515 |
|
---|
516 | tmp = If[Head[tmp]===Plus,List@@tmp,List[tmp]]/.Tb[a_,i_,j_]->-T[a,j,i];
|
---|
517 |
|
---|
518 | tmp = OptimizeIndex[#] &/@ tmp;
|
---|
519 | tot=Length[tmp];
|
---|
520 | Print["Flavor expansion: ", ProgressIndicator[Dynamic[prg1]]];
|
---|
521 | tmp = Module[{}, cnt++; prg1=cnt/tot;
|
---|
522 | Expand[(ExpandIndices[#, FlavorExpand->{SU2W, SU2D}] /. {
|
---|
523 | gp->ee/cw,
|
---|
524 | gw->ee/sw,
|
---|
525 | cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2),
|
---|
526 | cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw,
|
---|
527 | Power[PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)],2]->PauliSigma[1,i,j]^2 + PauliSigma[3,i,j]^2 + PauliSigma[2,i,j]^2,
|
---|
528 | PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)] PauliSigma[a_,k_?(NumericQ[#] &),l_?(NumericQ[#] &)]->
|
---|
529 | PauliSigma[1,i,j] PauliSigma[1,k,l] + PauliSigma[2,i,j] PauliSigma[2,k,l] + PauliSigma[3,i,j] PauliSigma[3,k,l]})]] &/@ tmp;
|
---|
530 | tmp = Plus@@tmp//.{cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2), cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw};
|
---|
531 | cnt=0; tot=Length[tmp];
|
---|
532 | Print["Opt 1: ",ProgressIndicator[Dynamic[prgo1]]];
|
---|
533 | tmp = Module[{}, cnt++; prgo1=cnt/tot;OptimizeIndex[#]] &/@ (List@@tmp);
|
---|
534 | Print["Weyl2Dirac: ",ProgressIndicator[Dynamic[prg2]]];cnt=0;
|
---|
535 | tmp = Module[{}, cnt++; prg2=cnt/tot; WeylToDirac[#]] &/@ tmp;
|
---|
536 | Print["Opt2: ",ProgressIndicator[Dynamic[prgo2]]];cnt=0;
|
---|
537 | tmp = Module[{}, cnt++; prgo2=cnt/tot;OptimizeIndex[#]] &/@ tmp;
|
---|
538 | Clear[Colourb];
|
---|
539 | Expand[Plus@@tmp]];
|
---|
540 |
|
---|
541 | (* ************************** *)
|
---|
542 | (* ***** Lagrangian ***** *)
|
---|
543 | (* ************************** *)
|
---|
544 | (* LVector *)
|
---|
545 | LVector := Module[{}, Plus@@(Module[{tmp}, tmp = SF2Components[#]; Expand[tmp[[2, 5]] + tmp[[2, 6]]]] &/@ (List @@ VSFKineticTerms[]))];
|
---|
546 |
|
---|
547 | (* LChiral *)
|
---|
548 | LChiral := Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ CSFKineticTerms[]) );
|
---|
549 |
|
---|
550 | (* Superpotential *)
|
---|
551 | SPot:= Module[{ff1,ff2,ff3,cc1},
|
---|
552 | yu[ff1,ff2] UR[ff1,cc1] (QL[1,ff2,cc1] HU[2] - QL[2,ff2,cc1] HU[1]) -
|
---|
553 | yd[ff1,ff3] Conjugate[CKM[ff2,ff3]] DR[ff1,cc1] (QL[1,ff2,cc1] HD[2] - QL[2,ff2,cc1] HD[1]) -
|
---|
554 | ye[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) +
|
---|
555 | NMl SPF (HU[1] HD[2] - HU[2] HD[1]) + 1/3 NMk*SPF^3 + NMmu SPF^2 + NMxF SPF];
|
---|
556 | LSuperW:= ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[SPot+HC[SPot]])) )/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
|
---|
557 |
|
---|
558 | (* Soft SUSY-breaking Lagrangian *)
|
---|
559 | LSoft := Module[{Mino, MSca, Tri, Bil},
|
---|
560 | (* Gaugino mass terms *)
|
---|
561 | Mino:=Module[{s,gl}, - Mx1*bow[s].bow[s] - Mx2*wow[s,gl].wow[s,gl] - Mx3*gow[s,gl].gow[s,gl]];
|
---|
562 | (* Scalar mass terms *)
|
---|
563 | MSca:=Module[{ii,ff1,ff2,ff3,ff4,cc1},
|
---|
564 | - mHu2*HC[hus[ii]]*hus[ii] - mHd2*HC[hds[ii]]*hds[ii] - MS2*SPsbar*SPs -
|
---|
565 | mL2[ff1,ff2]*HC[LLs[ii,ff1]]*LLs[ii,ff2] - mE2[ff1,ff2]*HC[ERs[ff1]]*ERs[ff2] -
|
---|
566 | CKM[ff1,ff2]*mQ2[ff2,ff3]*Conjugate[CKM[ff4,ff3]]*HC[QLs[ii,ff1,cc1]]*QLs[ii,ff4,cc1] -
|
---|
567 | mU2[ff1,ff2]*HC[URs[ff1,cc1]]*URs[ff2,cc1] - mD2[ff1,ff2]*HC[DRs[ff1,cc1]]*DRs[ff2,cc1] ];
|
---|
568 | (* Trilinear couplings *)
|
---|
569 | Tri:=-tu[ff1,ff2]*URs[ff1,cc1] (QLs[1,ff2,cc1] hus[2] - QLs[2,ff2,cc1] hus[1]) +
|
---|
570 | Conjugate[CKM[ff3,ff2]]*td[ff1,ff2]*DRs[ff1,cc1] (QLs[1,ff3,cc1] hds[2] - QLs[2,ff3,cc1] hds[1]) +
|
---|
571 | te[ff1,ff2]*ERs[ff1] (LLs[1,ff2] hds[2] - LLs[2,ff2] hds[1]) -
|
---|
572 | NMl*NMAl*SPs (hus[1] hds[2] - hus[2] hds[1]) -
|
---|
573 | 1/3 NMk*NMAk*SPs^3;
|
---|
574 | (* Linear and bilinear couplings *)
|
---|
575 | Bil:=-bb*(hus[1] hds[2] - hus[2] hds[1]) - MSP2*SPs^2 - NMxS*SPs;
|
---|
576 | (* Everything together *)
|
---|
577 | (Mino+HC[Mino])/2 + MSca + Tri + HC[Tri] + Bil + HC[Bil]];
|
---|
578 |
|
---|
579 | (* Ghost Lagrangian and gauge fixing terms *)
|
---|
580 | LFeynmanGFix := Module[{VectorU,VectorD, Phiu,Phid,Phiu0,Phid0, phid1,phid2,phiu1,phiu2, GF1,GF2,GF3,LGF, nrules, kk,ll,mm, LGh1,LGh2,LGh3,LGhS,LGh, genu,gend, gh,ghbar},
|
---|
581 | (* Expression the doublets in the nu/nd basis *)
|
---|
582 | VectorU[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
|
---|
583 | VectorD[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
|
---|
584 |
|
---|
585 | (* Higgs doublets *)
|
---|
586 | Phiu = Expand[ {(phiu1 + I phiu2)/Sqrt[2], (Conjugate[US[mm,2]]*h0[mm] + I*Conjugate[UP[mm,2]]*A0[mm] + I*Conjugate[UP32]*G0)/Sqrt[2]} ];
|
---|
587 | Phid = Expand[ {(Conjugate[US[mm,1]]*h0[mm] + I*Conjugate[UP[mm,1]]*A0[mm] + I*Conjugate[UP31]*G0)/Sqrt[2], (phid1 + I phid2)/Sqrt[2]} ];
|
---|
588 | (* vevs *)
|
---|
589 | Phiu0 = {0, vu/Sqrt[2]};
|
---|
590 | Phid0 = {vd/Sqrt[2], 0};
|
---|
591 | (* Back to the physical Higgses and Goldstones *)
|
---|
592 | nrules := {
|
---|
593 | phid1 -> (-Cos[beta]*GPbar - Cos[beta]*GP + Sin[beta]*Hbar + Sin[beta]*H)/Sqrt[2],
|
---|
594 | phid2 -> (-Cos[beta]*GPbar + Cos[beta]*GP + Sin[beta]*Hbar - Sin[beta]*H)/(I Sqrt[2]),
|
---|
595 | phiu1 -> ( Sin[beta]*GP + Sin[beta]*GPbar + Cos[beta]*H + Cos[beta]*Hbar)/Sqrt[2],
|
---|
596 | phiu2 -> (Sin[beta]*GP - Sin[beta]*GPbar + Cos[beta]*H - Cos[beta]*Hbar)/(I Sqrt[2])};
|
---|
597 |
|
---|
598 | (* Gauge-fixing functions *)
|
---|
599 | GF1 := Module[{mu}, del[B[mu] , mu] - gp VectorU[-I/2 Phiu0].VectorU[Phiu] - gp VectorD[I/2 Phid0].VectorD[Phid] ];
|
---|
600 | GF2[k_] := Module[{mu}, del[Wi[mu,k], mu] - gw VectorU[-I/2 PauliSigma[k].Phiu0].VectorU[Phiu] - gw VectorD[-I/2 PauliSigma[k].Phid0].VectorD[Phid] ];
|
---|
601 | GF3[a_] := Module[{mu}, del[G[mu,a] , mu] ];
|
---|
602 | (* Gauge-fixing Lagrangian *)
|
---|
603 | LGF = Expand[-1/2*(GF1 HC[GF1] + Sum[GF2[kk] HC[GF2[kk]], {kk, 1, 3}])/.nrules /. {HC[a_]->a, h0[_]->0, A0[_]->0, H->0, Hbar->0}];
|
---|
604 | LGF = OptimizeIndex[Expand[ExpandIndices[LGF, FlavorExpand->SU2W]]];
|
---|
605 |
|
---|
606 | (* Ghost Lagrangians *)
|
---|
607 | LGh1 = -ghBbar.del[DC[ghB,mu],mu];
|
---|
608 | LGh2 = -ghWibar[kk].del[DC[ghWi[kk], mu], mu];
|
---|
609 | LGh3 = -ghGbar[kk].del[DC[ghG[kk],mu],mu];
|
---|
610 | genu := {-I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
---|
611 | gend := { I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
---|
612 | gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
|
---|
613 | ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
|
---|
614 | LGhS = Sum[
|
---|
615 | -ghbar[[kk]].gh[[ll]] (VectorU[genu[[kk]].Phiu0].VectorU[genu[[ll]].(Phiu+Phiu0)] + VectorD[gend[[kk]].Phid0].VectorD[gend[[ll]].(Phid+Phid0)]),
|
---|
616 | {kk,1,4},{ll,1,4}];
|
---|
617 | LGh = ExpandIndices[LGh1+LGh2+LGh3+LGhS, FlavorExpand->SU2W] /.nrules;
|
---|
618 | LGF+LGh];
|
---|
619 |
|
---|
620 | (* Collecting all the pieces together *)
|
---|
621 | Lag := ToDirac[SolveEqMotionF[SolveEqMotionD[LVector+LChiral+LSuperW+LSoft]]] + LFeynmanGFix ;
|
---|