LED: LED.fr

File LED.fr, 20.7 KB (added by Claude Duhr, 15 years ago)

The model file for LED

Line 
1(***************************************************************************************************************)
2(****** This is the FeynRules mod-file for the Large Extra Dimensions ******)
3(****** ******)
4(****** Author: Priscila de Aquino ******)
5(****** ******)
6(****** Choose whether Feynman gauge is desired. ******)
7(****** If set to False, unitary gauge is assumed. ****)
8(****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
9(****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
10(***************************************************************************************************************)
11
12M$ModelName = "LED";
13
14M$Information = {Authors -> {"Priscila de Aquino"},
15 Date -> "15.06.2009",
16 Institute -> {"Katholieke Universiteit Leuven & Universite Catholique Louvain - CP3"},
17 Emails -> {"priscila@itf.kuleuven.be"},
18 References -> {"Phys. Rev. D59: 105006 (1999), hep-ph/9811350", "Nucl. Phys. B544 (1999), hep-ph/9811291", "Eur. Phys. J. C56 (2008), hep-ph/0805.2554"},
19 URLs -> "http://feynrules.phys.ucl.ac.be/view/Main/LED",
20 Version -> "1.0"};
21
22FeynmanGauge = False;
23
24
25(*****************************************************************************************)
26(****************************** Index definitions ****************************************)
27(*****************************************************************************************)
28
29IndexRange[ Index[Generation] ] = Range[3]
30
31IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
32
33IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
34
35IndexRange[ Index[SU2W] ] = Range[3]
36
37
38IndexStyle[Colour, i]
39
40IndexStyle[Generation, f]
41
42IndexStyle[Gluon ,a]
43
44IndexStyle[SU2W ,k]
45
46(*****************************************************************************************)
47(************************************* Parameters ***************************************)
48(*****************************************************************************************)
49
50M$Parameters = {
51
52 (* External parameters *)
53
54 \[Alpha]EWM1== {
55 ParameterType -> External,
56 BlockName -> SMINPUTS,
57 ParameterName -> aEWM1,
58 InteractionOrder -> {QED, -2},
59 Value -> 127.9,
60 Description -> "Inverse of the electroweak coupling constant"},
61
62 Gf == {
63 ParameterType -> External,
64 BlockName -> SMINPUTS,
65 InteractionOrder -> {QED, 2},
66 Value -> 1.16639 * 10^(-5),
67 Description -> "Fermi constant"},
68
69 \[Alpha]S == {
70 ParameterType -> External,
71 BlockName -> SMINPUTS,
72 ParameterName -> aS,
73 InteractionOrder -> {QCD, 2},
74 Value -> 0.118,
75 Description -> "Strong coupling constant at the Z pole."},
76
77
78 ZM == {
79 ParameterType -> External,
80 BlockName -> SMINPUTS,
81 Value -> 91.188,
82 Description -> "Z mass"},
83
84
85 ymc == {
86 ParameterType -> External,
87 BlockName -> YUKAWA,
88 Value -> 1.42,
89 OrderBlock -> {4},
90 Description -> "Charm Yukawa mass"},
91
92 ymb == {
93 ParameterType -> External,
94 BlockName -> YUKAWA,
95 Value -> 4.7,
96 OrderBlock -> {5},
97 Description -> "Bottom Yukawa mass"},
98
99 ymt == {
100 ParameterType -> External,
101 BlockName -> YUKAWA,
102 Value -> 174.3,
103 OrderBlock -> {6},
104 Description -> "Top Yukawa mass"},
105
106 ymtau == {
107 ParameterType -> External,
108 BlockName -> YUKAWA,
109 Value -> 1.777,
110 OrderBlock -> {15},
111 Description -> "Tau Yukawa mass"},
112
113 GN == {
114 ParameterType -> External,
115 ParameterName -> GN,
116 InteractionOrder -> {QCD, 2},
117 Value -> 10^(-16),
118 Description -> "Newton Constant"},
119
120 (* Internal Parameters *)
121
122 \[Alpha]EW == {
123 ParameterType -> Internal,
124 Value -> 1/\[Alpha]EWM1,
125 ParameterName -> aEW,
126 InteractionOrder -> {QED, 2},
127 Description -> "Electroweak coupling contant"},
128
129
130 MW == {
131 ParameterType -> Internal,
132 Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]],
133 Description -> "W mass"},
134
135 sw2 == {
136 ParameterType -> Internal,
137 Value -> 1-(MW/MZ)^2,
138 Description -> "Squared Sin of the Weinberg angle"},
139
140 ee == {
141 TeX -> e,
142 ParameterType -> Internal,
143 Value -> Sqrt[4 Pi \[Alpha]EW],
144 InteractionOrder -> {QED, 1},
145 Description -> "Electric coupling constant"},
146
147 cw == {
148 TeX -> Subscript[c, w],
149 ParameterType -> Internal,
150 Value -> Sqrt[1 - sw2],
151 Description -> "Cos of the Weinberg angle"},
152
153 sw == {
154 TeX -> Subscript[s, w],
155 ParameterType -> Internal,
156 Value -> Sqrt[sw2],
157 Description -> "Sin of the Weinberg angle"},
158
159 gw == {
160 TeX -> Subscript[g, w],
161 ParameterType -> Internal,
162 Value -> ee / sw,
163 InteractionOrder -> {QED, 1},
164 Description -> "Weak coupling constant"},
165
166 g1 == {
167 TeX -> Subscript[g, 1],
168 ParameterType -> Internal,
169 Value -> ee / cw,
170 InteractionOrder -> {QED, 1},
171 Description -> "U(1)Y coupling constant"},
172
173 gs == {
174 TeX -> Subscript[g, s],
175 ParameterType -> Internal,
176 Value -> Sqrt[4 Pi \[Alpha]S],
177 InteractionOrder -> {QCD, 1},
178 ParameterName -> G,
179 Description -> "Strong coupling constant"},
180
181 v == {
182 ParameterType -> Internal,
183 Value -> 2*MW*sw/ee,
184 InteractionOrder -> {QED, -1},
185 Description -> "Higgs VEV"},
186
187 \[Lambda] == {
188 ParameterType -> Internal,
189 Value -> MH^2/(2*v^2),
190 InteractionOrder -> {QED, 2},
191 ParameterName -> lam,
192 Description -> "Higgs quartic coupling"},
193
194 muH == {
195 ParameterType -> Internal,
196 Value -> Sqrt[v^2 \[Lambda]],
197 TeX -> \[Mu],
198 Description -> "Coefficient of the quadratic piece of the Higgs potential"},
199
200
201 yl == {
202 Indices -> {Index[Generation]},
203 AllowSummation -> True,
204 ParameterType -> Internal,
205 Value -> {yl[1] -> 0, yl[2] -> 0, yl[3] -> Sqrt[2] ymtau / v},
206 ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
207 InteractionOrder -> {QED, 1},
208 ComplexParameter -> False,
209 Description -> "Lepton Yukawa coupling"},
210
211 yu == {
212 Indices -> {Index[Generation]},
213 AllowSummation -> True,
214 ParameterType -> Internal,
215 Value -> {yu[1] -> 0, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v},
216 ParameterName -> {yu[1] -> yu, yu[2] -> yc, yu[3] -> yt},
217 InteractionOrder -> {QED, 1},
218 ComplexParameter -> False,
219 Description -> "U-quark Yukawa coupling"},
220
221 yd == {
222 Indices -> {Index[Generation]},
223 AllowSummation -> True,
224 ParameterType -> Internal,
225 Value -> {yd[1] -> 0, yd[2] -> 0, yd[3] -> Sqrt[2] ymb / v},
226 ParameterName -> {yd[1] -> yd, yd[2] -> ys, yd[3] -> yb},
227 InteractionOrder -> {QED, 1},
228 ComplexParameter -> False,
229 Description -> "D-quark Yukawa coupling"},
230
231 cabi == {
232 TeX -> Subscript[\[Theta], c],
233 ParameterType -> External,
234 BlockName -> CKMBLOCK,
235 OrderBlock -> {1},
236 Value -> 0.488,
237 Description -> "Cabibbo angle"},
238
239 CKM == {
240 Indices -> {Index[Generation], Index[Generation]},
241 TensorClass -> CKM,
242 Unitary -> True,
243 Value -> {CKM[1,2] -> Sin[cabi],
244 CKM[1,1] -> Cos[cabi],
245 CKM[2,1] -> -Sin[cabi],
246 CKM[2,2] -> Cos[cabi]},
247 Description -> "CKM-Matrix"},
248
249 kappa == {
250 TeX -> \[Kappa],
251 ParameterType -> Internal,
252 Value -> Sqrt[16 Pi GN]}
253
254}
255
256TeXFormat[mphi, Subscript[m, phi]]
257TeXFormat[mpsi, Subscript[m, psi]]
258TeXFormat[mG, Subscript[m, G]]
259
260(*****************************************************************************************)
261(********************************* Gauge Groups ******************************************)
262(*****************************************************************************************)
263
264M$GaugeGroups = {
265
266 U1Y == {
267 Abelian -> True,
268 GaugeBoson -> B,
269 Charge -> Y,
270 CouplingConstant -> g1},
271
272 SU2L == {
273 Abelian -> False,
274 GaugeBoson -> Wi,
275 StructureConstant -> Eps,
276 CouplingConstant -> gw},
277
278 SU3C == {
279 Abelian -> False,
280 GaugeBoson -> G,
281 StructureConstant -> f,
282 SymmetricTensor -> dSUN,
283 Representations -> {T, Colour},
284 CouplingConstant -> gs}
285}
286(*****************************************************************************************)
287(******************************* Particle Classes ****************************************)
288(*****************************************************************************************)
289
290M$ClassesDescription = {
291
292(************************************ Fermions *******************************************)
293
294 (* Leptons (neutrino): I_3 = +1/2, Q = 0 *)
295 F[1] == {
296 ClassName -> vl,
297 ClassMembers -> {ve,vm,vt},
298 FlavorIndex -> Generation,
299 SelfConjugate -> False,
300 Indices -> {Index[Generation]},
301 Mass -> 0,
302 Width -> 0,
303 QuantumNumbers -> {LeptonNumber -> 1},
304 PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
305 PropagatorType -> S,
306 PropagatorArrow -> Forward,
307 PDG -> {12,14,16},
308 FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
309
310 (* Leptons (electron): I_3 = -1/2, Q = -1 *)
311 F[2] == {
312 ClassName -> l,
313 ClassMembers -> {e, m, tt},
314 FlavorIndex -> Generation,
315 SelfConjugate -> False,
316 Indices -> {Index[Generation]},
317 Mass -> {Ml, {ME, 0}, {MM, 0}, {MTA, 1.777}},
318 Width -> 0,
319 QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
320 PropagatorLabel -> {"l", "e", "m", "tt"},
321 PropagatorType -> Straight,
322 ParticleName -> {"e-", "m-", "tt-"},
323 AntiParticleName -> {"e+", "m+", "tt+"},
324 PropagatorArrow -> Forward,
325 PDG -> {11, 13, 15},
326 FullName -> {"Electron", "Muon", "Tau"} },
327
328 (* Quarks (u): I_3 = +1/2, Q = +2/3 *)
329 F[3] == {
330 ClassMembers -> {u, c, t},
331 ClassName -> uq,
332 FlavorIndex -> Generation,
333 SelfConjugate -> False,
334 Indices -> {Index[Generation], Index[Colour]},
335 Mass -> {Mu, {MU, 0}, {MC, 1.42}, {MT, 174.3}},
336 Width -> {0, 0, {WT, 1.50833649}},
337 QuantumNumbers -> {Q -> 2/3},
338 PropagatorLabel -> {"uq", "u", "c", "t"},
339 PropagatorType -> Straight,
340 PropagatorArrow -> Forward,
341 PDG -> {2, 4, 6},
342 FullName -> {"u-quark", "c-quark", "t-quark"}},
343
344 (* Quarks (d): I_3 = -1/2, Q = -1/3 *)
345 F[4] == {
346 ClassMembers -> {d, s, b},
347 ClassName -> dq,
348 FlavorIndex -> Generation,
349 SelfConjugate -> False,
350 Indices -> {Index[Generation], Index[Colour]},
351 Mass -> {Md, {MD, 0}, {MS, 0}, {MB, 4.7}},
352 Width -> 0,
353 QuantumNumbers -> {Q -> -1/3},
354 PropagatorLabel -> {"dq", "d", "s", "b"},
355 PropagatorType -> Straight,
356 PropagatorArrow -> Forward,
357 PDG -> {1,3,5},
358 FullName -> {"d-quark", "s-quark", "b-quark"} },
359
360(************************************ Gauge Bosons ***************************************)
361
362 (* Gauge bosons: Q = 0 *)
363 V[1] == {
364 ClassName -> A,
365 SelfConjugate -> True,
366 Indices -> {},
367 Mass -> 0,
368 Width -> 0,
369 PropagatorLabel -> "a",
370 PropagatorType -> W,
371 PropagatorArrow -> None,
372 PDG -> 22,
373 FullName -> "Photon" },
374
375 V[2] == {
376 ClassName -> Z,
377 SelfConjugate -> True,
378 Indices -> {},
379 Mass -> {MZ, 91.188},
380 Width -> {WZ, 2.44140351},
381 PropagatorLabel -> "Z",
382 PropagatorType -> Sine,
383 PropagatorArrow -> None,
384 PDG -> 23,
385 FullName -> "Z" },
386
387 (* Gauge bosons: Q = -1 *)
388 V[3] == {
389 ClassName -> W,
390 SelfConjugate -> False,
391 Indices -> {},
392 Mass -> {MW, Internal},
393 Width -> {WW, 2.04759951},
394 QuantumNumbers -> {Q -> 1},
395 PropagatorLabel -> "W",
396 PropagatorType -> Sine,
397 PropagatorArrow -> Forward,
398 ParticleName ->"W+",
399 AntiParticleName ->"W-",
400 PDG -> 24,
401 FullName -> "W" },
402
403V[4] == {
404 ClassName -> G,
405 SelfConjugate -> True,
406 Indices -> {Index[Gluon]},
407 Mass -> {mG,0},
408 Width -> 0,
409 PropagatorLabel -> G,
410 PropagatorType -> C,
411 PropagatorArrow -> None,
412 PDG -> 21,
413 FullName -> "G" },
414
415V[5] == {
416 ClassName -> Wi,
417 Unphysical -> True,
418 Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
419 Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
420 Wi[mu_, 3] -> cw Z[mu] + sw A[mu]},
421 SelfConjugate -> True,
422 Indices -> {Index[SU2W]},
423 FlavorIndex -> SU2W,
424 Mass -> 0,
425 PDG -> {1,2,3}},
426
427V[6] == {
428 ClassName -> B,
429 SelfConjugate -> True,
430 Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]},
431 Indices -> {},
432 Mass -> 0,
433 Unphysical -> True},
434
435(****************************** Scalar Fields *********************************************)
436
437(* physical Higgs: Q = 0 *)
438 S[1] == {
439 ClassName -> H,
440 SelfConjugate -> True,
441 Mass -> {MH, 120},
442 Width -> {WH, 0.00575308848},
443 PropagatorLabel -> "H",
444 PropagatorType -> D,
445 PropagatorArrow -> None,
446 PDG -> 25,
447 TeXParticleName -> "\\phi",
448 TeXClassName -> "\\phi",
449 FullName -> "H" },
450
451S[2] == {
452 ClassName -> phi,
453 SelfConjugate -> True,
454 Mass -> {MZ, 91.188},
455 Width -> Wphi,
456 PropagatorLabel -> "Phi",
457 PropagatorType -> D,
458 PropagatorArrow -> None,
459 ParticleName ->"phi0",
460 PDG -> 250,
461 FullName -> "Phi",
462 Goldstone -> Z },
463
464S[3] == {
465 ClassName -> phi2,
466 SelfConjugate -> False,
467 Mass -> {MW, Internal},
468 Width -> Wphi2,
469 PropagatorLabel -> "Phi2",
470 PropagatorType -> D,
471 PropagatorArrow -> None,
472 ParticleName ->"phi+",
473 AntiParticleName ->"phi-",
474 PDG -> 251,
475 FullName -> "Phi2",
476 TeXClassName -> "\\phi^+",
477 TeXParticleName -> "\\phi^+",
478 TeXAntiParticleName -> "\\phi^-",
479 Goldstone -> W,
480 QuantumNumbers -> {Q -> 1}},
481
482(******************************* Spin 2 particles: graviton *****************************)
483
484T[1] == {
485 ClassName -> h,
486 SelfConjugate -> True,
487 Symmetric -> True,
488 Mass -> {Mh, 500}}
489
490}
491
492(*****************************************************************************************)
493(* *)
494(* The Lagrangian *)
495(* *)
496(*****************************************************************************************)
497
498(* Some shorthands (for nicer printing) *)
499
500Format[mu, TraditionalForm] = \[Mu];
501Format[nu, TraditionalForm] = \[Nu];
502Format[lam, TraditionalForm] = \[Lambda];
503Format[rho, TraditionalForm] = \[Rho];
504
505psi = \[Psi];
506psibar = \[Psi]bar;
507phi = \[Phi];
508phibar = \[Phi]bar;
509phiK = \[Sigma];
510
511(*****************************************************************************************)
512(********************** Defining the cov derivatives ************************************)
513(*****************************************************************************************)
514
515covdelU[field_, mu_] :=
516 Module[{j, a}, del[field, mu] - I gs G[mu, a] T[a].field
517 - I ee/cw 4/3 B[mu]/2 ProjP.field - I ee/cw/3 B[mu]/2 ProjM.field - I ee/sw/2 ProjM.field Wi[mu,3]];
518
519covdelD[field_, mu_] :=
520 Module[{j, a}, del[field, mu] - I gs G[mu, a] T[a].field
521 + I ee/cw 2/3 B[mu]/2 ProjP.field - I ee/cw/3 B[mu]/2 ProjM.field + I ee/sw/2 ProjM.field Wi[mu,3]];
522
523covdelE[field_, mu_] :=
524 Module[{j, a}, del[field, mu]
525 + I 2 ee/cw B[mu]/2 ProjP.field - I ee/cw B[mu]/2 ProjM.field + I ee/sw/2 ProjM.field Wi[mu,3]];
526
527covdelN[field_, mu_] :=
528 Module[{j, a}, del[field, mu] + I ee/cw B[mu]/2 ProjM.field - I ee/sw/2 ProjM. field Wi[mu,3]];
529
530(*****************************************************************************************)
531(******************** Defining the field strenght tensors:********************************)
532(*****************************************************************************************)
533
534FG[mu_,nu_,a1_,a2_,a3_] := del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3];
535
536FA[mu_,nu_] := del[B[nu], mu] - del[B[mu], nu];
537
538FW[mu_,nu_,i1_,i2_,i3_] := del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + ee/sw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3];
539
540
541
542(*****************************************************************************************)
543(******************* Defining the energy-momentum tensor T[mu,nu] ************************)
544(*****************************************************************************************)
545
546(* Gauge bosons *)
547
548TG[mu_,nu_]:= ( -ME[mu,nu]. (-1/4 FA[rho, sig] FA[rho,sig] - 1/4 FW[rho,sig,i1,i2,i3] FW[rho,sig, i1,i4,i5] - 1/4 FG[rho,sig,a1,a2,a3] FG[rho,sig, a1,a4,a5])
549 -FA[mu,rho] FA[nu,rho] - FW[mu,rho,i1,i2,i3] FW[nu,rho, i1,i4,i5] - FG[mu,rho,a1,a2,a3] FG[nu,rho, a1,a2,a3]);
550
551(* Fermions *)
552
553TF[mu_,nu_] := (-ME[mu,nu].(I uqbar.(Ga[rho].covdelU[uq, rho]) -1/2 del[I uqbar.Ga[rho].uq, rho]
554 + I dqbar.(Ga[rho].covdelD[dq, rho]) -1/2 del[I dqbar.Ga[rho].dq, rho]
555 + I vlbar.(Ga[rho].covdelN[vl, rho]) -1/2 del[I vlbar.Ga[rho].vl, rho]
556 + I lbar.(Ga[rho].covdelE[l, rho] ) -1/2 del[I lbar.Ga[rho].l, rho]
557
558 - ee/sw/2 Sqrt[2] (CKM uqbar.Ga[rho].ProjM.dq W[rho] + HC[CKM] dqbar.Ga[rho].ProjM.uq Wbar[rho]
559 + vlbar.Ga[rho].ProjM.l W[rho] + lbar.Ga[rho].ProjM.vl Wbar[rho]) )
560 + ( I/2 uqbar.Ga[mu].covdelU[uq, nu] - 1/4 I del[uqbar.Ga[nu].uq, mu]
561 + I/2 uqbar.Ga[nu].covdelU[uq, mu] - 1/4 I del[uqbar.Ga[mu].uq, nu]
562 + I/2 dqbar.Ga[mu].covdelD[dq, nu] - 1/4 I del[dqbar.Ga[nu].dq, mu]
563 + I/2 dqbar.Ga[nu].covdelD[dq, mu] - 1/4 I del[dqbar.Ga[mu].dq, nu]
564 + I/2 vlbar.Ga[mu].covdelN[vl, nu] - 1/4 I del[vlbar.Ga[nu].vl, mu]
565 + I/2 vlbar.Ga[nu].covdelN[vl, mu] - 1/4 I del[vlbar.Ga[mu].vl, nu]
566 + I/2 lbar.Ga[mu].covdelE[l, nu] - 1/4 I del[lbar.Ga[nu].l, mu]
567 + I/2 lbar.Ga[nu].covdelE[l, mu] - 1/4 I del[lbar.Ga[mu].l, nu] )
568
569 - ee/sw/Sqrt[2] ( CKM uqbar.Ga[mu].ProjM.dq W[nu] + HC[CKM] dqbar.Ga[mu].ProjM.uq Wbar[nu]
570 + CKM uqbar.Ga[nu].ProjM.dq W[mu] + HC[CKM] dqbar.Ga[nu].ProjM.uq Wbar[mu]
571 + vlbar.Ga[mu].ProjM.l W[nu] + lbar.Ga[mu].ProjM.vl Wbar[nu]
572 + vlbar.Ga[nu].ProjM.l W[mu] + lbar.Ga[nu].ProjM.vl Wbar[mu]));
573
574(* Definitions for Higgs and Yukawa *)
575
576 Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
577 Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
578
579 PMVec = Table[PauliSigma[i], {i, 3}];
580 Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
581
582 Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
583 Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
584
585 Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
586
587
588(* Higgs *)
589
590TH[mu_, nu_] := (-ME[mu,nu].(Dcbar[Phibar, rho]).Dc[Phi, rho] - Vphi[Phi, Phibar]+
591 (Dcbar[Phibar, mu]).Dc[Phi, nu] + (Dcbar[Phibar, nu]).Dc[Phi, mu] );
592
593(* Yukawa *)
594
595TYuk:= Module[{s,r,n,m,i}, -
596 yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] -
597 yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] -
598 yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2]];
599
600TY[mu_,nu_] := -ME[mu,nu].(TYuk + HC[TYuk]);
601
602
603(*****************************************************************************************)
604(******************************* Writing the lagrangian *********************************)
605(*****************************************************************************************)
606
607LagH := -kappa/2 (h[mu,nu].TH[mu,nu]);
608
609LagG := -kappa/2 (h[mu,nu].TG[mu,nu]);
610
611LagF := -kappa/2 (h[mu,nu].TF[mu,nu]);
612
613LagY := -kappa/2 (h[mu,nu].TY[mu,nu])
614
615
616(*****************************************************************************************)
617