GeneralFCNTop: topFCNC.nb

File topFCNC.nb, 30.7 KB (added by arturamorim, 9 years ago)
Line 
1(* Content-type: application/vnd.wolfram.mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 10.1' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 158, 7]
13NotebookDataLength[ 31229, 863]
14NotebookOptionsPosition[ 28077, 760]
15NotebookOutlinePosition[ 28433, 776]
16CellTagsIndexPosition[ 28390, 773]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21Cell[BoxData[
22 RowBox[{"Quit", "[", "]"}]], "Input",
23 CellChangeTimes->{{3.641624023578207*^9, 3.641624026778105*^9}}],
24
25Cell[CellGroupData[{
26
27Cell[BoxData[
28 RowBox[{"$FeynRulesPath", " ", "=", " ",
29 RowBox[{"SetDirectory", "[", "\"\<~/FeynRules\>\"", "]"}]}]], "Input",
30 CellChangeTimes->{{3.6416240315823917`*^9, 3.6416240526641283`*^9}}],
31
32Cell[BoxData["\<\"/Users/arturamorim/FeynRules\"\>"], "Output",
33 CellChangeTimes->{3.641624055144146*^9, 3.64162428775243*^9,
34 3.6518256593460217`*^9, 3.653674806317245*^9, 3.653676957623468*^9,
35 3.653681238736064*^9, 3.653806026458891*^9, 3.653806079452402*^9}]
36}, Open ]],
37
38Cell[CellGroupData[{
39
40Cell[BoxData[
41 RowBox[{"<<", "FeynRules`"}]], "Input",
42 CellChangeTimes->{{3.6416240627998238`*^9, 3.6416240681435738`*^9}}],
43
44Cell[CellGroupData[{
45
46Cell[BoxData["\<\" - FeynRules - \"\>"], "Print",
47 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
48 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
49 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081845689*^9}],
50
51Cell[BoxData[
52 InterpretationBox[
53 RowBox[{"\<\"Version: \"\>", "\[InvisibleSpace]", "\<\"2.3.1\"\>",
54 "\[InvisibleSpace]",
55 RowBox[{"\<\" (\"\>", " ", "\<\"10 May 2015\"\>"}],
56 "\[InvisibleSpace]", "\<\").\"\>"}],
57 SequenceForm["Version: ", "2.3.1", " (" "10 May 2015", ")."],
58 Editable->False]], "Print",
59 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
60 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
61 3.653681240756557*^9, 3.653806028256892*^9, 3.6538060818518353`*^9}],
62
63Cell[BoxData["\<\"Authors: A. Alloul, N. Christensen, C. Degrande, C. Duhr, \
64B. Fuks\"\>"], "Print",
65 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
66 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
67 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081857767*^9}],
68
69Cell[BoxData["\<\" \"\>"], "Print",
70 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
71 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
72 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081863669*^9}],
73
74Cell[BoxData["\<\"Please cite:\"\>"], "Print",
75 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
76 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
77 3.653681240756557*^9, 3.653806028256892*^9, 3.6538060818696337`*^9}],
78
79Cell[BoxData["\<\" - Comput.Phys.Commun.185:2250-2300,2014 \
80(arXiv:1310.1921);\"\>"], "Print",
81 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
82 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
83 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081875813*^9}],
84
85Cell[BoxData["\<\" - Comput.Phys.Commun.180:1614-1641,2009 \
86(arXiv:0806.4194).\"\>"], "Print",
87 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
88 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
89 3.653681240756557*^9, 3.653806028256892*^9, 3.6538060818818197`*^9}],
90
91Cell[BoxData["\<\" \"\>"], "Print",
92 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
93 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
94 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081887444*^9}],
95
96Cell[BoxData["\<\"http://feynrules.phys.ucl.ac.be\"\>"], "Print",
97 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
98 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
99 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081893013*^9}],
100
101Cell[BoxData["\<\" \"\>"], "Print",
102 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
103 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
104 3.653681240756557*^9, 3.653806028256892*^9, 3.653806081898911*^9}],
105
106Cell[BoxData["\<\"The FeynRules palette can be opened using the command \
107FRPalette[].\"\>"], "Print",
108 CellChangeTimes->{3.6416240692315893`*^9, 3.641624289947372*^9,
109 3.651825663644217*^9, 3.653674808859461*^9, 3.65367695800169*^9,
110 3.653681240756557*^9, 3.653806028256892*^9, 3.6538060819046583`*^9}]
111}, Open ]]
112}, Open ]],
113
114Cell[CellGroupData[{
115
116Cell[BoxData[
117 RowBox[{"SetDirectory", "[", "\"\<~/Desktop/topFCNC\>\"", "]"}]], "Input",
118 CellChangeTimes->{{3.6416240908145*^9, 3.6416241082234364`*^9}, {
119 3.653806086019691*^9, 3.65380608726643*^9}}],
120
121Cell[BoxData["\<\"/Users/arturamorim/Desktop/topFCNC\"\>"], "Output",
122 CellChangeTimes->{3.641624109405312*^9, 3.641624294256714*^9,
123 3.65182575701213*^9, 3.6536748172815866`*^9, 3.653676963619643*^9,
124 3.6536812446103354`*^9, 3.653806089041045*^9}]
125}, Open ]],
126
127Cell[CellGroupData[{
128
129Cell[BoxData[
130 RowBox[{"LoadModel", "[",
131 RowBox[{"\"\<SM.fr\>\"", ",", "\"\<topFCNC.fr\>\""}], "]"}]], "Input",
132 CellChangeTimes->{{3.6416241153359823`*^9, 3.641624143774004*^9}, {
133 3.653806092779645*^9, 3.653806094499549*^9}}],
134
135Cell[CellGroupData[{
136
137Cell[BoxData["\<\"Merging model-files...\"\>"], "Print",
138 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
139 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
140 3.653681247441236*^9, 3.653806100317202*^9}],
141
142Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
143 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
144 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
145 3.653681247441236*^9, 3.653806100333658*^9}],
146
147Cell[BoxData["\<\"A.Amorim\"\>"], "Print",
148 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
149 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
150 3.653681247441236*^9, 3.653806100339353*^9}],
151
152Cell[BoxData[
153 InterpretationBox[
154 RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"1.0\"\>"}],
155 SequenceForm["Model Version: ", "1.0"],
156 Editable->False]], "Print",
157 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
158 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
159 3.653681247441236*^9, 3.653806100345194*^9}],
160
161Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
162"Print",
163 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
164 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
165 3.653681247441236*^9, 3.653806100350811*^9}],
166
167Cell[BoxData["\<\"\"\>"], "Print",
168 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
169 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
170 3.653681247441236*^9, 3.653806100356409*^9}],
171
172Cell[BoxData["\<\" - Loading particle classes.\"\>"], "Print",
173 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
174 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
175 3.653681247441236*^9, 3.653806100362321*^9}],
176
177Cell[BoxData["\<\" - Loading gauge group classes.\"\>"], "Print",
178 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
179 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
180 3.653681247441236*^9, 3.653806100494351*^9}],
181
182Cell[BoxData["\<\" - Loading parameter classes.\"\>"], "Print",
183 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
184 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
185 3.653681247441236*^9, 3.653806100501212*^9}],
186
187Cell[BoxData[
188 InterpretationBox[
189 RowBox[{"\<\"\\nModel \"\>",
190 "\[InvisibleSpace]", "\<\"topFCNC_JLOperators\"\>",
191 "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
192 SequenceForm["\nModel ", "topFCNC_JLOperators", " loaded."],
193 Editable->False]], "Print",
194 CellChangeTimes->{3.641624145765635*^9, 3.641624301474267*^9,
195 3.6518257645831633`*^9, 3.653674820731448*^9, 3.6536769675657988`*^9,
196 3.653681247441236*^9, 3.6538061006104927`*^9}]
197}, Open ]]
198}, Open ]],
199
200Cell[CellGroupData[{
201
202Cell[BoxData[
203 RowBox[{"CheckHermiticity", "[", "Ltot", "]"}]], "Input",
204 CellChangeTimes->{{3.641624323422627*^9, 3.641624332100013*^9}}],
205
206Cell[CellGroupData[{
207
208Cell[BoxData["\<\"Checking for hermiticity by calculating the Feynman rules \
209contained in L-HC[L].\"\>"], "Print",
210 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
211 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
212 3.653806170214344*^9}],
213
214Cell[BoxData["\<\"If the lagrangian is hermitian, then the number of vertices \
215should be zero.\"\>"], "Print",
216 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
217 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
218 3.653806170220695*^9}],
219
220Cell[BoxData[
221 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
222 StripOnInput->False,
223 LineColor->RGBColor[1, 0.5, 0],
224 FrontFaceColor->RGBColor[1, 0.5, 0],
225 BackFaceColor->RGBColor[1, 0.5, 0],
226 GraphicsColor->RGBColor[1, 0.5, 0],
227 FontWeight->Bold,
228 FontColor->RGBColor[1, 0.5, 0]]], "Print",
229 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
230 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
231 3.65380634137712*^9}],
232
233Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
234 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
235 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
236 3.6538063413874483`*^9}],
237
238Cell[BoxData[
239 InterpretationBox[
240 RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
241 "\[InvisibleSpace]", "\<\" cores\"\>"}],
242 SequenceForm["Expanding the indices over ", 2, " cores"],
243 Editable->False]], "Print",
244 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
245 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
246 3.653806341393971*^9}],
247
248Cell[BoxData["\<\"Collecting the different structures that enter the \
249vertex.\"\>"], "Print",
250 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
251 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
252 3.653806343300049*^9}],
253
254Cell[BoxData["\<\"No vertices found.\"\>"], "Print",
255 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
256 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
257 3.65380634332933*^9}],
258
259Cell[BoxData[
260 InterpretationBox[
261 RowBox[{"0", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
262 SequenceForm[0, " vertices obtained."],
263 Editable->False]], "Print",
264 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
265 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
266 3.65380634333585*^9}],
267
268Cell[BoxData["\<\"The lagrangian is hermitian.\"\>"], "Print",
269 CellChangeTimes->{3.641624336039813*^9, 3.651825834323975*^9,
270 3.653674892830927*^9, 3.653677043513899*^9, 3.653681313746684*^9,
271 3.653806343344611*^9}]
272}, Open ]],
273
274Cell[BoxData[
275 RowBox[{"{", "}"}]], "Output",
276 CellChangeTimes->{3.6416243641101303`*^9, 3.651825989672021*^9,
277 3.6536750664401608`*^9, 3.653677218247385*^9, 3.653681481326324*^9,
278 3.6538063433535023`*^9}]
279}, Open ]],
280
281Cell[CellGroupData[{
282
283Cell[BoxData[
284 RowBox[{"CheckMassSpectrum", "[", "Ltot", "]"}]], "Input",
285 CellChangeTimes->{{3.641624519762713*^9, 3.641624527690579*^9}}],
286
287Cell[CellGroupData[{
288
289Cell[BoxData[
290 InterpretationBox[
291 RowBox[{"\<\"Neglecting all terms with more than \"\>",
292 "\[InvisibleSpace]", "\<\"2\"\>",
293 "\[InvisibleSpace]", "\<\" particles.\"\>"}],
294 SequenceForm["Neglecting all terms with more than ", "2", " particles."],
295 Editable->False]], "Print",
296 CellChangeTimes->{3.6416245407385674`*^9, 3.6518261640784807`*^9,
297 3.653675416596346*^9, 3.6536773167394257`*^9, 3.653681577053567*^9,
298 3.6538064746846046`*^9}],
299
300Cell[BoxData["\<\"All mass terms are diagonal.\"\>"], "Print",
301 CellChangeTimes->{3.6416245407385674`*^9, 3.6518261640784807`*^9,
302 3.653675416596346*^9, 3.6536773167394257`*^9, 3.653681577053567*^9,
303 3.653806476981387*^9}],
304
305Cell[BoxData["\<\"Getting mass spectrum.\"\>"], "Print",
306 CellChangeTimes->{3.6416245407385674`*^9, 3.6518261640784807`*^9,
307 3.653675416596346*^9, 3.6536773167394257`*^9, 3.653681577053567*^9,
308 3.653806499208045*^9}],
309
310Cell[BoxData["\<\"Checking for less then 0.1% agreement with model file \
311values.\"\>"], "Print",
312 CellChangeTimes->{3.6416245407385674`*^9, 3.6518261640784807`*^9,
313 3.653675416596346*^9, 3.6536773167394257`*^9, 3.653681577053567*^9,
314 3.653806499214452*^9}]
315}, Open ]],
316
317Cell[BoxData[
318 TagBox[GridBox[{
319 {"\<\"Particle\"\>", "\<\"Analytic value\"\>", "\<\"Numerical value\"\>", \
320"\<\"Model-file value\"\>"},
321 {"H",
322 RowBox[{
323 SqrtBox["2"], " ",
324 SqrtBox[
325 RowBox[{
326 RowBox[{"-",
327 FractionBox[
328 SuperscriptBox["\[Mu]", "2"], "2"]}], "+",
329 FractionBox[
330 RowBox[{"3", " ", "lam", " ",
331 SuperscriptBox["vev", "2"]}], "2"]}]]}], "125.00000000000006`",
332 "125.`"},
333 {"b",
334 RowBox[{
335 FractionBox[
336 RowBox[{"vev", " ",
337 SubsuperscriptBox[
338 RowBox[{"(",
339 TemplateBox[{"y","d"},
340 "Superscript"], ")"}],
341 RowBox[{"3", ",", "3"}], "\<\"*\"\>"]}],
342 RowBox[{"2", " ",
343 SqrtBox["2"]}]], "+",
344 FractionBox[
345 RowBox[{"vev", " ",
346 SubscriptBox[
347 TemplateBox[{"y","d"},
348 "Superscript"],
349 RowBox[{"3", ",", "3"}]]}],
350 RowBox[{"2", " ",
351 SqrtBox["2"]}]]}], "4.700000000000002`", "4.7`"},
352 {"d",
353 RowBox[{
354 FractionBox[
355 RowBox[{"vev", " ",
356 SubsuperscriptBox[
357 RowBox[{"(",
358 TemplateBox[{"y","d"},
359 "Superscript"], ")"}],
360 RowBox[{"1", ",", "1"}], "\<\"*\"\>"]}],
361 RowBox[{"2", " ",
362 SqrtBox["2"]}]], "+",
363 FractionBox[
364 RowBox[{"vev", " ",
365 SubscriptBox[
366 TemplateBox[{"y","d"},
367 "Superscript"],
368 RowBox[{"1", ",", "1"}]]}],
369 RowBox[{"2", " ",
370 SqrtBox["2"]}]]}], "0.005040000000000001`", "0.00504`"},
371 {"s",
372 RowBox[{
373 FractionBox[
374 RowBox[{"vev", " ",
375 SubsuperscriptBox[
376 RowBox[{"(",
377 TemplateBox[{"y","d"},
378 "Superscript"], ")"}],
379 RowBox[{"2", ",", "2"}], "\<\"*\"\>"]}],
380 RowBox[{"2", " ",
381 SqrtBox["2"]}]], "+",
382 FractionBox[
383 RowBox[{"vev", " ",
384 SubscriptBox[
385 TemplateBox[{"y","d"},
386 "Superscript"],
387 RowBox[{"2", ",", "2"}]]}],
388 RowBox[{"2", " ",
389 SqrtBox["2"]}]]}], "0.10100000000000002`", "0.101`"},
390 {"e",
391 RowBox[{
392 FractionBox[
393 RowBox[{"vev", " ",
394 SubsuperscriptBox[
395 RowBox[{"(",
396 TemplateBox[{"y","l"},
397 "Superscript"], ")"}],
398 RowBox[{"1", ",", "1"}], "\<\"*\"\>"]}],
399 RowBox[{"2", " ",
400 SqrtBox["2"]}]], "+",
401 FractionBox[
402 RowBox[{"vev", " ",
403 SubscriptBox[
404 TemplateBox[{"y","l"},
405 "Superscript"],
406 RowBox[{"1", ",", "1"}]]}],
407 RowBox[{"2", " ",
408 SqrtBox["2"]}]]}], "0.0005110000000000001`", "0.000511`"},
409 {"mu",
410 RowBox[{
411 FractionBox[
412 RowBox[{"vev", " ",
413 SubsuperscriptBox[
414 RowBox[{"(",
415 TemplateBox[{"y","l"},
416 "Superscript"], ")"}],
417 RowBox[{"2", ",", "2"}], "\<\"*\"\>"]}],
418 RowBox[{"2", " ",
419 SqrtBox["2"]}]], "+",
420 FractionBox[
421 RowBox[{"vev", " ",
422 SubscriptBox[
423 TemplateBox[{"y","l"},
424 "Superscript"],
425 RowBox[{"2", ",", "2"}]]}],
426 RowBox[{"2", " ",
427 SqrtBox["2"]}]]}], "0.10566000000000003`", "0.10566`"},
428 {"ta",
429 RowBox[{
430 FractionBox[
431 RowBox[{"vev", " ",
432 SubsuperscriptBox[
433 RowBox[{"(",
434 TemplateBox[{"y","l"},
435 "Superscript"], ")"}],
436 RowBox[{"3", ",", "3"}], "\<\"*\"\>"]}],
437 RowBox[{"2", " ",
438 SqrtBox["2"]}]], "+",
439 FractionBox[
440 RowBox[{"vev", " ",
441 SubscriptBox[
442 TemplateBox[{"y","l"},
443 "Superscript"],
444 RowBox[{"3", ",", "3"}]]}],
445 RowBox[{"2", " ",
446 SqrtBox["2"]}]]}], "1.7770000000000006`", "1.777`"},
447 {"c",
448 RowBox[{
449 FractionBox[
450 RowBox[{"vev", " ",
451 SubsuperscriptBox[
452 RowBox[{"(",
453 TemplateBox[{"y","u"},
454 "Superscript"], ")"}],
455 RowBox[{"2", ",", "2"}], "\<\"*\"\>"]}],
456 RowBox[{"2", " ",
457 SqrtBox["2"]}]], "+",
458 FractionBox[
459 RowBox[{"vev", " ",
460 SubscriptBox[
461 TemplateBox[{"y","u"},
462 "Superscript"],
463 RowBox[{"2", ",", "2"}]]}],
464 RowBox[{"2", " ",
465 SqrtBox["2"]}]]}], "1.2700000000000002`", "1.27`"},
466 {"t",
467 RowBox[{
468 FractionBox[
469 RowBox[{"vev", " ",
470 SubsuperscriptBox[
471 RowBox[{"(",
472 TemplateBox[{"y","u"},
473 "Superscript"], ")"}],
474 RowBox[{"3", ",", "3"}], "\<\"*\"\>"]}],
475 RowBox[{"2", " ",
476 SqrtBox["2"]}]], "+",
477 FractionBox[
478 RowBox[{"vev", " ",
479 SubscriptBox[
480 TemplateBox[{"y","u"},
481 "Superscript"],
482 RowBox[{"3", ",", "3"}]]}],
483 RowBox[{"2", " ",
484 SqrtBox["2"]}]]}], "172.00000000000003`", "172.`"},
485 {"u",
486 RowBox[{
487 FractionBox[
488 RowBox[{"vev", " ",
489 SubsuperscriptBox[
490 RowBox[{"(",
491 TemplateBox[{"y","u"},
492 "Superscript"], ")"}],
493 RowBox[{"1", ",", "1"}], "\<\"*\"\>"]}],
494 RowBox[{"2", " ",
495 SqrtBox["2"]}]], "+",
496 FractionBox[
497 RowBox[{"vev", " ",
498 SubscriptBox[
499 TemplateBox[{"y","u"},
500 "Superscript"],
501 RowBox[{"1", ",", "1"}]]}],
502 RowBox[{"2", " ",
503 SqrtBox["2"]}]]}], "0.002550000000000001`", "0.00255`"},
504 {"W",
505 RowBox[{
506 FractionBox["1", "2"], " ",
507 SqrtBox[
508 FractionBox[
509 RowBox[{
510 SuperscriptBox["e", "2"], " ",
511 SuperscriptBox["vev", "2"]}],
512 SubsuperscriptBox["s", "w", "2"]]]}], "79.82435974619786`",
513 "79.82435974619784`"},
514 {"Z",
515 RowBox[{
516 SqrtBox["2"], " ",
517 SqrtBox[
518 RowBox[{
519 FractionBox[
520 RowBox[{
521 SuperscriptBox["e", "2"], " ",
522 SuperscriptBox["vev", "2"]}], "4"], "+",
523 FractionBox[
524 RowBox[{
525 SubsuperscriptBox["c", "w", "2"], " ",
526 SuperscriptBox["e", "2"], " ",
527 SuperscriptBox["vev", "2"]}],
528 RowBox[{"8", " ",
529 SubsuperscriptBox["s", "w", "2"]}]], "+",
530 FractionBox[
531 RowBox[{
532 SuperscriptBox["e", "2"], " ",
533 SubsuperscriptBox["s", "w", "2"], " ",
534 SuperscriptBox["vev", "2"]}],
535 RowBox[{"8", " ",
536 SubsuperscriptBox["c", "w", "2"]}]]}]]}], "91.18760000000003`",
537 "91.1876`"}
538 },
539 GridBoxAlignment->{
540 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
541 "RowsIndexed" -> {}},
542 GridBoxSpacings->{"Columns" -> {
543 Offset[0.27999999999999997`], {
544 Offset[2.0999999999999996`]},
545 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
546 Offset[0.2], {
547 Offset[0.4]},
548 Offset[0.2]}, "RowsIndexed" -> {}}],
549 Function[BoxForm`e$,
550 TableForm[BoxForm`e$]]]], "Output",
551 CellChangeTimes->{3.641624551959584*^9, 3.651826176871113*^9,
552 3.653675440823331*^9, 3.653677341192923*^9, 3.6536816009878607`*^9,
553 3.653806499345439*^9}]
554}, Open ]],
555
556Cell[CellGroupData[{
557
558Cell[BoxData[
559 RowBox[{"WriteUFO", "[",
560 RowBox[{"Ltot", ",", " ",
561 RowBox[{"Output", "\[Rule]", "\"\<topFCNC_UFO\>\""}]}], "]"}]], "Input",
562 CellChangeTimes->{{3.641624586203664*^9, 3.6416246119008017`*^9}, {
563 3.653681658141623*^9, 3.653681658947329*^9}, {3.653806758919674*^9,
564 3.6538067611113977`*^9}}],
565
566Cell[CellGroupData[{
567
568Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
569"Print",
570 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
571 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
572 3.653806828174676*^9}],
573
574Cell[BoxData[
575 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
576 StripOnInput->False,
577 LineColor->RGBColor[1, 0.5, 0],
578 FrontFaceColor->RGBColor[1, 0.5, 0],
579 BackFaceColor->RGBColor[1, 0.5, 0],
580 GraphicsColor->RGBColor[1, 0.5, 0],
581 FontWeight->Bold,
582 FontColor->RGBColor[1, 0.5, 0]]], "Print",
583 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
584 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
585 3.653806829697217*^9}],
586
587Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
588 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
589 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
590 3.653806829700945*^9}],
591
592Cell[BoxData[
593 InterpretationBox[
594 RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
595 "\[InvisibleSpace]", "\<\" cores\"\>"}],
596 SequenceForm["Expanding the indices over ", 2, " cores"],
597 Editable->False]], "Print",
598 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
599 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
600 3.6538068297028513`*^9}],
601
602Cell[BoxData["\<\"Collecting the different structures that enter the \
603vertex.\"\>"], "Print",
604 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
605 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
606 3.653806845680951*^9}],
607
608Cell[BoxData[
609 InterpretationBox[
610 RowBox[{
611 "52", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
612-> starting the computation: \"\>", "\[InvisibleSpace]",
613 DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
614 ImageSizeCache->{14., {1., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
615 "\[InvisibleSpace]", "52", "\[InvisibleSpace]", "\<\".\"\>"}],
616 SequenceForm[
617 52, " possible non-zero vertices have been found -> starting the \
618computation: ",
619 Dynamic[FeynRules`FR$FeynmanRules], " / ", 52, "."],
620 Editable->False]], "Print",
621 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
622 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
623 3.6538068457594547`*^9}],
624
625Cell[BoxData[
626 InterpretationBox[
627 RowBox[{"47", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
628 SequenceForm[47, " vertices obtained."],
629 Editable->False]], "Print",
630 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
631 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
632 3.653806852852973*^9}],
633
634Cell[BoxData[
635 InterpretationBox[
636 RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
637 "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" cores: \"\>",
638 "\[InvisibleSpace]",
639 DynamicBox[ToBoxes[FeynRules`FR$Count1, StandardForm],
640 ImageSizeCache->{14., {0., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
641 "\[InvisibleSpace]", "47"}],
642 SequenceForm[
643 "Flavor expansion of the vertices distributed over ", 2, " cores: ",
644 Dynamic[FeynRules`FR$Count1], " / ", 47],
645 Editable->False]], "Print",
646 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
647 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
648 3.653806854279316*^9}],
649
650Cell[BoxData["\<\" - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
651 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
652 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
653 3.6538068595377827`*^9}],
654
655Cell[BoxData[
656 StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
657decays: \"\>",
658 StripOnInput->False,
659 LineColor->RGBColor[1, 0.5, 0],
660 FrontFaceColor->RGBColor[1, 0.5, 0],
661 BackFaceColor->RGBColor[1, 0.5, 0],
662 GraphicsColor->RGBColor[1, 0.5, 0],
663 FontWeight->Bold,
664 FontColor->RGBColor[1, 0.5, 0]]], "Print",
665 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
666 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
667 3.653806859562626*^9}],
668
669Cell[BoxData[
670 InterpretationBox[
671 RowBox[{
672 DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
673 ImageSizeCache->{14., {1., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
674 "\[InvisibleSpace]", "64"}],
675 SequenceForm[
676 Dynamic[PRIVATE`mycounter], " / ", 64],
677 Editable->False]], "Print",
678 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
679 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
680 3.653806859572463*^9}],
681
682Cell[BoxData[
683 InterpretationBox[
684 RowBox[{"\<\"Squared matrix elent compute in \"\>", "\[InvisibleSpace]",
685 "378.519109`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
686 SequenceForm["Squared matrix elent compute in ", 378.519109, " seconds."],
687 Editable->False]], "Print",
688 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
689 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
690 3.6538075432207127`*^9}],
691
692Cell[BoxData[
693 InterpretationBox[
694 RowBox[{
695 DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
696 ImageSizeCache->{14., {1., 8.}}], "\[InvisibleSpace]", "\<\" / \"\>",
697 "\[InvisibleSpace]", "81"}],
698 SequenceForm[
699 Dynamic[PRIVATE`mycounter], " / ", 81],
700 Editable->False]], "Print",
701 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
702 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
703 3.653807543223518*^9}],
704
705Cell[BoxData[
706 InterpretationBox[
707 RowBox[{"\<\"Decay widths computed in \"\>", "\[InvisibleSpace]",
708 "2.218262`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
709 SequenceForm["Decay widths computed in ", 2.218262, " seconds."],
710 Editable->False]], "Print",
711 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
712 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
713 3.6538075462601852`*^9}],
714
715Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
716 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
717 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
718 3.6538075462625113`*^9}],
719
720Cell[BoxData["\<\" - Splitting vertices into building blocks.\"\>"], \
721"Print",
722 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
723 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
724 3.6538075466125193`*^9}],
725
726Cell[BoxData[
727 InterpretationBox[
728 RowBox[{"\<\"Splitting of vertices distributed over \"\>",
729 "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
730 SequenceForm["Splitting of vertices distributed over ", 2, " kernels."],
731 Editable->False]], "Print",
732 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
733 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
734 3.653807546656579*^9}],
735
736Cell[BoxData[
737 InterpretationBox[
738 RowBox[{"\<\" - Optimizing: \"\>", "\[InvisibleSpace]",
739 DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
740 ImageSizeCache->{14., {1., 8.}}], "\[InvisibleSpace]", "\<\"/\"\>",
741 "\[InvisibleSpace]", "91", "\[InvisibleSpace]", "\<\" .\"\>"}],
742 SequenceForm[" - Optimizing: ",
743 Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 91, " ."],
744 Editable->False]], "Print",
745 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
746 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
747 3.6538075485303373`*^9}],
748
749Cell[BoxData["\<\" - Writing files.\"\>"], "Print",
750 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
751 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
752 3.653807548736144*^9}],
753
754Cell[BoxData["\<\"Done!\"\>"], "Print",
755 CellChangeTimes->{3.641624616967731*^9, 3.6518262472785873`*^9,
756 3.6536755419554033`*^9, 3.653677462046027*^9, 3.653681725819296*^9,
757 3.653807549485708*^9}]
758}, Open ]]
759}, Open ]]
760},
761WindowSize->{808, 655},
762WindowMargins->{{152, Automatic}, {Automatic, 42}},
763FrontEndVersion->"10.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 23, \
7642015)",
765StyleDefinitions->"Default.nb"
766]
767(* End of Notebook Content *)
768
769(* Internal cache information *)
770(*CellTagsOutline
771CellTagsIndex->{}
772*)
773(*CellTagsIndex
774CellTagsIndex->{}
775*)
776(*NotebookFileOutline
777Notebook[{
778Cell[558, 20, 118, 2, 28, "Input"],
779Cell[CellGroupData[{
780Cell[701, 26, 199, 3, 28, "Input"],
781Cell[903, 31, 266, 3, 28, "Output"]
782}, Open ]],
783Cell[CellGroupData[{
784Cell[1206, 39, 124, 2, 28, "Input"],
785Cell[CellGroupData[{
786Cell[1355, 45, 252, 3, 22, "Print"],
787Cell[1610, 50, 523, 10, 22, "Print"],
788Cell[2136, 62, 304, 4, 22, "Print"],
789Cell[2443, 68, 238, 3, 21, "Print"],
790Cell[2684, 73, 251, 3, 21, "Print"],
791Cell[2938, 78, 301, 4, 22, "Print"],
792Cell[3242, 84, 303, 4, 22, "Print"],
793Cell[3548, 90, 238, 3, 21, "Print"],
794Cell[3789, 95, 268, 3, 22, "Print"],
795Cell[4060, 100, 238, 3, 21, "Print"],
796Cell[4301, 105, 307, 4, 22, "Print"]
797}, Open ]]
798}, Open ]],
799Cell[CellGroupData[{
800Cell[4657, 115, 203, 3, 28, "Input"],
801Cell[4863, 120, 252, 3, 28, "Output"]
802}, Open ]],
803Cell[CellGroupData[{
804Cell[5152, 128, 231, 4, 28, "Input"],
805Cell[CellGroupData[{
806Cell[5408, 136, 240, 3, 22, "Print"],
807Cell[5651, 141, 258, 3, 22, "Print"],
808Cell[5912, 146, 226, 3, 21, "Print"],
809Cell[6141, 151, 364, 7, 21, "Print"],
810Cell[6508, 160, 266, 4, 22, "Print"],
811Cell[6777, 166, 218, 3, 21, "Print"],
812Cell[6998, 171, 248, 3, 22, "Print"],
813Cell[7249, 176, 251, 3, 22, "Print"],
814Cell[7503, 181, 249, 3, 22, "Print"],
815Cell[7755, 186, 446, 9, 38, "Print"]
816}, Open ]]
817}, Open ]],
818Cell[CellGroupData[{
819Cell[8250, 201, 138, 2, 28, "Input"],
820Cell[CellGroupData[{
821Cell[8413, 207, 273, 4, 22, "Print"],
822Cell[8689, 213, 269, 4, 22, "Print"],
823Cell[8961, 219, 463, 11, 22, "Print"],
824Cell[9427, 232, 221, 3, 22, "Print"],
825Cell[9651, 237, 401, 8, 22, "Print"],
826Cell[10055, 247, 252, 4, 22, "Print"],
827Cell[10310, 253, 209, 3, 21, "Print"],
828Cell[10522, 258, 331, 7, 21, "Print"],
829Cell[10856, 267, 220, 3, 22, "Print"]
830}, Open ]],
831Cell[11091, 273, 209, 4, 28, "Output"]
832}, Open ]],
833Cell[CellGroupData[{
834Cell[11337, 282, 139, 2, 28, "Input"],
835Cell[CellGroupData[{
836Cell[11501, 288, 451, 9, 22, "Print"],
837Cell[11955, 299, 226, 3, 22, "Print"],
838Cell[12184, 304, 220, 3, 22, "Print"],
839Cell[12407, 309, 261, 4, 22, "Print"]
840}, Open ]],
841Cell[12683, 316, 7127, 236, 526, "Output"]
842}, Open ]],
843Cell[CellGroupData[{
844Cell[19847, 557, 313, 6, 28, "Input"],
845Cell[CellGroupData[{
846Cell[20185, 567, 245, 4, 22, "Print"],
847Cell[20433, 573, 468, 11, 22, "Print"],
848Cell[20904, 586, 223, 3, 22, "Print"],
849Cell[21130, 591, 407, 8, 22, "Print"],
850Cell[21540, 601, 256, 4, 22, "Print"],
851Cell[21799, 607, 739, 15, 22, "Print"],
852Cell[22541, 624, 338, 7, 21, "Print"],
853Cell[22882, 633, 692, 14, 22, "Print"],
854Cell[23577, 649, 239, 3, 21, "Print"],
855Cell[23819, 654, 504, 12, 22, "Print"],
856Cell[24326, 668, 458, 11, 21, "Print"],
857Cell[24787, 681, 442, 8, 22, "Print"],
858Cell[25232, 691, 458, 11, 21, "Print"],
859Cell[25693, 704, 424, 8, 22, "Print"],
860Cell[26120, 714, 222, 3, 22, "Print"],
861Cell[26345, 719, 246, 4, 22, "Print"],
862Cell[26594, 725, 435, 8, 22, "Print"],
863Cell[27032, 735, 594, 11, 22, "Print"],
864Cell[27629, 748, 216, 3, 22, "Print"],
865Cell[27848, 753, 201, 3, 21, "Print"]
866}, Open ]]
867}, Open ]]
868}
869]
870*)
871
872(* End of internal cache information *)