| 1 | (* ********************************************************* *)
|
|---|
| 2 | (* ***** ***** *)
|
|---|
| 3 | (* ***** FeynRules model file: MSSM + broken U1D ***** *)
|
|---|
| 4 | (* ***** Author: W. Shi ***** *)
|
|---|
| 5 | (* ***** ***** *)
|
|---|
| 6 | (* ********************************************************* *)
|
|---|
| 7 |
|
|---|
| 8 | (* ************************** *)
|
|---|
| 9 | (* ***** Information ***** *)
|
|---|
| 10 | (* ************************** *)
|
|---|
| 11 | M$ModelName = "MSSMD";
|
|---|
| 12 | M$Information = { Authors->{"Wei Shi"}, Emails->{"weishi@rice.edu"}, Institutions->{"Rice University"},
|
|---|
| 13 | Date->"03.21.2018", Version->"1",
|
|---|
| 14 | References->{"C. Duhr, B. Fuks, CPC 182 (2011) 2404-2462, arXiv:1102.4191 [hep-ph]"} };
|
|---|
| 15 |
|
|---|
| 16 | (* v1: Initial commit for implementating Dark SUSY benchmark model used in CMS-PAS-HIG-16-035 *)
|
|---|
| 17 |
|
|---|
| 18 | (* ************************** *)
|
|---|
| 19 | (* ***** Flags ***** *)
|
|---|
| 20 | (* ************************** *)
|
|---|
| 21 | $CKMDiag = False; (* CKM = identity or not *)
|
|---|
| 22 | $MNSDiag = True; (* PMNS = identity or not *)
|
|---|
| 23 | FeynmanGauge = True;
|
|---|
| 24 |
|
|---|
| 25 | (* ************************** *)
|
|---|
| 26 | (* ***** Gauge groups ***** *)
|
|---|
| 27 | (* ************************** *)
|
|---|
| 28 | M$GaugeGroups = {
|
|---|
| 29 | U1Y == { Abelian->True, CouplingConstant->gp, Superfield->BSF, Charge->Y, GUTNormalization->3/5},
|
|---|
| 30 | (* Add U(1)D for new gauge boson *)
|
|---|
| 31 | U1D == { Abelian->True, CouplingConstant->gd, Superfield->XSF, Charge->X},
|
|---|
| 32 | SU2L == { Abelian->False, CouplingConstant->gw, Superfield->WSF,
|
|---|
| 33 | StructureConstant->ep, Representations->{Ta,SU2D}, Definitions->{Ta[a__]->PauliSigma[a]/2, ep->Eps}},
|
|---|
| 34 | SU3C == { Abelian->False, CouplingConstant->gs, Superfield->GSF,
|
|---|
| 35 | StructureConstant->f, Representations->{{T,Colour}, {Tb,Colourb}}, DTerm->dSUN}
|
|---|
| 36 | };
|
|---|
| 37 |
|
|---|
| 38 | (* ************************** *)
|
|---|
| 39 | (* *** Interaction orders *** *)
|
|---|
| 40 | (* ************************** *)
|
|---|
| 41 | (* Add New Physics order limit, 4 NP vertexes *)
|
|---|
| 42 | M$InteractionOrderLimit = { {NP, 4} };
|
|---|
| 43 | M$InteractionOrderHierarchy = { {QCD, 1}, {NP, 2}, {QED, 2} };
|
|---|
| 44 |
|
|---|
| 45 | (* ************************** *)
|
|---|
| 46 | (* ***** Indices ***** *)
|
|---|
| 47 | (* ************************** *)
|
|---|
| 48 | IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexStyle[SU2W,j]; IndexRange[Index[SU2D]] = Unfold[Range[2]]; IndexStyle[SU2D,k];
|
|---|
| 49 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a]; IndexRange[Index[Colour]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
|
|---|
| 50 | IndexRange[Index[Colourb]] = NoUnfold[Range[3]]; IndexStyle[Colourb,m];
|
|---|
| 51 | IndexRange[Index[NEU ]] = Range[4]; IndexStyle[NEU, i];
|
|---|
| 52 | IndexRange[Index[CHA ]] = Range[2]; IndexStyle[CHA, i];
|
|---|
| 53 | IndexRange[Index[GEN ]] = Range[3]; IndexStyle[GEN, f];
|
|---|
| 54 | IndexRange[Index[SCA ]] = Range[6]; IndexStyle[SCA, i];
|
|---|
| 55 |
|
|---|
| 56 | (* ************************** *)
|
|---|
| 57 | (* ***** Superfields ***** *)
|
|---|
| 58 | (* ************************** *)
|
|---|
| 59 | M$Superfields = {
|
|---|
| 60 | VSF[1] == { ClassName->BSF, GaugeBoson->B, Gaugino->bow},
|
|---|
| 61 | VSF[2] == { ClassName->WSF, GaugeBoson->Wi, Gaugino->wow, Indices->{Index[SU2W]}},
|
|---|
| 62 | VSF[3] == { ClassName->GSF, GaugeBoson->G, Gaugino->gow, Indices->{Index[Gluon]}},
|
|---|
| 63 | VSF[4] == { ClassName->XSF, GaugeBoson->AD, Gaugino->dow},
|
|---|
| 64 | CSF[1] == { ClassName->HU, Chirality->Left, Weyl->huw, Scalar->hus, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
|
|---|
| 65 | CSF[2] == { ClassName->HD, Chirality->Left, Weyl->hdw, Scalar->hds, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
|
|---|
| 66 | CSF[3] == { ClassName->LL, Chirality->Left, Weyl->LLw, Scalar->LLs, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D], Index[GEN]}},
|
|---|
| 67 | CSF[4] == { ClassName->ER, Chirality->Left, Weyl->ERw, Scalar->ERs, QuantumNumbers->{Y-> 1}, Indices->{Index[GEN]}},
|
|---|
| 68 | CSF[5] == { ClassName->VR, Chirality->Left, Weyl->VRw, Scalar->VRs, Indices->{Index[GEN]}},
|
|---|
| 69 | CSF[6] == { ClassName->QL, Chirality->Left, Weyl->QLw, Scalar->QLs, QuantumNumbers->{Y-> 1/6}, Indices->{Index[SU2D], Index[GEN], Index[Colour]}},
|
|---|
| 70 | CSF[7] == { ClassName->UR, Chirality->Left, Weyl->URw, Scalar->URs, QuantumNumbers->{Y->-2/3}, Indices->{Index[GEN], Index[Colourb]}},
|
|---|
| 71 | CSF[8] == { ClassName->DR, Chirality->Left, Weyl->DRw, Scalar->DRs, QuantumNumbers->{Y-> 1/3}, Indices->{Index[GEN], Index[Colourb]}}
|
|---|
| 72 | };
|
|---|
| 73 |
|
|---|
| 74 | (* ************************** *)
|
|---|
| 75 | (* ***** Fields ***** *)
|
|---|
| 76 | (* ************************** *)
|
|---|
| 77 | M$ClassesDescription = {
|
|---|
| 78 | (* Gauge bosons: unphysical vector fields *)
|
|---|
| 79 | V[11] == { ClassName->B, Unphysical->True, SelfConjugate->True,
|
|---|
| 80 | Definitions->{B[mu_]->-sw Z[mu]+cw A[mu]} },
|
|---|
| 81 | V[12] == { ClassName->Wi, Unphysical->True, SelfConjugate->True, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
|---|
| 82 | Definitions-> {Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3]->cw Z[mu] + sw A[mu]} },
|
|---|
| 83 |
|
|---|
| 84 | (* Gauge bosons: physical vector fields *)
|
|---|
| 85 | V[1] == { ClassName->A, SelfConjugate->True, Mass->0, Width->0, ParticleName->"a",
|
|---|
| 86 | PDG->22, PropagatorLabel->"A", PropagatorType->Sine, PropagatorArrow->None},
|
|---|
| 87 | V[2] == { ClassName->Z, SelfConjugate->True, Mass->MZ, Width->WZ, ParticleName->"Z",
|
|---|
| 88 | PDG->23, PropagatorLabel->"Z", PropagatorType->Sine, PropagatorArrow->None},
|
|---|
| 89 | V[3] == { ClassName->W, SelfConjugate->False, Mass->MW, Width->WW, ParticleName->"W+", AntiParticleName->"W-", QuantumNumbers->{Q->1},
|
|---|
| 90 | PDG->24, PropagatorLabel->"W", PropagatorType->Sine, PropagatorArrow->Forward},
|
|---|
| 91 | V[4] == { ClassName->G, SelfConjugate->True, Indices->{Index[Gluon]}, Mass->0, Width->0, ParticleName->"g",
|
|---|
| 92 | PDG->21, PropagatorLabel->"G", PropagatorType->C, PropagatorArrow->None },
|
|---|
| 93 | (* Add physics field for dark photon *)
|
|---|
| 94 | V[5] == { ClassName->AD, SelfConjugate->True, Mass->MAD, Width->WAD, ParticleName->"ad",
|
|---|
| 95 | PDG->3000022, PropagatorLabel->"AD", PropagatorType->Sine, PropagatorArrow->None},
|
|---|
| 96 |
|
|---|
| 97 | (* Gauginos: unphysical Weyls *)
|
|---|
| 98 | W[20] == { ClassName->bow, Unphysical->True, Chirality->Left, SelfConjugate->False,
|
|---|
| 99 | Definitions->{bow[s_]:>Module[{i}, -I*Conjugate[NN[i,1]]*neuw[s,i]]}},
|
|---|
| 100 | W[21] == { ClassName->wow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
|---|
| 101 | Definitions->{
|
|---|
| 102 | wow[s_,1]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]+Conjugate[VV[i,1]]*chpw[s,i])/(I*Sqrt[2])],
|
|---|
| 103 | wow[s_,2]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]-Conjugate[VV[i,1]]*chpw[s,i])/(-Sqrt[2])],
|
|---|
| 104 | wow[s_,3]:>Module[{i},-I*Conjugate[NN[i,2]]*neuw[s,i]]} },
|
|---|
| 105 | W[22] == { ClassName->gow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]}, Definitions->{gow[inds__]->-I*goww[inds]} },
|
|---|
| 106 | (* Add Gaugino for U1D gauge boson *)
|
|---|
| 107 | W[27] == { ClassName->dow, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{dow[_] -> 0} },
|
|---|
| 108 |
|
|---|
| 109 | (* Higgsinos: unphysical Weyls *)
|
|---|
| 110 | W[23] == { ClassName->huw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
|
|---|
| 111 | Definitions->{
|
|---|
| 112 | huw[s_,1]:> Module[{i}, Conjugate[VV[i,2]]*chpw[s,i]],
|
|---|
| 113 | huw[s_,2]:> Module[{i}, Conjugate[NN[i,4]]*neuw[s,i]] } },
|
|---|
| 114 | W[24] == { ClassName->hdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
|---|
| 115 | Definitions->{
|
|---|
| 116 | hdw[s_,1]:> Module[{i}, Conjugate[NN[i,3]]*neuw[s,i]],
|
|---|
| 117 | hdw[s_,2]:> Module[{i}, Conjugate[UU[i,2]]*chmw[s,i]]} },
|
|---|
| 118 |
|
|---|
| 119 | (* Gauginos/Higgsinos: physical Weyls *)
|
|---|
| 120 | W[1] == { ClassName->neuw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[NEU]}, FlavorIndex->NEU },
|
|---|
| 121 | W[2] == { ClassName->chpw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q-> 1} } ,
|
|---|
| 122 | W[3] == { ClassName->chmw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q->-1} } ,
|
|---|
| 123 | W[4] == { ClassName->goww, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
|
|---|
| 124 |
|
|---|
| 125 | (* Gauginos/Higgsinos: physical Diracs *)
|
|---|
| 126 | F[1] == { ClassName->neu, SelfConjugate->True, Indices->{Index[NEU]}, FlavorIndex->NEU, WeylComponents->neuw,
|
|---|
| 127 | ParticleName->{"n1","n2","n3","n4"}, ClassMembers->{neu1,neu2,neu3,neu4},
|
|---|
| 128 | Mass->{Mneu,Mneu1,Mneu2,Mneu3,Mneu4}, Width->{Wneu,Wneu1,Wneu2,Wneu3,Wneu4},
|
|---|
| 129 | PDG->{1000022,1000023,1000025,1000035}, PropagatorLabel->{"neu","neu1","neu2","neu3","neu4"}, PropagatorType->Straight, PropagatorArrow->None },
|
|---|
| 130 | F[2] == { ClassName->ch, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, WeylComponents->{chpw,chmwbar},
|
|---|
| 131 | ParticleName->{"x1+","x2+"}, AntiParticleName->{"x1-","x2-"}, QuantumNumbers->{Q ->1},
|
|---|
| 132 | ClassMembers->{ch1,ch2}, Mass->{Mch,Mch1,Mch2}, Width->{Wch,Wch1,Wch2},
|
|---|
| 133 | PDG->{1000024,1000037}, PropagatorLabel->{"ch","ch1","ch2"}, PropagatorType->Straight, PropagatorArrow->Forward },
|
|---|
| 134 | F[3] == { ClassName->go, SelfConjugate->True, Indices->{Index[Gluon]}, WeylComponents->goww, Mass->Mgo, Width->Wgo, ParticleName->"go",
|
|---|
| 135 | PDG->1000021, PropagatorLabel->"go", PropagatorType->Straight, PropagatorArrow->None },
|
|---|
| 136 | (* Add physics field for dark neutralino decaying from n1 *)
|
|---|
| 137 | F[8] == { ClassName->neuD, SelfConjugate->True, ParticleName->"nD", Mass->MneuD, Width->WneuD,
|
|---|
| 138 | PDG->3000001, PropagatorLabel->"neuD", PropagatorType->Straight, PropagatorArrow->None },
|
|---|
| 139 |
|
|---|
| 140 | (* Higgs: unphysical scalars *)
|
|---|
| 141 | S[21] == { ClassName->hus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
|
|---|
| 142 | Definitions->{ hus[1]->Cos[beta]*H + Sin[beta]*GP, hus[2]-> (vu + Cos[alp]*h0 + Sin[alp]*H0 + I*Cos[beta]*A0 + I*Sin[beta]*G0)/Sqrt[2] } },
|
|---|
| 143 | S[22] == { ClassName->hds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
|---|
| 144 | Definitions->{ hds[1]->(vd - Sin[alp]*h0 + Cos[alp]*H0 + I*Sin[beta]*A0 - I*Cos[beta]*G0)/Sqrt[2],hds[2]->Sin[beta]*Hbar - Cos[beta]*GPbar} },
|
|---|
| 145 |
|
|---|
| 146 | (* Higgs: physical fields and Goldstones *)
|
|---|
| 147 | S[1] == { ClassName->h0, SelfConjugate->True, Mass->MH01, Width->WH01, ParticleName->"h",
|
|---|
| 148 | PDG->25, PropagatorLabel->"h0", PropagatorType->ScalarDash, PropagatorArrow->None},
|
|---|
| 149 | S[2] == { ClassName->H0, SelfConjugate->True, Mass->MH02, Width->WH02, ParticleName->"h02",
|
|---|
| 150 | PDG->35, PropagatorLabel->"H0", PropagatorType->ScalarDash, PropagatorArrow->None},
|
|---|
| 151 | S[3] == { ClassName->A0, SelfConjugate->True, Mass->MA0 , Width->WA0, ParticleName->"A0" ,
|
|---|
| 152 | PDG->36, PropagatorLabel->"A0", PropagatorType->ScalarDash, PropagatorArrow->None},
|
|---|
| 153 | S[4] == { ClassName->H, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MH, Width->WH,
|
|---|
| 154 | ParticleName->"H+", AntiParticleName->"H-",
|
|---|
| 155 | PDG->37, PropagatorLabel->"H", PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
|---|
| 156 | S[5] == { ClassName->G0, SelfConjugate->True, Mass->MZ, Width->WG0, Goldstone->Z,
|
|---|
| 157 | ParticleName->"G0",
|
|---|
| 158 | PDG->250, PropagatorLabel->"G0", PropagatorType->D, PropagatorArrow->None},
|
|---|
| 159 | S[6] == { ClassName->GP, SelfConjugate->False, QuantumNumbers->{Q-> 1}, Mass->MW, Width->WGP, Goldstone->W,
|
|---|
| 160 | ParticleName->"G+", AntiParticleName->"G-",
|
|---|
| 161 | PDG->251, PropagatorLabel->"GP", PropagatorType->D, PropagatorArrow->None },
|
|---|
| 162 |
|
|---|
| 163 | (* Fermions: unphysical Weyls *)
|
|---|
| 164 | W[25] == { ClassName->LLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN]}, FlavorIndex->SU2D,
|
|---|
| 165 | QuantumNumbers->{Y->-1/2},
|
|---|
| 166 | Definitions->{LLw[s_,1,ff_]:>Module[{ff2}, PMNS[ff,ff2]*vLw[s,ff2]], LLw[s_,2,ff_]->eLw[s,ff]}},
|
|---|
| 167 | W[26] == { ClassName->QLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN],Index[Colour]},FlavorIndex->SU2D,
|
|---|
| 168 | QuantumNumbers->{Y->1/6},
|
|---|
| 169 | Definitions->{QLw[s_,1,ff_,cc_]->uLw[s,ff,cc], QLw[s_,2,ff_,cc_]:>Module[{ff2}, CKM[ff,ff2] dLw[s,ff2,cc]]}},
|
|---|
| 170 |
|
|---|
| 171 | (* Fermions: physical Weyls *)
|
|---|
| 172 | W[5] == { ClassName->vLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
|---|
| 173 | W[6] == { ClassName->eLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
|---|
| 174 | W[7] == { ClassName->VRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
|---|
| 175 | W[8] == { ClassName->ERw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1} },
|
|---|
| 176 | W[9] == { ClassName->uLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
|
|---|
| 177 | W[10]== { ClassName->dLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
|
|---|
| 178 | W[11]== { ClassName->URw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3} },
|
|---|
| 179 | W[12]== { ClassName->DRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3} },
|
|---|
| 180 |
|
|---|
| 181 | (* Fermions: physical Dirac *)
|
|---|
| 182 | F[4] == { ClassName->vl, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{vLw,VRwbar},
|
|---|
| 183 | ParticleName->{"ve","vm","vt"}, AntiParticleName->{"ve~","vm~","vt~"},
|
|---|
| 184 | ClassMembers->{ve,vm,vt}, Mass->{Mvl,Mve,Mvm,Mvt}, Width->0,
|
|---|
| 185 | PDG->{12,14,16}, PropagatorLabel->{"v","ve","vm","vt"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
|---|
| 186 | F[5] == { ClassName->l, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{eLw,ERwbar}, QuantumNumbers->{Q->-1,X->0},
|
|---|
| 187 | ParticleName->{"e-","mu-","tau-"}, AntiParticleName->{"e+","mu+","tau+"},
|
|---|
| 188 | ClassMembers->{e,m,ta}, Mass->{Ml,Me,Mm,Mta}, Width->0,
|
|---|
| 189 | PDG->{11,13,15}, PropagatorLabel->{"l","e","mu","tau"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
|---|
| 190 | F[6] == { ClassName->uq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{uLw,URwbar}, QuantumNumbers->{Q-> 2/3},
|
|---|
| 191 | ParticleName->{"u","c","t"}, AntiParticleName->{"u~","c~","t~"},
|
|---|
| 192 | ClassMembers->{u,c,t}, Mass->{Muq,MU,MC,MT}, Width->{Wuq,0,0,WT},
|
|---|
| 193 | PDG->{2,4,6}, PropagatorLabel->{"uq","u","c","t"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
|---|
| 194 | F[7] == { ClassName->dq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{dLw,DRwbar}, QuantumNumbers->{Q->-1/3},
|
|---|
| 195 | ParticleName->{"d","s","b"}, AntiParticleName->{"d~","s~","b~"},
|
|---|
| 196 | ClassMembers->{d,s,b}, Mass->{Mdq,MD,MS,MB}, Width->0,
|
|---|
| 197 | PDG->{1,3,5}, PropagatorLabel->{"dq","d","s","b"}, PropagatorType->Straight, PropagatorArrow->Forward},
|
|---|
| 198 |
|
|---|
| 199 | (* Sfermion: unphysical scalars *)
|
|---|
| 200 | S[23] == { ClassName->LLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
|---|
| 201 | Definitions->{ LLs[1,ff_] :> Module[{ff2,ff3}, Conjugate[Rn[ff3,ff2]]*PMNS[ff,ff2]*sn[ff3]], LLs[2,ff_]:> Module[{ff2}, Conjugate[RlL[ff2,ff]]*sl[ff2]] } },
|
|---|
| 202 | S[24] == { ClassName->ERs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1},
|
|---|
| 203 | Definitions->{ ERs[ff_] :> Module[{ff2}, slbar[ff2]*RlR[ff2,ff]]} },
|
|---|
| 204 | S[25] == { ClassName->VRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
|
|---|
| 205 | Definitions->{ VRs[_] -> 0 } },
|
|---|
| 206 | S[26] == { ClassName->QLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN],Index[Colour]}, FlavorIndex->SU2D, QuantumNumbers->{Y->1/6},
|
|---|
| 207 | Definitions->{
|
|---|
| 208 | QLs[1,ff_,cc_]:>Module[{ff2},Conjugate[RuL[ff2,ff]]*su[ff2,cc]],
|
|---|
| 209 | QLs[2,ff_,cc_]:>Module[{ff2,ff3},Conjugate[RdL[ff2,ff3]]*CKM[ff,ff3]*sd[ff2,cc]]}},
|
|---|
| 210 | S[27] == { ClassName->URs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3},
|
|---|
| 211 | Definitions->{ URs[ff_,cc_]:>Module[{ff2}, subar[ff2,cc]*RuR[ff2,ff]]} },
|
|---|
| 212 | S[28] == { ClassName->DRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3},
|
|---|
| 213 | Definitions->{ DRs[ff_,cc_]:>Module[{ff2}, sdbar[ff2,cc]*RdR[ff2,ff]]} },
|
|---|
| 214 |
|
|---|
| 215 | (* Sfermion: physical scalars *)
|
|---|
| 216 | S[7] == { ClassName->sn, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
|
|---|
| 217 | ParticleName->{"sv1","sv2","sv3"}, AntiParticleName->{"sv1~","sv2~","sv3~"},
|
|---|
| 218 | ClassMembers-> {sn1, sn2, sn3}, Mass->{Msn,Msn1,Msn2,Msn3}, Width->{Wsn,Wsn1,Wsn2,Wsn3},
|
|---|
| 219 | PDG->{1000012,1000014,1000016}, PropagatorLabel->{"sn","sn1","sn2","sn3"}, PropagatorType->ScalarDash, PropagatorArrow->Forward },
|
|---|
| 220 | S[8] == { ClassName->sl, SelfConjugate->False, Indices->{Index[SCA]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1},
|
|---|
| 221 | ParticleName->{"sl1-","sl2-","sl3-","sl4-","sl5-","sl6-"}, AntiParticleName->{"sl1+","sl2+","sl3+","sl4+","sl5+","sl6+"},
|
|---|
| 222 | ClassMembers->{sl1,sl2,sl3,sl4,sl5,sl6}, Mass->{Msl,Msl1,Msl2,Msl3,Msl4,Msl5,Msl6}, Width->{Wsl,Wsl1,Wsl2,Wsl3,Wsl4,Wsl5,Wsl6},
|
|---|
| 223 | PDG->{1000011,1000013,1000015,2000011,2000013,2000015}, PropagatorLabel->{"sl","sl1","sl2","sl3","sl4","sl5","sl6"},
|
|---|
| 224 | PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
|---|
| 225 | S[9] == { ClassName->su, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q-> 2/3},
|
|---|
| 226 | ParticleName->{"su1","su2","su3","su4","su5","su6"}, AntiParticleName->{"su1~","su2~","su3~","su4~","su5~","su6~"},
|
|---|
| 227 | ClassMembers->{su1,su2,su3,su4,su5,su6}, Mass->{Msu,Msu1,Msu2,Msu3,Msu4,Msu5,Msu6}, Width->{Wsu,Wsu1,Wsu2,Wsu3,Wsu4,Wsu5,Wsu6},
|
|---|
| 228 | PDG->{1000002,1000004,1000006,2000002,2000004,2000006}, PropagatorLabel->{"su","su1","su2","su3","su4","su5","su6"},
|
|---|
| 229 | PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
|---|
| 230 | S[10]== { ClassName->sd, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1/3},
|
|---|
| 231 | ParticleName->{"sd1","sd2","sd3","sd4","sd5","sd6"}, AntiParticleName->{"sd1~","sd2~","sd3~","sd4~","sd5~","sd6~"},
|
|---|
| 232 | ClassMembers->{sd1,sd2,sd3,sd4,sd5,sd6}, Mass->{Msd,Msd1,Msd2,Msd3,Msd4,Msd5,Msd6}, Width->{Wsd,Wsd1,Wsd2,Wsd3,Wsd4,Wsd5,Wsd6},
|
|---|
| 233 | PDG->{1000001,1000003,1000005,2000001,2000003,2000005}, PropagatorLabel->{"sd","sd1","sd2","sd3","sd4","sd5","sd6"},
|
|---|
| 234 | PropagatorType->ScalarDash, PropagatorArrow->Forward},
|
|---|
| 235 |
|
|---|
| 236 | (* Ghost: related to unphysical gauge bosons *)
|
|---|
| 237 | U[11] == { ClassName->ghWi, Unphysical->True, SelfConjugate->False, Ghost->Wi, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
|---|
| 238 | Definitions->{ghWi[1]->(ghWp+ghWm)/Sqrt[2], ghWi[2]->(ghWm-ghWp)/(I*Sqrt[2]), ghWi[3]->cw ghZ+sw ghA} } ,
|
|---|
| 239 | U[12] == { ClassName->ghB, Unphysical->True, SelfConjugate->False, Ghost->B,
|
|---|
| 240 | Definitions->{ghB->-sw ghZ+cw ghA} },
|
|---|
| 241 |
|
|---|
| 242 | (* Ghost: related to physical gauge bosons *)
|
|---|
| 243 | U[1] == { ClassName->ghG, SelfConjugate->False, Indices->{Index[Gluon]}, Ghost->G, QuantumNumbers->{GhostNumber->1},
|
|---|
| 244 | Mass->0, Width->0, ParticleName->"ghG", PropagatorLabel->"uG", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
|---|
| 245 | U[2] == { ClassName->ghA, SelfConjugate->False, Ghost->A, QuantumNumbers->{GhostNumber->1},
|
|---|
| 246 | Mass->0, Width->0, ParticleName->"ghA", PropagatorLabel->"uA", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
|---|
| 247 | U[3] == { ClassName->ghZ, SelfConjugate->False, Ghost->Z, QuantumNumbers->{GhostNumber->1},
|
|---|
| 248 | Mass->{MZ,Internal}, Width->WZ, ParticleName->"ghZ", PropagatorLabel->"uZ", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
|---|
| 249 | U[4] == { ClassName->ghWp, SelfConjugate->False, Ghost->W, QuantumNumbers->{GhostNumber->1, Q->1},
|
|---|
| 250 | Mass->{MW,Internal}, Width->WW, ParticleName->"ghWp", PropagatorLabel->"uWp", PropagatorType->GhostDash, PropagatorArrow->Forward},
|
|---|
| 251 | U[5] == { ClassName->ghWm, SelfConjugate->False, Ghost->Wbar, QuantumNumbers->{GhostNumber->1, Q->-1},
|
|---|
| 252 | Mass->{MW,Internal}, Width->WW, ParticleName->"ghWm", PropagatorLabel->"uWm", PropagatorType->GhostDash, PropagatorArrow->Forward}
|
|---|
| 253 | };
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|
| 256 | (* ************************** *)
|
|---|
| 257 | (* ***** Parameters ***** *)
|
|---|
| 258 | (* ************************** *)
|
|---|
| 259 | M$Parameters = {
|
|---|
| 260 | (* Mixing: external parameters *)
|
|---|
| 261 | RMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->UPMNS,
|
|---|
| 262 | Description->"Neutrino PMNS mixing matrix (real part)"},
|
|---|
| 263 | IMNS== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMUPMNS,
|
|---|
| 264 | Description->"Neutrino PMNS mixing matrix (imaginary part)"},
|
|---|
| 265 | RCKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->VCKM,
|
|---|
| 266 | Description->"CKM mixing matrix (real part)"},
|
|---|
| 267 | ICKM== { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMVCKM,
|
|---|
| 268 | Description->"CKM mixing matrix (imaginary part)"},
|
|---|
| 269 | RNN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->NMIX,
|
|---|
| 270 | Description->"Neutralino mixing matrix (real part)"},
|
|---|
| 271 | INN == { ParameterType->External, ComplexParameter->False, Indices->{Index[NEU],Index[NEU]}, BlockName->IMNMIX,
|
|---|
| 272 | Description->"Neutralino mixing matrix (imaginary part)"},
|
|---|
| 273 | RUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->UMIX,
|
|---|
| 274 | Description->"Chargino mixing matrix U (real part)"},
|
|---|
| 275 | IUU == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMUMIX,
|
|---|
| 276 | Description->"Chargino mixing matrix U (imaginary part)"},
|
|---|
| 277 | RVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->VMIX,
|
|---|
| 278 | Description->"Chargino mixing matrix V (real part)"},
|
|---|
| 279 | IVV == { ParameterType->External, ComplexParameter->False, Indices->{Index[CHA],Index[CHA]}, BlockName->IMVMIX,
|
|---|
| 280 | Description->"Chargino mixing matrix V (imaginary part)"},
|
|---|
| 281 | RRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->SNUMIX,
|
|---|
| 282 | Description->"Sneutrino mixing matrix (real part)"},
|
|---|
| 283 | IRn == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMSNUMIX,
|
|---|
| 284 | Description->"Sneutrino mixing matrix (imaginary part)"},
|
|---|
| 285 | RRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->SELMIX,
|
|---|
| 286 | Description->"Slepton mixing matrix (real part)"},
|
|---|
| 287 | IRl == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMSELMIX,
|
|---|
| 288 | Description->"Slepton mixing matrix (imaginary part)"},
|
|---|
| 289 | RRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->USQMIX,
|
|---|
| 290 | Description->"Up squark mixing matrix (real part)"},
|
|---|
| 291 | IRu == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMUSQMIX,
|
|---|
| 292 | Description->"Up squark mixing matrix (imaginary part)"},
|
|---|
| 293 | RRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->DSQMIX,
|
|---|
| 294 | Description->"Down squark mixing matrix (real part)"},
|
|---|
| 295 | IRd == { ParameterType->External, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, BlockName->IMDSQMIX,
|
|---|
| 296 | Description->"Down squark mixing matrix (imaginary part)"},
|
|---|
| 297 | alp == { TeX->\[Alpha], ParameterType->External, ComplexParameter->False, BlockName->FRALPHA, Description-> "Neutral Higgses mixing angle"},
|
|---|
| 298 |
|
|---|
| 299 | (* Mixing: internal parameters *)
|
|---|
| 300 | cw == { TeX->Subscript[c,w], ParameterType->Internal, ComplexParameter->False, Value->MW/MZ, Description->"Cosine of the weak angle"},
|
|---|
| 301 | sw == { TeX->Subscript[s,w], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[1-cw^2], Description->"Sine of the weak angle"},
|
|---|
| 302 | PMNS== { TeX->Superscript[U,pmns], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
|
|---|
| 303 | If[$MNSDiag, Definitions:>{PMNS[i_,j_]:>0 /;(i!=j), PMNS[i_,j_]:>1/;(i==j)}, Value->{PMNS[i_,j_]:>RMNS[i,j]+I*IMNS[i,j]}],
|
|---|
| 304 | Description-> "Neutrino PMNS mixing matrix"},
|
|---|
| 305 | CKM == { TeX->Superscript[V,ckm], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
|
|---|
| 306 | If[$CKMDiag, Definitions:>{CKM[i_,j_]:>0 /;(i!=j), CKM[i_,j_]:>1/;(i==j)}, Value->{CKM[i_,j_]:>RCKM[i,j]+I*ICKM[i,j]}],
|
|---|
| 307 | Description-> "CKM mixing matrix"},
|
|---|
| 308 | NN == { TeX->N, ParameterType->Internal, ComplexParameter->True, Indices->{Index[NEU],Index[NEU]}, Unitary->True,
|
|---|
| 309 | Value->{NN[i_,j_]:>RNN[i,j]+I*INN[i,j]}, Description-> "Neutralino mixing matrix"},
|
|---|
| 310 | UU == { TeX->U, ParameterType->Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
|
|---|
| 311 | Value->{UU[i_,j_]:>RUU[i,j]+I*IUU[i,j]}, Description-> "Chargino mixing matrix U"},
|
|---|
| 312 | VV == { TeX->V, ParameterType->Internal, ComplexParameter->True, Indices->{Index[CHA],Index[CHA]}, Unitary->True,
|
|---|
| 313 | Value->{VV[i_,j_]:>RVV[i,j]+I*IVV[i,j]}, Description-> "Chargino mixing matrix V"},
|
|---|
| 314 | Rl == { TeX->Superscript[R,l], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
|---|
| 315 | Value->{Rl[i_,j_]:>RRl[i,j]+I*IRl[i,j]}, Description-> "Slepton mixing matrix"},
|
|---|
| 316 | Rn == { TeX->Superscript[R,n], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, Unitary->True,
|
|---|
| 317 | Value->{Rn[i_,j_]:>RRn[i,j]+I*IRn[i,j]}, Description-> "Sneutrino mixing matrix"},
|
|---|
| 318 | Ru == { TeX->Superscript[R,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
|---|
| 319 | Value->{Ru[i_,j_]:>RRu[i,j]+I*IRu[i,j]}, Description-> "Up squark mixing matrix"},
|
|---|
| 320 | Rd == { TeX->Superscript[R,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
|---|
| 321 | Value->{Rd[i_,j_]:>RRd[i,j]+I*IRd[i,j]}, Description-> "Down squark mixing matrix"},
|
|---|
| 322 |
|
|---|
| 323 | (* Left and right parts of the sfermion mixing matrices *)
|
|---|
| 324 | RlL == { TeX->Superscript[RL,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
|---|
| 325 | Definitions->{RlL[i_,j_]:>Rl[i,j]/;NumericQ[j]}, Description-> "Slepton mixing matrix - first three columns"},
|
|---|
| 326 | RlR == { TeX->Superscript[RR,l], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
|---|
| 327 | Definitions->{RlR[i_,j_]:>Rl[i,j+3]/;NumericQ[j]},Description-> "Slepton mixing matrix - last three columns"},
|
|---|
| 328 | RuL == { TeX->Superscript[RL,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
|---|
| 329 | Definitions->{RuL[i_,j_]:>Ru[i,j]/;NumericQ[j]}, Description-> "Up squark mixing matrix - first three columns"},
|
|---|
| 330 | RuR == { TeX->Superscript[RR,u], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
|---|
| 331 | Definitions->{RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]},Description-> "Up squark mixing matrix - last three columns"},
|
|---|
| 332 | RdL == { TeX->Superscript[RL,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
|---|
| 333 | Definitions->{RdL[i_,j_]:>Rd[i,j]/;NumericQ[j]}, Description-> "Down squark mixing matrix - first three columns"},
|
|---|
| 334 | RdR == { TeX->Superscript[RR,d], ParameterType-> Internal, ComplexParameter->True, Indices->{Index[SCA],Index[GEN]}, Unitary->False,
|
|---|
| 335 | Definitions->{RdR[i_,j_]:>Rd[i,j+3]/;NumericQ[j]},Description-> "Down squark mixing matrix - last three columns"},
|
|---|
| 336 |
|
|---|
| 337 | (* Couplings constants: external parameters *)
|
|---|
| 338 | aEWM1 == { TeX->Subsuperscript[\[Alpha],w,-1], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->1, InteractionOrder->{QED,-2},
|
|---|
| 339 | Description->"Inverse of the EW coupling constant at the Z pole"},
|
|---|
| 340 | aS == { TeX->Subscript[\[Alpha],s], ParameterType->External, ComplexParameter->False, BlockName->SMINPUTS, OrderBlock->3, InteractionOrder->{QCD, 2},
|
|---|
| 341 | Description->"Strong coupling constant at the Z pole."},
|
|---|
| 342 |
|
|---|
| 343 | (* Couplings constants: internal parameters *)
|
|---|
| 344 | ee == { TeX->e, ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi / aEWM1], InteractionOrder->{QED,1}, Description->"Electric coupling constant"},
|
|---|
| 345 | gs == { TeX->Subscript[g,s], ParameterType->Internal, ComplexParameter->False, Value->Sqrt[4 Pi aS], InteractionOrder->{QCD,1}, ParameterName->G, Description->"Strong coupling constant"},
|
|---|
| 346 | gp == { TeX->g', ParameterType->Internal, ComplexParameter->False, Definitions-> {gp->ee/cw}, InteractionOrder->{QED,1}, Description->"Hypercharge coupling constant at the Z pole"},
|
|---|
| 347 | gw == { TeX->Subscript[g,w], ParameterType->Internal, ComplexParameter->False, Definitions-> {gw->ee/sw}, InteractionOrder->{QED,1}, Description->"Weak coupling constant at the Z pole"},
|
|---|
| 348 | (* Add gd coupling definition *)
|
|---|
| 349 | gd == { TeX->Subscript[g,d], ParameterType->External, ComplexParameter->False, Value -> 0.001, InteractionOrder->{NP, 1}, Description->"U1D coupling"},
|
|---|
| 350 |
|
|---|
| 351 | (* Higgs sector: external parameters *)
|
|---|
| 352 | tb == { TeX->Subscript[t,b], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->2, Description->"Ratio of the two Higgs vevs"},
|
|---|
| 353 |
|
|---|
| 354 | (* Higgs sector: internal parameters *)
|
|---|
| 355 | beta == { TeX->\[Beta], ParameterType->Internal, ComplexParameter->False, Value->ArcTan[tb], Description->"Arctan of the ratio of the two Higgs vevs"},
|
|---|
| 356 | vev == { TeX->v, ParameterType->Internal, ComplexParameter->False, Value->2*MZ*sw*cw/ee, InteractionOrder->{QED,-1},
|
|---|
| 357 | Description->"Higgs vacuum expectation value"},
|
|---|
| 358 | vd == { TeX->Subscript[v,d], ParameterType->Internal, ComplexParameter->False, Value->vev*Cos[beta], InteractionOrder->{QED,-1},
|
|---|
| 359 | Description->"Down-type Higgs vacuum expectation value"},
|
|---|
| 360 | vu == { TeX->Subscript[v,u], ParameterType->Internal, ComplexParameter->False, Value->vev*Sin[beta], InteractionOrder->{QED,-1},
|
|---|
| 361 | Description->"Up-type Higgs vacuum expectation value"},
|
|---|
| 362 |
|
|---|
| 363 | (* Superpotential: external parameters *)
|
|---|
| 364 | Ryu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YU,
|
|---|
| 365 | Description->"Up-type quark Yukawa matrix (real part)"},
|
|---|
| 366 | Iyu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYU,
|
|---|
| 367 | Description->"Up-type quark Yukawa matrix (imaginary part)"},
|
|---|
| 368 | Ryd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YD,
|
|---|
| 369 | Description->"Down-type quark Yukawa matrix (real part)"},
|
|---|
| 370 | Iyd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYD,
|
|---|
| 371 | Description->"Down-type quark Yukawa matrix (imaginary part)"},
|
|---|
| 372 | Rye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->YE,
|
|---|
| 373 | Description->"Charged lepton Yukawa matrix (real part)"},
|
|---|
| 374 | Iye == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMYE,
|
|---|
| 375 | Description->"Charged lepton Yukawa matrix (imaginary part)"},
|
|---|
| 376 | RMUH == { ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->1, Description->"Off-diagonal Higgs mixing parameter (real part)"},
|
|---|
| 377 | IMUH == { ParameterType->External, ComplexParameter->False, BlockName->IMHMIX, OrderBlock->1, Description->"Off-diagonal Higgs mixing parameter (imaginary part)"},
|
|---|
| 378 |
|
|---|
| 379 | (* Superpotential: internal parameters *)
|
|---|
| 380 | yu == { TeX->Superscript[y,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 381 | Definitions:>{yu[i_,j_]:>0 /;(i!=j)}, Value->{yu[i_,j_]:>If[i==j,Ryu[i,j]+I*Iyu[i,j]]}, InteractionOrder->{QED,1}, Description-> "Up-type quark Yukawa matrix"},
|
|---|
| 382 | yd == { TeX->Superscript[y,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 383 | Definitions:>{yd[i_,j_]:>0 /;(i!=j)}, Value->{yd[i_,j_]:>If[i==j,Ryd[i,j]+I*Iyd[i,j]]}, InteractionOrder->{QED,1}, Description-> "Down-type quark Yukawa matrix"},
|
|---|
| 384 | ye == { TeX->Superscript[y,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 385 | Definitions:>{ye[i_,j_]:>0 /;(i!=j)}, Value->{ye[i_,j_]:>If[i==j,Rye[i,j]+I*Iye[i,j]]}, InteractionOrder->{QED,1}, Description-> "Charged lepton Yukawa matrix"},
|
|---|
| 386 | MUH == { TeX->\[Mu], ParameterType->Internal, ComplexParameter->True, Value->RMUH+I*IMUH, Description->"Off diagonal Higgs mixing parameter"},
|
|---|
| 387 |
|
|---|
| 388 | (* Soft terms: external parameters *)
|
|---|
| 389 | RMx1 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->1, Description->"Bino mass (real part)"},
|
|---|
| 390 | IMx1 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->1, Description->"Bino mass (imaginary part)"},
|
|---|
| 391 | RMx2 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->2, Description->"Wino mass (real part)"},
|
|---|
| 392 | IMx2 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->2, Description->"Wino mass (imaginary part)"},
|
|---|
| 393 | RMx3 == { ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->3, Description->"Gluino mass (real part)"},
|
|---|
| 394 | IMx3 == { ParameterType->External, ComplexParameter->False, BlockName->IMMSOFT, OrderBlock->3, Description->"Gluino mass (imaginary part)"},
|
|---|
| 395 | mHu2 == { TeX->Subsuperscript[m,Subscript[H,u],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->22,
|
|---|
| 396 | Description->"Up-type Higgs squared mass"},
|
|---|
| 397 | mHd2 == { TeX->Subsuperscript[m,Subscript[H,d],2], ParameterType->External, ComplexParameter->False, BlockName->MSOFT, OrderBlock->21,
|
|---|
| 398 | Description->"Down-type Higgs squared mass"},
|
|---|
| 399 | MA2 == { TeX->Subsuperscript[m,A,2], ParameterType->External, ComplexParameter->False, BlockName->HMIX, OrderBlock->4,
|
|---|
| 400 | Description->"Pseudoscalar Higgs squared mass"},
|
|---|
| 401 | RmL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSL2,
|
|---|
| 402 | Description->"Left-handed slepton squared mass matrix (real part)"},
|
|---|
| 403 | ImL2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSL2,
|
|---|
| 404 | Description->"Left-handed slepton squared mass matrix (imaginary part)"},
|
|---|
| 405 | RmE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSE2,
|
|---|
| 406 | Description->"Right-handed slepton squared mass matrix (real part)"},
|
|---|
| 407 | ImE2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSE2,
|
|---|
| 408 | Description->"Right-handed slepton squared mass matrix (imaginary part)"},
|
|---|
| 409 | RmQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSQ2,
|
|---|
| 410 | Description->"Left-handed squark squared mass matrix (real part)"},
|
|---|
| 411 | ImQ2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSQ2,
|
|---|
| 412 | Description->"Left-handed squark squared mass matrix (imaginary part)"},
|
|---|
| 413 | RmU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSU2,
|
|---|
| 414 | Description->"Right-handed up-type squark squared mass matrix (real part)"},
|
|---|
| 415 | ImU2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSU2,
|
|---|
| 416 | Description->"Right-handed up-type squark squared mass matrix (imaginary part)"},
|
|---|
| 417 | RmD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->MSD2,
|
|---|
| 418 | Description->"Right-handed down-type squark squared mass matrix (real part)"},
|
|---|
| 419 | ImD2 == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMMSD2,
|
|---|
| 420 | Description->"Right-handed down-type squark squared mass matrix (imaginary part)"},
|
|---|
| 421 | Rte == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TE,
|
|---|
| 422 | Description->"Charged slepton trilinear coupling (real part)"},
|
|---|
| 423 | Ite == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTE,
|
|---|
| 424 | Description->"Charged slepton trilinear coupling (imaginary part)"},
|
|---|
| 425 | Rtu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TU,
|
|---|
| 426 | Description->"Up-type squark trilinear coupling (real part)"},
|
|---|
| 427 | Itu == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTU,
|
|---|
| 428 | Description->"Up-type squark trilinear coupling (imaginary part)"},
|
|---|
| 429 | Rtd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->TD,
|
|---|
| 430 | Description->"Down-type squark trilinear coupling (real part)"},
|
|---|
| 431 | Itd == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->IMTD,
|
|---|
| 432 | Description->"Down-type squark trilinear coupling (imaginary part)"},
|
|---|
| 433 |
|
|---|
| 434 | (* Soft terms: internal parameters *)
|
|---|
| 435 | Mx1 == { TeX->Subscript[M,1], ParameterType->Internal, ComplexParameter->True, Value->RMx1+I*IMx1, Description->"Bino mass"},
|
|---|
| 436 | Mx2 == { TeX->Subscript[M,2], ParameterType->Internal, ComplexParameter->True, Value->RMx2+I*IMx2, Description->"Wino mass"},
|
|---|
| 437 | Mx3 == { TeX->Subscript[M,3], ParameterType->Internal, ComplexParameter->True, Value->RMx3+I*IMx3, Description->"Gluino mass"},
|
|---|
| 438 | bb == { TeX->b, ParameterType->Internal, ComplexParameter->True, Value->(mHu2-mHd2)*Tan[2*alp]/2 - MZ^2*(Cos[2*beta]*Tan[2*alp] + Sin[2*beta]/2),
|
|---|
| 439 | Description->"Higgs bilinear soft term"},
|
|---|
| 440 | mL2 == { TeX->Subsuperscript[m,OverTilde[L],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 441 | Value->{mL2[i_,j_]:>RmL2[i,j]+I*ImL2[i,j]}, Description-> "Left-handed slepton squared mass matrix"},
|
|---|
| 442 | mE2 == { TeX->Subsuperscript[m,OverTilde[E],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 443 | Value->{mE2[i_,j_]:>RmE2[i,j]+I*ImE2[i,j]}, Description-> "Right-handed slepton squared mass matrix"},
|
|---|
| 444 | mQ2 == { TeX->Subsuperscript[m,OverTilde[Q],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 445 | Value->{mQ2[i_,j_]:>RmQ2[i,j]+I*ImQ2[i,j]}, Description-> "Left-handed squark squared mass matrix"},
|
|---|
| 446 | mU2 == { TeX->Subsuperscript[m,OverTilde[U],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 447 | Value->{mU2[i_,j_]:>RmU2[i,j]+I*ImU2[i,j]}, Description-> "Right-handed up-type squark squared mass matrix"},
|
|---|
| 448 | mD2 == { TeX->Subsuperscript[m,OverTilde[D],2], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]},
|
|---|
| 449 | Value->{mD2[i_,j_]:>RmD2[i,j]+I*ImD2[i,j]}, Description-> "Right-handed down-type squark squared mass matrix"},
|
|---|
| 450 | te == { TeX->Subscript[T,e], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
|
|---|
| 451 | Value->{te[i_,j_]:>Rte[i,j]+I*Ite[i,j]}, Description-> "Charged slepton trilinear coupling"},
|
|---|
| 452 | tu == { TeX->Subscript[T,u], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
|
|---|
| 453 | Value->{tu[i_,j_]:>Rtu[i,j]+I*Itu[i,j]}, Description-> "Up-type squark trilinear coupling"},
|
|---|
| 454 | td == { TeX->Subscript[T,d], ParameterType->Internal, ComplexParameter->True, Indices->{Index[GEN],Index[GEN]}, InteractionOrder->{QED,1},
|
|---|
| 455 | Value->{td[i_,j_]:>Rtd[i,j]+I*Itd[i,j]}, Description-> "Down-type squark trilinear coupling"}
|
|---|
| 456 | };
|
|---|
| 457 |
|
|---|
| 458 | (* ************************** *)
|
|---|
| 459 | (* **** Diracification **** *)
|
|---|
| 460 | (* ************************** *)
|
|---|
| 461 | ToDirac[exp_]:= Module[{tmp=Expand[exp],cnt=0,prg1=0,prg2=0,prgo1=0,prgo2=0,tot},
|
|---|
| 462 | Colourb=Colour;
|
|---|
| 463 |
|
|---|
| 464 | tmp = If[Head[tmp]===Plus,List@@tmp,List[tmp]]/.Tb[a_,i_,j_]->-T[a,j,i];
|
|---|
| 465 |
|
|---|
| 466 | tmp = OptimizeIndex[#] &/@ tmp;
|
|---|
| 467 | tot=Length[tmp];
|
|---|
| 468 | Print["Flavor expansion: ", ProgressIndicator[Dynamic[prg1]]];
|
|---|
| 469 | tmp = Module[{}, cnt++; prg1=cnt/tot;
|
|---|
| 470 | Expand[(ExpandIndices[#, FlavorExpand->{SU2W, SU2D}] /. {
|
|---|
| 471 | gp->ee/cw,
|
|---|
| 472 | gw->ee/sw,
|
|---|
| 473 | cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2),
|
|---|
| 474 | cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw,
|
|---|
| 475 | Power[PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)],2]->PauliSigma[1,i,j]^2 + PauliSigma[3,i,j]^2 + PauliSigma[2,i,j]^2,
|
|---|
| 476 | PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)] PauliSigma[a_,k_?(NumericQ[#] &),l_?(NumericQ[#] &)]->
|
|---|
| 477 | PauliSigma[1,i,j] PauliSigma[1,k,l] + PauliSigma[2,i,j] PauliSigma[2,k,l] + PauliSigma[3,i,j] PauliSigma[3,k,l]})]] &/@ tmp;
|
|---|
| 478 | tmp = Plus@@tmp//.{cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2), cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw};
|
|---|
| 479 |
|
|---|
| 480 | cnt=0; tot=Length[tmp];
|
|---|
| 481 | Print["Opt 1: ",ProgressIndicator[Dynamic[prgo1]]];
|
|---|
| 482 | tmp = Module[{}, cnt++; prgo1=cnt/tot;OptimizeIndex[#]] &/@ (List@@tmp);
|
|---|
| 483 | Print["Weyl2Dirac: ",ProgressIndicator[Dynamic[prg2]]];cnt=0;
|
|---|
| 484 | tmp = Module[{}, cnt++; prg2=cnt/tot; WeylToDirac[#]] &/@ tmp;
|
|---|
| 485 | Print["Opt2: ",ProgressIndicator[Dynamic[prgo2]]];cnt=0;
|
|---|
| 486 | tmp = Module[{}, cnt++; prgo2=cnt/tot;OptimizeIndex[#]] &/@ tmp;
|
|---|
| 487 | Clear[Colourb];
|
|---|
| 488 | Expand[Plus@@tmp]];
|
|---|
| 489 |
|
|---|
| 490 | (* ************************** *)
|
|---|
| 491 | (* ***** Lagrangian ***** *)
|
|---|
| 492 | (* ************************** *)
|
|---|
| 493 | (* LVector *)
|
|---|
| 494 | LVector := Module[{}, Plus@@(Module[{tmp}, tmp = SF2Components[#]; Expand[tmp[[2, 5]] + tmp[[2, 6]]]] &/@ (List @@ VSFKineticTerms[]))];
|
|---|
| 495 |
|
|---|
| 496 | (* LChiral *)
|
|---|
| 497 | LChiral := Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ CSFKineticTerms[]) );
|
|---|
| 498 |
|
|---|
| 499 | (* Superpotential *)
|
|---|
| 500 | SPot:= Module[{ff1,ff2,ff3,cc1},
|
|---|
| 501 | yu[ff1,ff2] UR[ff1,cc1] (QL[1,ff2,cc1] HU[2] - QL[2,ff2,cc1] HU[1]) -
|
|---|
| 502 | yd[ff1,ff3] Conjugate[CKM[ff2,ff3]] DR[ff1,cc1] (QL[1,ff2,cc1] HD[2] - QL[2,ff2,cc1] HD[1]) -
|
|---|
| 503 | ye[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) +
|
|---|
| 504 | MUH (HU[1] HD[2] - HU[2] HD[1])];
|
|---|
| 505 | LSuperW:= ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[SPot+HC[SPot]])) )/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
|
|---|
| 506 |
|
|---|
| 507 | (* Soft SUSY-breaking Lagrangian *)
|
|---|
| 508 | LSoft := Module[{Mino, MSca, Tri, Bil},
|
|---|
| 509 | (* Gaugino mass terms *)
|
|---|
| 510 | Mino:=Module[{s,gl}, Mx1*bow[s].bow[s] + Mx2*wow[s,gl].wow[s,gl] + Mx3*goww[s,gl].goww[s,gl]];
|
|---|
| 511 | (* Scalar mass terms *)
|
|---|
| 512 | MSca:=Module[{ii,ff1,ff2,ff3,ff4,cc1},
|
|---|
| 513 | - mHu2*HC[hus[ii]]*hus[ii] - mHd2*HC[hds[ii]]*hds[ii] -
|
|---|
| 514 | mL2[ff1,ff2]*HC[LLs[ii,ff1]]*LLs[ii,ff2] - mE2[ff1,ff2]*HC[ERs[ff1]]*ERs[ff2] -
|
|---|
| 515 | CKM[ff1,ff2]*mQ2[ff2,ff3]*Conjugate[CKM[ff4,ff3]]*HC[QLs[ii,ff1,cc1]]*QLs[ii,ff4,cc1] -
|
|---|
| 516 | mU2[ff1,ff2]*HC[URs[ff1,cc1]]*URs[ff2,cc1] - mD2[ff1,ff2]*HC[DRs[ff1,cc1]]*DRs[ff2,cc1] ];
|
|---|
| 517 | (* Trilinear couplings *)
|
|---|
| 518 | Tri:=-tu[ff1,ff2]*URs[ff1,cc1] (QLs[1,ff2,cc1] hus[2] - QLs[2,ff2,cc1] hus[1]) +
|
|---|
| 519 | Conjugate[CKM[ff3,ff2]]*td[ff1,ff2]*DRs[ff1,cc1] (QLs[1,ff3,cc1] hds[2] - QLs[2,ff3,cc1] hds[1]) +
|
|---|
| 520 | te[ff1,ff2]*ERs[ff1] (LLs[1,ff2] hds[2] - LLs[2,ff2] hds[1]) ;
|
|---|
| 521 | (* Bilinear couplings *)
|
|---|
| 522 | Bil:=-bb*(hus[1] hds[2] - hus[2] hds[1]);
|
|---|
| 523 | (* Everything together *)
|
|---|
| 524 | (Mino+HC[Mino])/2 + MSca + Tri + HC[Tri] + Bil + HC[Bil]];
|
|---|
| 525 |
|
|---|
| 526 | (* Ghost Lagrangian and gauge fixing terms *)
|
|---|
| 527 | LFeynmanGFix := Module[{VectorizeU,VectorizeD, Phiu,Phid,Phiu0,Phid0, phid1,phid2,phiu1,phiu2, GF1,GF2,GF3,LGF, nrules, kk,ll, LGh1,LGh2,LGh3,LGhS,LGh, genu,gend, gh,ghbar},
|
|---|
| 528 | (* Expression the doublets in the nu/nd basis *)
|
|---|
| 529 | VectorizeU[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
|
|---|
| 530 | VectorizeD[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
|
|---|
| 531 |
|
|---|
| 532 | (* Higgs doublets *)
|
|---|
| 533 | Phiu = Expand[ {(phiu1 + I phiu2)/Sqrt[2], (Cos[alp]*h0+Sin[alp]*H0 + I*Cos[beta]*A0+I*Sin[beta]*G0)/Sqrt[2]} ];
|
|---|
| 534 | Phid = Expand[ {(-Sin[alp]*h0+Cos[alp]*H0 + I*Sin[beta]*A0-I*Cos[beta]*G0)/Sqrt[2], (phid1 + I phid2)/Sqrt[2]} ];
|
|---|
| 535 | (* vevs *)
|
|---|
| 536 | Phiu0 = {0, vu/Sqrt[2]};
|
|---|
| 537 | Phid0 = {vd/Sqrt[2], 0};
|
|---|
| 538 | (* Back to the physical Higgses and Goldstones *)
|
|---|
| 539 | nrules := {
|
|---|
| 540 | phid1 -> (-Cos[beta]*GPbar - Cos[beta]*GP + Sin[beta]*Hbar + Sin[beta]*H)/Sqrt[2],
|
|---|
| 541 | phid2 -> (-Cos[beta]*GPbar + Cos[beta]*GP + Sin[beta]*Hbar - Sin[beta]*H)/(I Sqrt[2]),
|
|---|
| 542 | phiu1 -> ( Sin[beta]*GP + Sin[beta]*GPbar + Cos[beta]*H + Cos[beta]*Hbar)/Sqrt[2],
|
|---|
| 543 | phiu2 -> (Sin[beta]*GP - Sin[beta]*GPbar + Cos[beta]*H - Cos[beta]*Hbar)/(I Sqrt[2])};
|
|---|
| 544 |
|
|---|
| 545 | (* Gauge-fixing functions *)
|
|---|
| 546 | GF1 := Module[{mu}, del[B[mu] , mu] - gp VectorizeU[-I/2 Phiu0].VectorizeU[Phiu] - gp VectorizeD[I/2 Phid0].VectorizeD[Phid] ];
|
|---|
| 547 | GF2[k_] := Module[{mu}, del[Wi[mu,k], mu] - gw VectorizeU[-I/2 PauliSigma[k].Phiu0].VectorizeU[Phiu] - gw VectorizeD[-I/2 PauliSigma[k].Phid0].VectorizeD[Phid] ];
|
|---|
| 548 | GF3[a_] := Module[{mu}, del[G[mu,a] , mu] ];
|
|---|
| 549 | (* Gauge-fixing Lagrangian *)
|
|---|
| 550 | LGF = Expand[-1/2*(GF1 HC[GF1] + Sum[GF2[kk] HC[GF2[kk]], {kk, 1, 3}]) /.nrules /. {HC[a_]->a, h0->0, H0->0, A0->0, H->0, Hbar->0}];
|
|---|
| 551 | LGF = OptimizeIndex[Expand[ExpandIndices[LGF, FlavorExpand->SU2W]]];
|
|---|
| 552 |
|
|---|
| 553 | (* Ghost Lagrangians *)
|
|---|
| 554 | LGh1 = -ghBbar.del[DC[ghB,mu],mu];
|
|---|
| 555 | LGh2 = -ghWibar[kk].del[DC[ghWi[kk], mu], mu];
|
|---|
| 556 | LGh3 = -ghGbar[kk].del[DC[ghG[kk],mu],mu];
|
|---|
| 557 | genu := {-I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
|---|
| 558 | gend := { I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
|---|
| 559 | gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
|
|---|
| 560 | ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
|
|---|
| 561 | LGhS = Sum[
|
|---|
| 562 | -ghbar[[kk]].gh[[ll]] (VectorizeU[genu[[kk]].Phiu0].VectorizeU[genu[[ll]].(Phiu+Phiu0)] + VectorizeD[gend[[kk]].Phid0].VectorizeD[gend[[ll]].(Phid+Phid0)]),
|
|---|
| 563 | {kk,1,4},{ll,1,4}];
|
|---|
| 564 | LGh = ExpandIndices[LGh1+LGh2+LGh3+LGhS, FlavorExpand->SU2W] /.nrules;
|
|---|
| 565 | LGF+LGh];
|
|---|
| 566 |
|
|---|
| 567 | (* Add new physics n1-nD-ad *)
|
|---|
| 568 | (* LN1NDAD := gd*(neu1bar.Ga[mu].Ga[5].neuD)*AD[mu]; *)
|
|---|
| 569 | (* Option2: use imaginary number i *)
|
|---|
| 570 | LN1NDAD := I*gd*(neu1bar.Ga[mu].neuD)*AD[mu];
|
|---|
| 571 | (* Add new vertex ad-mu-mu *)
|
|---|
| 572 | LADMuMu := gd*(mbar.Ga[mu].m)*AD[mu];
|
|---|
| 573 |
|
|---|
| 574 | (* Collecting all the pieces together *)
|
|---|
| 575 | Lag := ToDirac[SolveEqMotionF[SolveEqMotionD[LVector+LChiral+LSuperW+LSoft]]] + LFeynmanGFix + LN1NDAD + LADMuMu;
|
|---|