1 | (* ************************** *)
|
---|
2 | (* ***** Information ***** *)
|
---|
3 | (* ************************** *)
|
---|
4 | M$ModelName = "HEL";
|
---|
5 |
|
---|
6 | M$Information = {
|
---|
7 | Authors -> {"A. Alloul, B. Fuks, V. Sanz"},
|
---|
8 | Version -> "2.0",
|
---|
9 | Date -> "11. 03. 2014",
|
---|
10 | Institutions -> {"GRPHE Strasbourg / U. Haute Alsace", "CERN / IPHC Strasbourg / U. Strasbourg", "University of Sussex"},
|
---|
11 | Emails -> {"adam.alloul@iphc.cnrs.fr", "benjamin.fuks@iphc.cnrs.fr", "v.sanz@sussex.ac.uk"},
|
---|
12 | References -> "arXiv:1310.5150",
|
---|
13 | URLs -> "https://feynrules.irmp.ucl.ac.be/wiki/HEL"
|
---|
14 | };
|
---|
15 |
|
---|
16 | FeynmanGauge = True;
|
---|
17 |
|
---|
18 | (* Change log *)
|
---|
19 | (* v1.1 (23.10.2013) BF: Fixing the coupling orders *)
|
---|
20 | (* v1.2 (24.10.2013) BF: Adding the SM gghh contribution in the large mtop limit *)
|
---|
21 | (* v2.0 (11.03.2014) BF: Adding the full SM + modifying the parameters cf. NP effects *)
|
---|
22 |
|
---|
23 | (* ************************** *)
|
---|
24 | (* ***** Gauge groups ***** *)
|
---|
25 | (* ************************** *)
|
---|
26 | M$GaugeGroups = {
|
---|
27 | U1Y == {
|
---|
28 | Abelian -> True,
|
---|
29 | CouplingConstant -> g1,
|
---|
30 | GaugeBoson -> B,
|
---|
31 | Charge -> Y
|
---|
32 | },
|
---|
33 | SU2L == {
|
---|
34 | Abelian -> False,
|
---|
35 | CouplingConstant -> gw,
|
---|
36 | GaugeBoson -> Wi,
|
---|
37 | StructureConstant -> Eps,
|
---|
38 | Representations -> {Ta,SU2D},
|
---|
39 | Definitions -> {Ta[a_,b_,c_]->PauliSigma[a,b,c]/2, FSU2L[i_,j_,k_]:> I Eps[i,j,k]}
|
---|
40 | },
|
---|
41 | SU3C == {
|
---|
42 | Abelian -> False,
|
---|
43 | CouplingConstant -> gs,
|
---|
44 | GaugeBoson -> G,
|
---|
45 | StructureConstant -> f,
|
---|
46 | Representations -> {T,Colour},
|
---|
47 | SymmetricTensor -> dSUN
|
---|
48 | }
|
---|
49 | };
|
---|
50 |
|
---|
51 | (* ************************** *)
|
---|
52 | (* ***** Indices ***** *)
|
---|
53 | (* ************************** *)
|
---|
54 | IndexRange[Index[SU2W ]] = Unfold[Range[3]];
|
---|
55 | IndexRange[Index[SU2D ]] = Unfold[Range[2]];
|
---|
56 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]];
|
---|
57 | IndexRange[Index[Colour ]] = NoUnfold[Range[3]];
|
---|
58 | IndexRange[Index[Generation]] = Range[3];
|
---|
59 | IndexStyle[SU2W, j];
|
---|
60 | IndexStyle[SU2D, k];
|
---|
61 | IndexStyle[Gluon, a];
|
---|
62 | IndexStyle[Colour, m];
|
---|
63 | IndexStyle[Generation, f];
|
---|
64 |
|
---|
65 |
|
---|
66 | (* ************************** *)
|
---|
67 | (* ***** Orders ***** *)
|
---|
68 | (* ************************** *)
|
---|
69 | M$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2}, {NP,1} };
|
---|
70 |
|
---|
71 | M$InteractionOrderLimit = { {QCD, 99}, {QED, 99} , {NP,1}};
|
---|
72 |
|
---|
73 |
|
---|
74 | (* ************************** *)
|
---|
75 | (* **** Particle classes **** *)
|
---|
76 | (* ************************** *)
|
---|
77 | M$ClassesDescription = {
|
---|
78 |
|
---|
79 | (* Gauge bosons: physical vector fields *)
|
---|
80 | V[1] == {
|
---|
81 | ClassName -> A,
|
---|
82 | SelfConjugate -> True,
|
---|
83 | Mass -> 0,
|
---|
84 | Width -> 0,
|
---|
85 | ParticleName -> "a",
|
---|
86 | PDG -> 22,
|
---|
87 | PropagatorLabel -> "a",
|
---|
88 | PropagatorType -> W,
|
---|
89 | PropagatorArrow -> None,
|
---|
90 | FullName -> "Photon"
|
---|
91 | },
|
---|
92 | V[2] == {
|
---|
93 | ClassName -> Z,
|
---|
94 | SelfConjugate -> True,
|
---|
95 | Mass -> {MZ, Internal},
|
---|
96 | Width -> {WZ, 2.4952},
|
---|
97 | ParticleName -> "Z",
|
---|
98 | PDG -> 23,
|
---|
99 | PropagatorLabel -> "Z",
|
---|
100 | PropagatorType -> Sine,
|
---|
101 | PropagatorArrow -> None,
|
---|
102 | FullName -> "Z"
|
---|
103 | },
|
---|
104 | V[3] == {
|
---|
105 | ClassName -> W,
|
---|
106 | SelfConjugate -> False,
|
---|
107 | Mass -> {MW, 80.385},
|
---|
108 | Width -> {WW, 2.085},
|
---|
109 | ParticleName -> "W+",
|
---|
110 | AntiParticleName -> "W-",
|
---|
111 | QuantumNumbers -> {Q -> 1},
|
---|
112 | PDG -> 24,
|
---|
113 | PropagatorLabel -> "W",
|
---|
114 | PropagatorType -> Sine,
|
---|
115 | PropagatorArrow -> Forward,
|
---|
116 | FullName -> "W"
|
---|
117 | },
|
---|
118 | V[4] == {
|
---|
119 | ClassName -> G,
|
---|
120 | SelfConjugate -> True,
|
---|
121 | Indices -> {Index[Gluon]},
|
---|
122 | Mass -> 0,
|
---|
123 | Width -> 0,
|
---|
124 | ParticleName -> "g",
|
---|
125 | PDG -> 21,
|
---|
126 | PropagatorLabel -> "G",
|
---|
127 | PropagatorType -> C,
|
---|
128 | PropagatorArrow -> None,
|
---|
129 | FullName -> "G"
|
---|
130 | },
|
---|
131 |
|
---|
132 | (* Ghosts: related to physical gauge bosons *)
|
---|
133 | U[1] == {
|
---|
134 | ClassName -> ghA,
|
---|
135 | SelfConjugate -> False,
|
---|
136 | Ghost -> A,
|
---|
137 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
138 | Mass -> 0,
|
---|
139 | Width -> 0,
|
---|
140 | PropagatorLabel -> "uA",
|
---|
141 | PropagatorType -> GhostDash,
|
---|
142 | PropagatorArrow -> Forward
|
---|
143 | },
|
---|
144 | U[2] == {
|
---|
145 | ClassName -> ghZ,
|
---|
146 | SelfConjugate -> False,
|
---|
147 | Ghost -> Z,
|
---|
148 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
149 | Mass -> {MZ,Internal},
|
---|
150 | Width -> {WZ, 2.4952},
|
---|
151 | PropagatorLabel -> "uZ",
|
---|
152 | PropagatorType -> GhostDash,
|
---|
153 | PropagatorArrow -> Forward
|
---|
154 | },
|
---|
155 | U[31] == {
|
---|
156 | ClassName -> ghWp,
|
---|
157 | SelfConjugate -> False,
|
---|
158 | Ghost -> W,
|
---|
159 | QuantumNumbers -> {GhostNumber -> 1, Q -> 1},
|
---|
160 | Mass -> {MW,80.385},
|
---|
161 | Width -> {WW, 2.085},
|
---|
162 | PropagatorLabel -> "uWp",
|
---|
163 | PropagatorType -> GhostDash,
|
---|
164 | PropagatorArrow -> Forward
|
---|
165 | },
|
---|
166 | U[32] == {
|
---|
167 | ClassName -> ghWm,
|
---|
168 | SelfConjugate -> False,
|
---|
169 | Ghost -> Wbar,
|
---|
170 | QuantumNumbers -> {GhostNumber -> 1, Q -> -1},
|
---|
171 | Mass -> {MW,80.385},
|
---|
172 | Width -> {WW, 2.085},
|
---|
173 | PropagatorLabel -> "uWm",
|
---|
174 | PropagatorType -> GhostDash,
|
---|
175 | PropagatorArrow -> Forward
|
---|
176 | },
|
---|
177 | U[4] == {
|
---|
178 | ClassName -> ghG,
|
---|
179 | SelfConjugate -> False,
|
---|
180 | Indices -> {Index[Gluon]},
|
---|
181 | Ghost -> G,
|
---|
182 | PDG -> 82,
|
---|
183 | QuantumNumbers ->{GhostNumber -> 1},
|
---|
184 | Mass -> 0,
|
---|
185 | Width -> 0,
|
---|
186 | PropagatorLabel -> "uG",
|
---|
187 | PropagatorType -> GhostDash,
|
---|
188 | PropagatorArrow -> Forward
|
---|
189 | },
|
---|
190 |
|
---|
191 | (* Gauge bosons: unphysical vector fields *)
|
---|
192 | V[11] == {
|
---|
193 | ClassName -> B,
|
---|
194 | Unphysical -> True,
|
---|
195 | SelfConjugate -> True,
|
---|
196 | Definitions -> { B[mu_] -> -sw Z[mu]+cw A[mu]}
|
---|
197 | },
|
---|
198 | V[12] == {
|
---|
199 | ClassName -> Wi,
|
---|
200 | Unphysical -> True,
|
---|
201 | SelfConjugate -> True,
|
---|
202 | Indices -> {Index[SU2W]},
|
---|
203 | FlavorIndex -> SU2W,
|
---|
204 | Definitions -> { Wi[mu_,1] -> (Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2] -> (Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3] -> cw Z[mu] + sw A[mu]}
|
---|
205 | },
|
---|
206 |
|
---|
207 | (* Ghosts: related to unphysical gauge bosons *)
|
---|
208 | U[11] == {
|
---|
209 | ClassName -> ghB,
|
---|
210 | Unphysical -> True,
|
---|
211 | SelfConjugate -> False,
|
---|
212 | Ghost -> B,
|
---|
213 | Definitions -> { ghB -> -sw ghZ + cw ghA}
|
---|
214 | },
|
---|
215 | U[12] == {
|
---|
216 | ClassName -> ghWi,
|
---|
217 | Unphysical -> True,
|
---|
218 | SelfConjugate -> False,
|
---|
219 | Ghost -> Wi,
|
---|
220 | Indices -> {Index[SU2W]},
|
---|
221 | FlavorIndex -> SU2W,
|
---|
222 | Definitions -> { ghWi[1] -> (ghWp+ghWm)/Sqrt[2], ghWi[2] -> (ghWm-ghWp)/(I*Sqrt[2]), ghWi[3] -> cw ghZ+sw ghA}
|
---|
223 | } ,
|
---|
224 |
|
---|
225 | (* Fermions: physical fields *)
|
---|
226 | F[1] == {
|
---|
227 | ClassName -> vl,
|
---|
228 | ClassMembers -> {ve,vm,vt},
|
---|
229 | Indices -> {Index[Generation]},
|
---|
230 | FlavorIndex -> Generation,
|
---|
231 | SelfConjugate -> False,
|
---|
232 | Mass -> 0,
|
---|
233 | Width -> 0,
|
---|
234 | QuantumNumbers -> {LeptonNumber -> 1},
|
---|
235 | PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
|
---|
236 | PropagatorType -> S,
|
---|
237 | PropagatorArrow -> Forward,
|
---|
238 | PDG -> {12,14,16},
|
---|
239 | ParticleName -> {"ve","vm","vt"},
|
---|
240 | AntiParticleName -> {"ve~","vm~","vt~"},
|
---|
241 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"}
|
---|
242 | },
|
---|
243 | F[2] == {
|
---|
244 | ClassName -> l,
|
---|
245 | ClassMembers -> {e, mu, ta},
|
---|
246 | Indices -> {Index[Generation]},
|
---|
247 | FlavorIndex -> Generation,
|
---|
248 | SelfConjugate -> False,
|
---|
249 | Mass -> {Ml, {Me,5.11*^-4}, {MMU,0.10566}, {MTA,1.777}},
|
---|
250 | Width -> 0,
|
---|
251 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
|
---|
252 | PropagatorLabel -> {"l", "e", "mu", "ta"},
|
---|
253 | PropagatorType -> Straight,
|
---|
254 | PropagatorArrow -> Forward,
|
---|
255 | PDG -> {11, 13, 15},
|
---|
256 | ParticleName -> {"e-", "mu-", "ta-"},
|
---|
257 | AntiParticleName -> {"e+", "mu+", "ta+"},
|
---|
258 | FullName -> {"Electron", "Muon", "Tau"}
|
---|
259 | },
|
---|
260 | F[3] == {
|
---|
261 | ClassName -> uq,
|
---|
262 | ClassMembers -> {u, c, t},
|
---|
263 | Indices -> {Index[Generation], Index[Colour]},
|
---|
264 | FlavorIndex -> Generation,
|
---|
265 | SelfConjugate -> False,
|
---|
266 | Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
|
---|
267 | Width -> {0, 0, {WT,1.50833649}},
|
---|
268 | QuantumNumbers -> {Q -> 2/3},
|
---|
269 | PropagatorLabel -> {"uq", "u", "c", "t"},
|
---|
270 | PropagatorType -> Straight,
|
---|
271 | PropagatorArrow -> Forward,
|
---|
272 | PDG -> {2, 4, 6},
|
---|
273 | ParticleName -> {"u", "c", "t" },
|
---|
274 | AntiParticleName -> {"u~", "c~", "t~"},
|
---|
275 | FullName -> {"u-quark", "c-quark", "t-quark"}
|
---|
276 | },
|
---|
277 | F[4] == {
|
---|
278 | ClassName -> dq,
|
---|
279 | ClassMembers -> {d, s, b},
|
---|
280 | Indices -> {Index[Generation], Index[Colour]},
|
---|
281 | FlavorIndex -> Generation,
|
---|
282 | SelfConjugate -> False,
|
---|
283 | Mass -> {Md, {MD,5.04*^-3}, {MS,0.101}, {MB,4.7}},
|
---|
284 | Width -> 0,
|
---|
285 | QuantumNumbers -> {Q -> -1/3},
|
---|
286 | PropagatorLabel -> {"dq", "d", "s", "b"},
|
---|
287 | PropagatorType -> Straight,
|
---|
288 | PropagatorArrow -> Forward,
|
---|
289 | PDG -> {1,3,5},
|
---|
290 | ParticleName -> {"d", "s", "b" },
|
---|
291 | AntiParticleName -> {"d~", "s~", "b~"},
|
---|
292 | FullName -> {"d-quark", "s-quark", "b-quark"}
|
---|
293 | },
|
---|
294 |
|
---|
295 | (* Fermions: unphysical fields *)
|
---|
296 | F[11] == {
|
---|
297 | ClassName -> LL,
|
---|
298 | Unphysical -> True,
|
---|
299 | Indices -> {Index[SU2D], Index[Generation]},
|
---|
300 | FlavorIndex -> SU2D,
|
---|
301 | SelfConjugate -> False,
|
---|
302 | QuantumNumbers -> {Y -> -1/2},
|
---|
303 | Definitions -> { LL[sp1_,1,ff_] :> Module[{sp2}, ProjM[sp1,sp2] vl[sp2,ff]], LL[sp1_,2,ff_] :> Module[{sp2}, ProjM[sp1,sp2] l[sp2,ff]] }
|
---|
304 | },
|
---|
305 | F[12] == {
|
---|
306 | ClassName -> lR,
|
---|
307 | Unphysical -> True,
|
---|
308 | Indices -> {Index[Generation]},
|
---|
309 | FlavorIndex -> Generation,
|
---|
310 | SelfConjugate -> False,
|
---|
311 | QuantumNumbers -> {Y -> -1},
|
---|
312 | Definitions -> { lR[sp1_,ff_] :> Module[{sp2}, ProjP[sp1,sp2] l[sp2,ff]] }
|
---|
313 | },
|
---|
314 | F[13] == {
|
---|
315 | ClassName -> QL,
|
---|
316 | Unphysical -> True,
|
---|
317 | Indices -> {Index[SU2D], Index[Generation], Index[Colour]},
|
---|
318 | FlavorIndex -> SU2D,
|
---|
319 | SelfConjugate -> False,
|
---|
320 | QuantumNumbers -> {Y -> 1/6},
|
---|
321 | Definitions -> {
|
---|
322 | QL[sp1_,1,ff_,cc_] :> Module[{sp2}, ProjM[sp1,sp2] uq[sp2,ff,cc]],
|
---|
323 | QL[sp1_,2,ff_,cc_] :> Module[{sp2,ff2}, CKM[ff,ff2] ProjM[sp1,sp2] dq[sp2,ff2,cc]] }
|
---|
324 | },
|
---|
325 | F[14] == {
|
---|
326 | ClassName -> uR,
|
---|
327 | Unphysical -> True,
|
---|
328 | Indices -> {Index[Generation], Index[Colour]},
|
---|
329 | FlavorIndex -> Generation,
|
---|
330 | SelfConjugate -> False,
|
---|
331 | QuantumNumbers -> {Y -> 2/3},
|
---|
332 | Definitions -> { uR[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] uq[sp2,ff,cc]] }
|
---|
333 | },
|
---|
334 | F[15] == {
|
---|
335 | ClassName -> dR,
|
---|
336 | Unphysical -> True,
|
---|
337 | Indices -> {Index[Generation], Index[Colour]},
|
---|
338 | FlavorIndex -> Generation,
|
---|
339 | SelfConjugate -> False,
|
---|
340 | QuantumNumbers -> {Y -> -1/3},
|
---|
341 | Definitions -> { dR[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] dq[sp2,ff,cc]] }
|
---|
342 | },
|
---|
343 |
|
---|
344 | (* Higgs: physical scalars *)
|
---|
345 | S[1] == {
|
---|
346 | ClassName -> H,
|
---|
347 | SelfConjugate -> True,
|
---|
348 | Mass -> {MH,125},
|
---|
349 | Width -> {WH,0.00407},
|
---|
350 | PropagatorLabel -> "H",
|
---|
351 | PropagatorType -> D,
|
---|
352 | PropagatorArrow -> None,
|
---|
353 | PDG -> 25,
|
---|
354 | ParticleName -> "H",
|
---|
355 | FullName -> "H"
|
---|
356 | },
|
---|
357 |
|
---|
358 | (* Higgs: physical scalars *)
|
---|
359 | S[2] == {
|
---|
360 | ClassName -> G0,
|
---|
361 | SelfConjugate -> True,
|
---|
362 | Goldstone -> Z,
|
---|
363 | Mass -> {MZ, Internal},
|
---|
364 | Width -> {WZ, 2.4952},
|
---|
365 | PropagatorLabel -> "Go",
|
---|
366 | PropagatorType -> D,
|
---|
367 | PropagatorArrow -> None,
|
---|
368 | PDG -> 250,
|
---|
369 | ParticleName -> "G0",
|
---|
370 | FullName -> "G0"
|
---|
371 | },
|
---|
372 | S[3] == {
|
---|
373 | ClassName -> GP,
|
---|
374 | SelfConjugate -> False,
|
---|
375 | Goldstone -> W,
|
---|
376 | Mass -> {MW, 80.385},
|
---|
377 | QuantumNumbers -> {Q -> 1},
|
---|
378 | Width -> {WW, 2.085},
|
---|
379 | PropagatorLabel -> "GP",
|
---|
380 | PropagatorType -> D,
|
---|
381 | PropagatorArrow -> None,
|
---|
382 | PDG -> 251,
|
---|
383 | ParticleName -> "G+",
|
---|
384 | AntiParticleName -> "G-",
|
---|
385 | FullName -> "GP"
|
---|
386 | },
|
---|
387 |
|
---|
388 | (* Higgs: unphysical scalars *)
|
---|
389 | S[11] == {
|
---|
390 | ClassName -> Phi,
|
---|
391 | Unphysical -> True,
|
---|
392 | Indices -> {Index[SU2D]},
|
---|
393 | FlavorIndex -> SU2D,
|
---|
394 | SelfConjugate -> False,
|
---|
395 | QuantumNumbers -> {Y -> 1/2},
|
---|
396 | Definitions -> { Phi[1] -> -I GP, Phi[2] -> (vev + H + I G0)/Sqrt[2] }
|
---|
397 | }
|
---|
398 | };
|
---|
399 |
|
---|
400 |
|
---|
401 | (* ************************** *)
|
---|
402 | (* ***** Gauge ***** *)
|
---|
403 | (* ***** Parameters ***** *)
|
---|
404 | (* ***** (FeynArts) ***** *)
|
---|
405 | (* ************************** *)
|
---|
406 |
|
---|
407 | GaugeXi[ V[1] ] = GaugeXi[A];
|
---|
408 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
---|
409 | GaugeXi[ V[3] ] = GaugeXi[W];
|
---|
410 | GaugeXi[ V[4] ] = GaugeXi[G];
|
---|
411 | GaugeXi[ S[1] ] = 1;
|
---|
412 | GaugeXi[ S[2] ] = GaugeXi[Z];
|
---|
413 | GaugeXi[ S[3] ] = GaugeXi[W];
|
---|
414 | GaugeXi[ U[1] ] = GaugeXi[A];
|
---|
415 | GaugeXi[ U[2] ] = GaugeXi[Z];
|
---|
416 | GaugeXi[ U[31] ] = GaugeXi[W];
|
---|
417 | GaugeXi[ U[32] ] = GaugeXi[W];
|
---|
418 | GaugeXi[ U[4] ] = GaugeXi[G];
|
---|
419 |
|
---|
420 |
|
---|
421 | (* ************************** *)
|
---|
422 | (* ***** Parameters ***** *)
|
---|
423 | (* ************************** *)
|
---|
424 | (* The loop coefficients *)
|
---|
425 | sert[x_] := 1+ 7/30 x + 2/21 x^2 + 26/525 x^3;
|
---|
426 | serw[xw_, xt_] := 1 + xw * 66/235 +xw^2 * 228/1645 + xw^3 * 696/8225 +
|
---|
427 | xw^4 * 5248/90475 +xw^5 * 1280/29939+ xw^6 * 54528/1646645-
|
---|
428 | xt * 56/705 - xt^2 * 32/987;
|
---|
429 |
|
---|
430 | M$Parameters = {
|
---|
431 | (* New physics parameters *)
|
---|
432 | cH == { TeX -> Subscript[C,H], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 1 , InteractionOrder -> {NP,1} },
|
---|
433 | cT == { TeX -> Subscript[C,T], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 2 , InteractionOrder -> {NP,1} },
|
---|
434 | c6 == { TeX -> Subscript[C,6], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 3 , InteractionOrder -> {NP,1} },
|
---|
435 | cu == { TeX -> Subscript[C,u], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 4 , InteractionOrder -> {NP,1} },
|
---|
436 | cd == { TeX -> Subscript[C,d], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 5 , InteractionOrder -> {NP,1} },
|
---|
437 | cl == { TeX -> Subscript[C,l], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 6 , InteractionOrder -> {NP,1} },
|
---|
438 | cWW == { TeX -> Subscript[C,W], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 7 , InteractionOrder -> {NP,1} },
|
---|
439 | cB == { TeX -> Subscript[C,B], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 8 , InteractionOrder -> {NP,1} },
|
---|
440 | cHW == { TeX -> Subscript[C,HW], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 9 , InteractionOrder -> {NP,1} },
|
---|
441 | cHB == { TeX -> Subscript[C,HB], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 10, InteractionOrder -> {NP,1} },
|
---|
442 | cA == { TeX -> Subscript[C,\[Gamma]], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 11, InteractionOrder -> {NP,1} },
|
---|
443 | cG == { TeX -> Subscript[C,g] , ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 12, InteractionOrder -> {NP,1} },
|
---|
444 | cHQ == { TeX -> Subscript[C,Hq], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 13, InteractionOrder -> {NP,1} },
|
---|
445 | cpHQ== { TeX -> Subscript[C',Hq], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 14, InteractionOrder -> {NP,1} },
|
---|
446 | cHu == { TeX -> Subscript[C,Hu], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 15, InteractionOrder -> {NP,1} },
|
---|
447 | cHd == { TeX -> Subscript[C,Hd], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 16, InteractionOrder -> {NP,1} },
|
---|
448 | cHud== { TeX -> Subscript[C,Hud], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 17, InteractionOrder -> {NP,1} },
|
---|
449 | cHL == { TeX -> Subscript[C,Hl], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 18, InteractionOrder -> {NP,1} },
|
---|
450 | cpHL== { TeX -> Subscript[C',Hl], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 19, InteractionOrder -> {NP,1} },
|
---|
451 | cHe == { TeX -> Subscript[C,He], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 20, InteractionOrder -> {NP,1} },
|
---|
452 | cuB == { TeX -> Subscript[C,uB], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 21, InteractionOrder -> {NP,1} },
|
---|
453 | cuW == { TeX -> Subscript[C,uW], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 22, InteractionOrder -> {NP,1} },
|
---|
454 | cuG == { TeX -> Subscript[C,uG], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 23, InteractionOrder -> {NP,1} },
|
---|
455 | cdB == { TeX -> Subscript[C,dB], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 24, InteractionOrder -> {NP,1} },
|
---|
456 | cdW == { TeX -> Subscript[C,dW], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 25, InteractionOrder -> {NP,1} },
|
---|
457 | cdG == { TeX -> Subscript[C,dG], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 26, InteractionOrder -> {NP,1} },
|
---|
458 | clB == { TeX -> Subscript[C,lB], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 27, InteractionOrder -> {NP,1} },
|
---|
459 | clW == { TeX -> Subscript[C,lW], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 28, InteractionOrder -> {NP,1} },
|
---|
460 | c3W == { TeX -> Subscript[C,3W], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 29, InteractionOrder -> {NP,1} },
|
---|
461 | c3G == { TeX -> Subscript[C,3G], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 30, InteractionOrder -> {NP,1} },
|
---|
462 | c2W == { TeX -> Subscript[C,2W], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 31, InteractionOrder -> {NP,1} },
|
---|
463 | c2B == { TeX -> Subscript[C,2B], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 32, InteractionOrder -> {NP,1} },
|
---|
464 | c2G == { TeX -> Subscript[C,2G], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 33, InteractionOrder -> {NP,1} },
|
---|
465 | tcHW== { TeX -> Subscript[OverTilde[C],HW], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 34 , InteractionOrder -> {NP,1}},
|
---|
466 | tcHB== { TeX -> Subscript[OverTilde[C],HB], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 35 , InteractionOrder -> {NP,1}},
|
---|
467 | tcG == { TeX -> Subscript[OverTilde[C],G], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 36 , InteractionOrder -> {NP,1}},
|
---|
468 | tcA == { TeX -> Subscript[OverTilde[C],A], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 37 , InteractionOrder -> {NP,1}},
|
---|
469 | tc3W== { TeX -> Subscript[OverTilde[C],3W], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 38 , InteractionOrder -> {NP,1}},
|
---|
470 | tc3G== { TeX -> Subscript[OverTilde[C],3G], ParameterType -> External, Value -> 0.1, BlockName -> NEWCOUP, OrderBlock -> 39 , InteractionOrder -> {NP,1}},
|
---|
471 | dum == { TeX -> "", ParameterType -> Internal, Definition -> {dum->1}, InteractionOrder -> {QED,1}},
|
---|
472 |
|
---|
473 | (* External parameters *)
|
---|
474 | aEWM1 == {
|
---|
475 | ParameterType -> External,
|
---|
476 | BlockName -> SMINPUTS,
|
---|
477 | OrderBlock -> 1,
|
---|
478 | Value -> 127.9,
|
---|
479 | InteractionOrder -> {QED,-2},
|
---|
480 | Description -> "Inverse of the EW coupling constant at the Z pole"
|
---|
481 | },
|
---|
482 | Gf == {
|
---|
483 | ParameterType -> External,
|
---|
484 | BlockName -> SMINPUTS,
|
---|
485 | OrderBlock -> 2,
|
---|
486 | Value -> 1.16637*^-5,
|
---|
487 | InteractionOrder -> {QED,2},
|
---|
488 | TeX -> Subscript[G,f],
|
---|
489 | Description -> "Fermi constant"
|
---|
490 | },
|
---|
491 | aS == {
|
---|
492 | ParameterType -> External,
|
---|
493 | BlockName -> SMINPUTS,
|
---|
494 | OrderBlock -> 3,
|
---|
495 | Value -> 0.1184,
|
---|
496 | InteractionOrder -> {QCD,2},
|
---|
497 | TeX -> Subscript[\[Alpha],s],
|
---|
498 | Description -> "Strong coupling constant at the Z pole"
|
---|
499 | },
|
---|
500 | ymdo == {
|
---|
501 | ParameterType -> External,
|
---|
502 | BlockName -> YUKAWA,
|
---|
503 | OrderBlock -> 1,
|
---|
504 | Value -> 5.04*^-3,
|
---|
505 | Description -> "Down Yukawa mass"
|
---|
506 | },
|
---|
507 | ymup == {
|
---|
508 | ParameterType -> External,
|
---|
509 | BlockName -> YUKAWA,
|
---|
510 | OrderBlock -> 2,
|
---|
511 | Value -> 2.55*^-3,
|
---|
512 | Description -> "Up Yukawa mass"
|
---|
513 | },
|
---|
514 | yms == {
|
---|
515 | ParameterType -> External,
|
---|
516 | BlockName -> YUKAWA,
|
---|
517 | OrderBlock -> 3,
|
---|
518 | Value -> 0.101,
|
---|
519 | Description -> "Strange Yukawa mass"
|
---|
520 | },
|
---|
521 | ymc == {
|
---|
522 | ParameterType -> External,
|
---|
523 | BlockName -> YUKAWA,
|
---|
524 | OrderBlock -> 4,
|
---|
525 | Value -> 1.27,
|
---|
526 | Description -> "Charm Yukawa mass"
|
---|
527 | },
|
---|
528 | ymb == {
|
---|
529 | ParameterType -> External,
|
---|
530 | BlockName -> YUKAWA,
|
---|
531 | OrderBlock -> 5,
|
---|
532 | Value -> 4.7,
|
---|
533 | Description -> "Bottom Yukawa mass"
|
---|
534 | },
|
---|
535 | ymt == {
|
---|
536 | ParameterType -> External,
|
---|
537 | BlockName -> YUKAWA,
|
---|
538 | OrderBlock -> 6,
|
---|
539 | Value -> 172,
|
---|
540 | Description -> "Top Yukawa mass"
|
---|
541 | },
|
---|
542 | yme == {
|
---|
543 | ParameterType -> External,
|
---|
544 | BlockName -> YUKAWA,
|
---|
545 | OrderBlock -> 11,
|
---|
546 | Value -> 5.11*^-4,
|
---|
547 | Description -> "Electron Yukawa mass"
|
---|
548 | },
|
---|
549 | ymm == {
|
---|
550 | ParameterType -> External,
|
---|
551 | BlockName -> YUKAWA,
|
---|
552 | OrderBlock -> 13,
|
---|
553 | Value -> 0.10566,
|
---|
554 | Description -> "Muon Yukawa mass"
|
---|
555 | },
|
---|
556 | ymtau == {
|
---|
557 | ParameterType -> External,
|
---|
558 | BlockName -> YUKAWA,
|
---|
559 | OrderBlock -> 15,
|
---|
560 | Value -> 1.777,
|
---|
561 | Description -> "Tau Yukawa mass"
|
---|
562 | },
|
---|
563 | cabi == {
|
---|
564 | ParameterType -> External,
|
---|
565 | BlockName -> CKMBLOCK,
|
---|
566 | OrderBlock -> 1,
|
---|
567 | Value -> 0.227736,
|
---|
568 | TeX -> Subscript[\[Theta], c],
|
---|
569 | Description -> "Cabibbo angle"
|
---|
570 | },
|
---|
571 |
|
---|
572 | (* Internal Parameters *)
|
---|
573 | aEW == {
|
---|
574 | ParameterType -> Internal,
|
---|
575 | Value -> 1/aEWM1,
|
---|
576 | InteractionOrder -> {QED,2},
|
---|
577 | TeX -> Subscript[\[Alpha], EW],
|
---|
578 | Description -> "Electroweak coupling contant"
|
---|
579 | },
|
---|
580 | ee == {
|
---|
581 | ParameterType -> Internal,
|
---|
582 | Value -> Sqrt[4 Pi aEW],
|
---|
583 | InteractionOrder -> {QED,1},
|
---|
584 | TeX -> e,
|
---|
585 | Description -> "Electric coupling constant"
|
---|
586 | },
|
---|
587 | vev == {
|
---|
588 | ParameterType -> Internal,
|
---|
589 | Value -> Sqrt[1/(Sqrt[2] Gf)],
|
---|
590 | InteractionOrder -> {QED,-1},
|
---|
591 | Description -> "Higgs vacuum expectation value"
|
---|
592 | },
|
---|
593 | sw == {
|
---|
594 | ParameterType -> Internal,
|
---|
595 | Value -> ee*vev/(2*MW),
|
---|
596 | TeX -> Subscript[s,w],
|
---|
597 | Description -> "Sine of the Weinberg angle"
|
---|
598 | },
|
---|
599 | cw == {
|
---|
600 | ParameterType -> Internal,
|
---|
601 | Value -> Sqrt[1-sw^2],
|
---|
602 | TeX -> Subscript[c,w],
|
---|
603 | Description -> "Cosine of the Weinberg angle"
|
---|
604 | },
|
---|
605 | gw == {
|
---|
606 | ParameterType -> Internal,
|
---|
607 | Definitions -> {gw->ee/sw},
|
---|
608 | InteractionOrder -> {QED,1},
|
---|
609 | TeX -> Subscript[g,w],
|
---|
610 | Description -> "Weak coupling constant at the Z pole"
|
---|
611 | },
|
---|
612 | g1 == {
|
---|
613 | ParameterType -> Internal,
|
---|
614 | Definitions -> {g1->ee/cw},
|
---|
615 | InteractionOrder -> {QED,1},
|
---|
616 | TeX -> Subscript[g,1],
|
---|
617 | Description -> "U(1)Y coupling constant at the Z pole"
|
---|
618 | },
|
---|
619 | MZ == {
|
---|
620 | ParameterType -> Internal,
|
---|
621 | Value -> Sqrt[gw^2 vev^2/(4 cw^2) (1-cT+8 cA sw^4/cw^2)],
|
---|
622 | TeX -> Subscript[M,Z],
|
---|
623 | Description -> "Z mass"
|
---|
624 | },
|
---|
625 | gs == {
|
---|
626 | ParameterType -> Internal,
|
---|
627 | Value -> Sqrt[4 Pi aS],
|
---|
628 | InteractionOrder -> {QCD,1},
|
---|
629 | TeX -> Subscript[g,s],
|
---|
630 | ParameterName -> G,
|
---|
631 | Description -> "Strong coupling constant at the Z pole"
|
---|
632 | },
|
---|
633 | lam == {
|
---|
634 | ParameterType -> Internal,
|
---|
635 | Definitions -> {lam->MH^2/(2 vev^2)*(1-13/8*c6+cH)},
|
---|
636 | InteractionOrder -> {QED, 2},
|
---|
637 | Description -> "Higgs quartic coupling"
|
---|
638 | },
|
---|
639 | muH == {
|
---|
640 | ParameterType -> Internal,
|
---|
641 | Definitions -> {muH->(1+c6/4) Sqrt[lam vev^2]},
|
---|
642 | TeX -> \[Mu],
|
---|
643 | Description -> "Coefficient of the quadratic piece of the Higgs potential"
|
---|
644 | },
|
---|
645 | yl == {
|
---|
646 | ParameterType -> Internal,
|
---|
647 | Indices -> {Index[Generation], Index[Generation]},
|
---|
648 | Definitions -> {yl[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
---|
649 | Value -> {yl[1,1] -> Sqrt[2] yme / vev, yl[2,2] -> Sqrt[2] ymm / vev, yl[3,3] -> Sqrt[2] ymtau / vev},
|
---|
650 | InteractionOrder -> {QED, 1},
|
---|
651 | ParameterName -> {yl[1,1] -> ye, yl[2,2] -> ym, yl[3,3] -> ytau},
|
---|
652 | TeX -> Superscript[y, l],
|
---|
653 | Description -> "Lepton Yukawa couplings"
|
---|
654 | },
|
---|
655 | yu == {
|
---|
656 | ParameterType -> Internal,
|
---|
657 | Indices -> {Index[Generation], Index[Generation]},
|
---|
658 | Definitions -> {yu[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
---|
659 | Value -> {yu[1,1] -> Sqrt[2] ymup/vev, yu[2,2] -> Sqrt[2] ymc/vev, yu[3,3] -> Sqrt[2] ymt/vev},
|
---|
660 | InteractionOrder -> {QED, 1},
|
---|
661 | ParameterName -> {yu[1,1] -> yup, yu[2,2] -> yc, yu[3,3] -> yt},
|
---|
662 | TeX -> Superscript[y, u],
|
---|
663 | Description -> "Up-type Yukawa couplings"
|
---|
664 | },
|
---|
665 | yd == {
|
---|
666 | ParameterType -> Internal,
|
---|
667 | Indices -> {Index[Generation], Index[Generation]},
|
---|
668 | Definitions -> {yd[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
---|
669 | Value -> {yd[1,1] -> Sqrt[2] ymdo/vev, yd[2,2] -> Sqrt[2] yms/vev, yd[3,3] -> Sqrt[2] ymb/vev},
|
---|
670 | InteractionOrder -> {QED, 1},
|
---|
671 | ParameterName -> {yd[1,1] -> ydo, yd[2,2] -> ys, yd[3,3] -> yb},
|
---|
672 | TeX -> Superscript[y, d],
|
---|
673 | Description -> "Down-type Yukawa couplings"
|
---|
674 | },
|
---|
675 | (* N. B. : only Cabibbo mixing! *)
|
---|
676 | CKM == {
|
---|
677 | ParameterType -> Internal,
|
---|
678 | Indices -> {Index[Generation], Index[Generation]},
|
---|
679 | Unitary -> True,
|
---|
680 | Value -> {CKM[1,1] -> Cos[cabi], CKM[1,2] -> Sin[cabi], CKM[1,3] -> 0,
|
---|
681 | CKM[2,1] -> -Sin[cabi], CKM[2,2] -> Cos[cabi], CKM[2,3] -> 0,
|
---|
682 | CKM[3,1] -> 0, CKM[3,2] -> 0, CKM[3,3] -> 1},
|
---|
683 | TeX -> Superscript[V,CKM],
|
---|
684 | Description -> "CKM-Matrix"},
|
---|
685 | AH == { TeX->Subscript[A,H], ParameterType->Internal, Value -> ee^2/4/Pi/(Pi*vev)*(47/18)*serw[(MH/2/MW)^2, (MH/2/MT)^2], InteractionOrder -> {QED, 2}},
|
---|
686 | GH == { TeX->Subscript[G,H], ParameterType->Internal, Value -> -gs^2/(4Pi(3Pi vev)) (*sert[(MH/2/MT)^2]*), InteractionOrder -> {QCD, 2}}
|
---|
687 | };
|
---|
688 |
|
---|
689 | (* ************************** *)
|
---|
690 | (* ***** Lagrangian ***** *)
|
---|
691 | (* ************************** *)
|
---|
692 |
|
---|
693 |
|
---|
694 | LGauge := Block[{mu,nu,ii,aa},
|
---|
695 | ExpandIndices[-1/4 FS[B,mu,nu] FS[B,mu,nu] - 1/4 FS[Wi,mu,nu,ii] FS[Wi,mu,nu,ii] - 1/4 FS[G,mu,nu,aa] FS[G,mu,nu,aa], FlavorExpand->SU2W]];
|
---|
696 |
|
---|
697 | LFermions := Block[{mu},
|
---|
698 | ExpandIndices[I*(
|
---|
699 | QLbar.Ga[mu].DC[QL, mu] + LLbar.Ga[mu].DC[LL, mu] + uRbar.Ga[mu].DC[uR, mu] + dRbar.Ga[mu].DC[dR, mu] + lRbar.Ga[mu].DC[lR, mu]),
|
---|
700 | FlavorExpand->{SU2W,SU2D}]/.{CKM[a_,b_] Conjugate[CKM[a_,c_]]->IndexDelta[b,c], CKM[b_,a_] Conjugate[CKM[c_,a_]]->IndexDelta[b,c]}];
|
---|
701 |
|
---|
702 | LHiggs := Block[{ii,mu, feynmangaugerules},
|
---|
703 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
704 |
|
---|
705 | ExpandIndices[DC[Phibar[ii],mu] DC[Phi[ii],mu] + muH^2 Phibar[ii] Phi[ii] - lam Phibar[ii] Phi[ii] Phibar[jj] Phi[jj], FlavorExpand->{SU2D,SU2W}]/.feynmangaugerules
|
---|
706 | ];
|
---|
707 |
|
---|
708 | LYukawa := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
709 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
710 |
|
---|
711 | yuk = ExpandIndices[
|
---|
712 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] Phi[ii] -
|
---|
713 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] Phi[ii] -
|
---|
714 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] Phibar[jj] Eps[ii, jj], FlavorExpand -> SU2D];
|
---|
715 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
716 | yuk+HC[yuk]/.feynmangaugerules
|
---|
717 | ];
|
---|
718 |
|
---|
719 | LGhost := Block[{LGh1,LGhw,LGhs,LGhphi,mu, generators,gh,ghbar,Vectorize,phi1,phi2,togoldstones,doublet,doublet0},
|
---|
720 | (* Pure gauge piece *)
|
---|
721 | LGh1 = -ghBbar.del[DC[ghB,mu],mu];
|
---|
722 | LGhw = -ghWibar.del[DC[ghWi,mu],mu];
|
---|
723 | LGhs = -ghGbar.del[DC[ghG,mu],mu];
|
---|
724 |
|
---|
725 | (* Scalar pieces: see Peskin pages 739-742 *)
|
---|
726 | (* phi1 and phi2 are the real degrees of freedom of GP *)
|
---|
727 | (* Vectorize transforms a doublet in a vector in the phi-basis, i.e. the basis of real degrees of freedom *)
|
---|
728 | gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
|
---|
729 | ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
|
---|
730 | generators = {-I/2 g1 IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
---|
731 | doublet = Expand[{(-I phi1 - phi2)/Sqrt[2], Phi[2]} /. MR$Definitions /. vev -> 0];
|
---|
732 | doublet0 = {0, vev/Sqrt[2]};
|
---|
733 | Vectorize[{a_, b_}]:= Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]}/.{Im[_]->0, Re[num_]->num}];
|
---|
734 | togoldstones := {phi1 -> (GP + GPbar)/Sqrt[2], phi2 -> (-GP + GPbar)/(I Sqrt[2])};
|
---|
735 | LGhphi=Plus@@Flatten[Table[-ghbar[[kkk]].gh[[lll]] Vectorize[generators[[kkk]].doublet0].Vectorize[generators[[lll]].(doublet+doublet0)],{kkk,4},{lll,4}]] /.togoldstones;
|
---|
736 |
|
---|
737 | ExpandIndices[ LGhs + If[FeynmanGauge, LGh1 + LGhw + LGhphi,0], FlavorExpand->SU2W]];
|
---|
738 |
|
---|
739 | LSM:= LGauge + LFermions + LHiggs + LYukawa + LGhost;
|
---|
740 |
|
---|
741 | Wvec[mu_,nu_,ii_,jj_]:= Module[{aa},Ta[aa,ii,jj] FS[Wi,mu,nu,aa]];
|
---|
742 |
|
---|
743 | LSILH := Block[{ii,jj,kk, ff1,ff2,ff3, cc, sp,mu,nu, LHSelf, LHFermions, LHGauge},
|
---|
744 | LHSelf = ExpandIndices[
|
---|
745 | cH/(2 vev^2) del[Phibar[ii] Phi[ii],mu] del[Phibar[jj] Phi[jj],mu] +
|
---|
746 | cT/(2 vev^2) ( Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]) (Phibar[jj] DC[Phi[jj],mu] - DC[Phibar[jj],mu] Phi[jj]) -
|
---|
747 | c6 lam / vev^2 Phibar[ii] Phi[ii] Phibar[jj] Phi[jj] Phibar[kk] Phi[kk],
|
---|
748 | FlavorExpand->{SU2W,SU2D}];
|
---|
749 |
|
---|
750 | LHFermions = ExpandIndices[
|
---|
751 | -cu/vev^2 yu[ff1,ff2] Phibar[ii] Phi[ii] QLbar[sp,jj,ff1,cc].uR[sp,ff2,cc] Phibar[kk] Eps[jj,kk] -
|
---|
752 | cd/vev^2 yd[ff2,ff3] CKM[ff1,ff2] Phibar[ii] Phi[ii] QLbar[sp,jj,ff1,cc].dR[sp,ff3,cc] Phi[jj] -
|
---|
753 | cl/vev^2 yl[ff1,ff2] Phibar[ii] Phi[ii] LLbar[sp,jj,ff1].lR[sp,ff2] Phi[jj],
|
---|
754 | FlavorExpand->{SU2W,SU2D}]/. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
755 |
|
---|
756 | LHGauge = ExpandIndices[
|
---|
757 | I cWW gw / MW^2 DC[Wvec[mu,nu,ii,jj],nu] (Phibar[ii] DC[Phi[jj],mu] - DC[Phibar[ii],mu] Phi[jj]) +
|
---|
758 | I cB g1 / (2 MW^2) del[FS[B,mu,nu],nu] (Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]) +
|
---|
759 | 2 I cHW gw / MW^2 Wvec[mu,nu,ii,jj] DC[Phibar[ii],mu] DC[Phi[jj],nu] +
|
---|
760 | I cHB g1 / MW^2 FS[B,mu,nu] DC[Phibar[ii],mu] DC[Phi[ii],nu] +
|
---|
761 | cA g1^2 / MW^2 Phibar[ii] Phi[ii] FS[B,mu,nu] FS[B,mu,nu] +
|
---|
762 | cG dum^2 gs^2 / MW^2 Phibar[ii] Phi[ii] FS[G,mu,nu,jj] FS[G,mu,nu,jj],
|
---|
763 | FlavorExpand->{SU2W,SU2D}];
|
---|
764 |
|
---|
765 | Return[LHSelf + LHFermions + HC[LHFermions] + LHGauge];
|
---|
766 | ];
|
---|
767 |
|
---|
768 | LF1 := Block[{LFQL, LFQR, LFLL, LFLR, ii,jj,kk,ll,sp1,sp2,ff,cc,mu},
|
---|
769 | LFQL = ExpandIndices[
|
---|
770 | I cHQ / vev^2 QLbar.Ga[mu].QL ( Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]) +
|
---|
771 | 4 I cpHQ / vev^2 Ta[aa,ii,jj] Ta[aa,kk,ll] Ga[mu,sp1,sp2] QLbar[sp1,ii,ff,cc].QL[sp2,jj,ff,cc] ( Phibar[kk] DC[Phi[ll],mu] - DC[Phibar[kk],mu] Phi[ll]),
|
---|
772 | FlavorExpand->{SU2W,SU2D}];
|
---|
773 |
|
---|
774 | LFQR = ExpandIndices[
|
---|
775 | I cHu / (2 vev^2) uRbar.Ga[mu].uR ( Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]) +
|
---|
776 | I cHd / (2 vev^2) dRbar.Ga[mu].dR ( Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]) +
|
---|
777 | I cHud / vev^2 Eps[ii,jj] uRbar.Ga[mu].dR ( Phi[jj] DC[Phi[ii],mu] - DC[Phi[jj],mu] Phi[ii]),
|
---|
778 | FlavorExpand->{SU2W,SU2D}];
|
---|
779 |
|
---|
780 | LFLL = ExpandIndices[
|
---|
781 | I cHL / vev^2 LLbar.Ga[mu].LL ( Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]) +
|
---|
782 | 4 I cpHL / vev^2 Ta[aa,ii,jj] Ta[aa,kk,ll] Ga[mu,sp1,sp2] LLbar[sp1,ii,ff].LL[sp2,jj,ff] ( Phibar[kk] DC[Phi[ll],mu] - DC[Phibar[kk],mu] Phi[ll]),
|
---|
783 | FlavorExpand->{SU2W,SU2D}];
|
---|
784 |
|
---|
785 | LFLR = ExpandIndices[
|
---|
786 | I cHe / (2 vev^2) lRbar.Ga[mu].lR ( Phibar[ii] DC[Phi[ii],mu] - DC[Phibar[ii],mu] Phi[ii]),
|
---|
787 | FlavorExpand->{SU2W,SU2D}];
|
---|
788 |
|
---|
789 | Return[LFQL + LFQR + HC[LFQR] + LFLL + LFLR];
|
---|
790 | ];
|
---|
791 |
|
---|
792 | LF2 := Block[{LFu, LFd, LFl, sp1,sp2,sp3, mu,nu, ff1,ff2, ii,jj,kk,ll, cc},
|
---|
793 | LFu = ExpandIndices[
|
---|
794 | I cuB g1/(2 MW^2) (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yu[ff1,ff2] QLbar[sp1,jj,ff1,cc].uR[sp2,ff2,cc] Phibar[kk] Eps[jj,kk] FS[B,mu,nu] +
|
---|
795 | I cuW gw/MW^2 Ta[ii,jj,ll] (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yu[ff1,ff2] QLbar[sp1,jj,ff1,cc].uR[sp2,ff2,cc] Phibar[kk] Eps[ll,kk] FS[Wi,mu,nu,ii] +
|
---|
796 | I cuG gs/MW^2 T[ii,cc1,cc] (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yu[ff1,ff2] QLbar[sp1,jj,ff1,cc1].uR[sp2,ff2,cc] Phibar[kk] Eps[jj,kk] FS[G,mu,nu,ii],
|
---|
797 | FlavorExpand->{SU2W,SU2D}];
|
---|
798 |
|
---|
799 | LFd = ExpandIndices[
|
---|
800 | I cdB g1/(2 MW^2) (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yd[ff2,ff3] CKM[ff1,ff2] QLbar[sp1,jj,ff1,cc].dR[sp2,ff3,cc] Phi[jj] FS[B,mu,nu] +
|
---|
801 | I cdW gw/MW^2 Ta[ii,jj,ll] (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yd[ff2,ff3] CKM[ff1,ff2] QLbar[sp1,jj,ff1,cc].dR[sp2,ff3,cc] Phi[ll] FS[Wi,mu,nu,ii] +
|
---|
802 | I cdG gs/MW^2 T[ii,cc1,cc] (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yd[ff2,ff3] CKM[ff1,ff2] QLbar[sp1,jj,ff1,cc1].dR[sp2,ff3,cc] Phi[jj] FS[G,mu,nu,ii],
|
---|
803 | FlavorExpand->{SU2W,SU2D}];
|
---|
804 |
|
---|
805 | LFl = ExpandIndices[
|
---|
806 | I clB g1/(2 MW^2) (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yl[ff1,ff2] LLbar[sp1,jj,ff1].lR[sp2,ff2] Phi[jj] FS[B,mu,nu] +
|
---|
807 | I clW gw/MW^2 Ta[ii,jj,ll] (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] - Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] ) yl[ff1,ff2] LLbar[sp1,jj,ff1].lR[sp2,ff2] Phi[ll] FS[Wi,mu,nu,ii],
|
---|
808 | FlavorExpand->{SU2W,SU2D}];
|
---|
809 |
|
---|
810 | Return[LFu + LFd + LFl + HC[LFu + LFd + LFl]];
|
---|
811 | ];
|
---|
812 |
|
---|
813 | LBosons := Block[{LWWW, LGGG, LWW, LBB, LGG, ii,jj,kk,mu,nu,ro},
|
---|
814 | LWWW = ExpandIndices[-I c3W/MW^2 gw^3 FSU2L[ii,jj,kk] FS[Wi,mu,nu,ii] FS[Wi,nu,ro,jj] FS[Wi,ro,mu,kk], FlavorExpand->{SU2D,SU2W}];
|
---|
815 | LGGG = -I c3G/MW^2 gs^3 FSU3C[ii,jj,kk] FS[G,mu,nu,ii] FS[G,nu,ro,jj] FS[G,ro,mu,kk];
|
---|
816 |
|
---|
817 | LWW = ExpandIndices[ c2W/MW^2 DC[FS[Wi,mu,nu,ii],mu] DC[FS[Wi,ro,nu,ii],ro], FlavorExpand->{SU2D,SU2W}];
|
---|
818 | LBB = ExpandIndices[ c2B/MW^2 del[FS[B,mu,nu],mu] del[FS[B,ro,nu],ro], FlavorExpand->{SU2D,SU2W}];
|
---|
819 | LGG = c2G/MW^2 DC[FS[G,mu,nu,ii],mu] DC[FS[G,ro,nu,ii],ro];
|
---|
820 |
|
---|
821 | Return[LWWW + LGGG + LWW + LGG + LBB];
|
---|
822 | ];
|
---|
823 |
|
---|
824 | LCP := Block[{LHV, LVVV, ii,jj,kk,aa,mu,nu,ro,rop,mup, outlag},
|
---|
825 | LHV = ExpandIndices[
|
---|
826 | I Eps[mu,nu,ro,sig] tcHW gw/MW^2 Ta[aa,ii,jj] DC[Phibar[ii],mu] DC[Phi[jj],nu] FS[Wi,ro,sig,aa] +
|
---|
827 | I/2 Eps[mu,nu,ro,sig] tcHB g1/MW^2 DC[Phibar[ii],mu] DC[Phi[ii],nu] FS[B,ro,sig] +
|
---|
828 | 1/2 Eps[mu,nu,ro,sig] tcA g1^2/MW^2 Phibar[ii] Phi[ii] FS[B,mu,nu] FS[B,ro,sig] +
|
---|
829 | 1/2 Eps[mu,nu,ro,sig] dum^2 tcG gs^2/MW^2 Phibar[ii] Phi[ii] FS[G,mu,nu,aa] FS[G,ro,sig,aa],
|
---|
830 | FlavorExpand->{SU2W,SU2D}];
|
---|
831 |
|
---|
832 | LVVV= ExpandIndices[
|
---|
833 | -I/2 Eps[ro,mu,rop,mup] tc3W gw^3/MW^2 FSU2L[ii,jj,kk] FS[Wi,mu,nu,ii] FS[Wi,nu,ro,jj] FS[Wi,rop,mup,kk] +
|
---|
834 | -I/2 Eps[ro,mu,rop,mup] tc3G gs^3/MW^2 FSU3C[ii,jj,kk] FS[G,mu,nu,ii] FS[G,nu,ro,jj] FS[G,rop,mup,kk],
|
---|
835 | FlavorExpand->{SU2W,SU2D}];
|
---|
836 |
|
---|
837 | outlag = OptimizeIndex[LHV+LVVV]/.Eps[args__] :> Signature[{args}] Eps[Sequence @@ Sort[{args}]];
|
---|
838 | outlag=outlag /. del[a_, m1_] del[a_, m2_] Eps[n1___, m1_, n2___, m2_, n3___] :> 0;
|
---|
839 |
|
---|
840 | Return[ outlag ];
|
---|
841 | ];
|
---|
842 |
|
---|
843 | LLOPP := -1/4 GH FS[G, mu, nu, b] FS[G, mu, nu, b] H (1-0*H/(2 vev)) - 1/4 AH FS[A, mu, nu] FS[A, mu, nu] H;
|
---|
844 |
|
---|
845 | RemoveL2[exp_]:= Block[{tmp=Expand[exp]},
|
---|
846 | tmp=If[Length[tmp]===1,{tmp}, List@@tmp];
|
---|
847 | tmp = Select[tmp, (PRIVATE`GetIntOrder[#]/.{QCD->1, QED->1, PRIVATE`GetIntOrder[__] -> 1}) =!= NP^2 &];
|
---|
848 | tmp = Select[tmp, (PRIVATE`GetIntOrder[#]/.{QCD->1, QED->1, PRIVATE`GetIntOrder[__] -> 1}) =!= NP^3 &];
|
---|
849 | tmp = Select[tmp, (PRIVATE`GetIntOrder[#]/.{QCD->1, QED->1, PRIVATE`GetIntOrder[__] -> 1}) =!= NP^4 &];
|
---|
850 | tmp = Select[tmp, (PRIVATE`GetIntOrder[#]/.{QCD->1, QED->1, PRIVATE`GetIntOrder[__] -> 1}) =!= NP^5 &];
|
---|
851 | tmp = Select[tmp, (PRIVATE`GetIntOrder[#]/.{QCD->1, QED->1, PRIVATE`GetIntOrder[__] -> 1}) =!= NP^6 &];
|
---|
852 | Return[Plus@@tmp];
|
---|
853 | ];
|
---|
854 |
|
---|
855 | LagHEL := Block[{lagtmp},
|
---|
856 | lagtmp = {LF1+LF2+LSILH+LBosons+LCP+LSM};
|
---|
857 | lagtmp = RemoveL2[#/.H->H (1- cH/2)] &/@ lagtmp;
|
---|
858 | lagtmp = RemoveL2[#/.G[inds__] :> G[inds] (1 + cG dum^2 gs^2 vev^2/MW^2)] &/@ lagtmp;
|
---|
859 | lagtmp = RemoveL2[#/.Z[mu_] :> Z[mu] (1 + cA ee^2 (1 - cw^2) vev^2/(cw^2 MW^2))] &/@ lagtmp;
|
---|
860 | lagtmp = RemoveL2[#/.A[mu_] :> A[mu] (1 + cA ee^2 vev^2/MW^2) - 2 Z[mu] cA sw ee^2 vev^2/(cw MW^2)] &/@ lagtmp;
|
---|
861 | lagtmp = lagtmp/.Conjugate[CKM[a_, b_]]*CKM[a_, c_]->IndexDelta[b, c];
|
---|
862 | lagtmp = OptimizeIndex/@lagtmp;
|
---|
863 | Return[(Plus@@lagtmp)+LLOPP];
|
---|
864 | ];
|
---|
865 |
|
---|
866 |
|
---|