1 | (***************************************************************************************************************)
|
---|
2 | (****** This is the FeynRules mod-file for the 4th generation model ******)
|
---|
3 | (****** ******)
|
---|
4 | (****** Authors: C. Duhr ******)
|
---|
5 | (****** ******)
|
---|
6 | (****** Choose whether Feynman gauge is desired. ******)
|
---|
7 | (****** If set to False, unitary gauge is assumed. ****)
|
---|
8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
---|
9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
---|
10 | (***************************************************************************************************************)
|
---|
11 |
|
---|
12 |
|
---|
13 | (*
|
---|
14 | This model is based on the SM implmentation of FeynRules,
|
---|
15 | and basically obtained by just increasing the range of the Index of type Generation from 3 to 4
|
---|
16 | *)
|
---|
17 |
|
---|
18 |
|
---|
19 |
|
---|
20 | M$ModelName = "4th_Generation_Complex_CKM";
|
---|
21 |
|
---|
22 |
|
---|
23 |
|
---|
24 | M$Information = {Authors -> {"C. Duhr"},
|
---|
25 | Version -> "1.1",
|
---|
26 | Date -> "02. 11. 2010",
|
---|
27 | Institutions -> {"IPPP, Durham"},
|
---|
28 | Emails -> {"claude.duhr@durham.ac.uk"}};
|
---|
29 |
|
---|
30 | (*V1.1 - Fixed yukawa couplings in Feynman gauge.
|
---|
31 | Changed yd[n] CKM[n,m] to yd[m] CKM[n,m].
|
---|
32 | Changed yu[n] Conjugate[CKM[m,n]] to yu[m] Conjugate[CKM[m,n]].
|
---|
33 | *)
|
---|
34 |
|
---|
35 | FeynmanGauge = False;
|
---|
36 |
|
---|
37 |
|
---|
38 | (******* Index definitions ********)
|
---|
39 |
|
---|
40 | IndexRange[ Index[Generation] ] = Range[3]
|
---|
41 |
|
---|
42 | IndexRange[ Index[QuarkGeneration] ] = Range[4]
|
---|
43 |
|
---|
44 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
|
---|
45 |
|
---|
46 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
|
---|
47 |
|
---|
48 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]]
|
---|
49 |
|
---|
50 |
|
---|
51 | IndexStyle[Colour, i]
|
---|
52 |
|
---|
53 | IndexStyle[Generation, f]
|
---|
54 |
|
---|
55 | IndexStyle[QuarkGeneration, q]
|
---|
56 |
|
---|
57 | IndexStyle[Gluon ,a]
|
---|
58 |
|
---|
59 | IndexStyle[SU2W ,k]
|
---|
60 |
|
---|
61 |
|
---|
62 | (******* Gauge parameters (for FeynArts) ********)
|
---|
63 |
|
---|
64 | GaugeXi[ V[1] ] = GaugeXi[A];
|
---|
65 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
---|
66 | GaugeXi[ V[3] ] = GaugeXi[W];
|
---|
67 | GaugeXi[ V[4] ] = GaugeXi[G];
|
---|
68 | GaugeXi[ S[1] ] = 1;
|
---|
69 | GaugeXi[ S[2] ] = GaugeXi[Z];
|
---|
70 | GaugeXi[ S[3] ] = GaugeXi[W];
|
---|
71 | GaugeXi[ U[1] ] = GaugeXi[A];
|
---|
72 | GaugeXi[ U[2] ] = GaugeXi[Z];
|
---|
73 | GaugeXi[ U[31] ] = GaugeXi[W];
|
---|
74 | GaugeXi[ U[32] ] = GaugeXi[W];
|
---|
75 | GaugeXi[ U[4] ] = GaugeXi[G];
|
---|
76 |
|
---|
77 |
|
---|
78 | (**************** Parameters *************)
|
---|
79 |
|
---|
80 | M$Parameters = {
|
---|
81 |
|
---|
82 | (* External parameters *)
|
---|
83 |
|
---|
84 | \[Alpha]EWM1== {
|
---|
85 | ParameterType -> External,
|
---|
86 | BlockName -> SMINPUTS,
|
---|
87 | ParameterName -> aEWM1,
|
---|
88 | InteractionOrder -> {QED, -2},
|
---|
89 | Value -> 127.9,
|
---|
90 | Description -> "Inverse of the electroweak coupling constant"},
|
---|
91 |
|
---|
92 | Gf == {
|
---|
93 | ParameterType -> External,
|
---|
94 | BlockName -> SMINPUTS,
|
---|
95 | TeX -> Subscript[G, f],
|
---|
96 | InteractionOrder -> {QED, 2},
|
---|
97 | Value -> 1.16639 * 10^(-5),
|
---|
98 | Description -> "Fermi constant"},
|
---|
99 |
|
---|
100 | \[Alpha]S == {
|
---|
101 | ParameterType -> External,
|
---|
102 | BlockName -> SMINPUTS,
|
---|
103 | TeX -> Subscript[\[Alpha], s],
|
---|
104 | ParameterName -> aS,
|
---|
105 | InteractionOrder -> {QCD, 2},
|
---|
106 | Value -> 0.1172,
|
---|
107 | Description -> "Strong coupling constant at the Z pole."},
|
---|
108 |
|
---|
109 |
|
---|
110 | ymc == {
|
---|
111 | ParameterType -> External,
|
---|
112 | BlockName -> YUKAWA,
|
---|
113 | Value -> 1.42,
|
---|
114 | OrderBlock -> {4},
|
---|
115 | Description -> "Charm Yukawa mass"},
|
---|
116 |
|
---|
117 | ymb == {
|
---|
118 | ParameterType -> External,
|
---|
119 | BlockName -> YUKAWA,
|
---|
120 | Value -> 4.7,
|
---|
121 | OrderBlock -> {5},
|
---|
122 | Description -> "Bottom Yukawa mass"},
|
---|
123 |
|
---|
124 | ymbp == {
|
---|
125 | ParameterType -> External,
|
---|
126 | BlockName -> YUKAWA,
|
---|
127 | Value -> 500,
|
---|
128 | OrderBlock -> {7},
|
---|
129 | Description -> "Bottom-prime Yukawa mass"},
|
---|
130 |
|
---|
131 | ymt == {
|
---|
132 | ParameterType -> External,
|
---|
133 | BlockName -> YUKAWA,
|
---|
134 | Value -> 174.3,
|
---|
135 | OrderBlock -> {6},
|
---|
136 | Description -> "Top Yukawa mass"},
|
---|
137 |
|
---|
138 | ymtp == {
|
---|
139 | ParameterType -> External,
|
---|
140 | BlockName -> YUKAWA,
|
---|
141 | Value -> 700,
|
---|
142 | OrderBlock -> {8},
|
---|
143 | Description -> "Top-prime Yukawa mass"},
|
---|
144 |
|
---|
145 | ymtau == {
|
---|
146 | ParameterType -> External,
|
---|
147 | BlockName -> YUKAWA,
|
---|
148 | Value -> 1.777,
|
---|
149 | OrderBlock -> {15},
|
---|
150 | Description -> "Tau Yukawa mass"},
|
---|
151 |
|
---|
152 |
|
---|
153 | (* Internal Parameters *)
|
---|
154 |
|
---|
155 | \[Alpha]EW == {
|
---|
156 | ParameterType -> Internal,
|
---|
157 | Value -> 1/\[Alpha]EWM1,
|
---|
158 | TeX -> Subscript[\[Alpha], EW],
|
---|
159 | ParameterName -> aEW,
|
---|
160 | InteractionOrder -> {QED, 2},
|
---|
161 | Description -> "Electroweak coupling contant"},
|
---|
162 |
|
---|
163 |
|
---|
164 | MW == {
|
---|
165 | ParameterType -> Internal,
|
---|
166 | Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]],
|
---|
167 | TeX -> Subscript[M, W],
|
---|
168 | Description -> "W mass"},
|
---|
169 |
|
---|
170 | sw2 == {
|
---|
171 | ParameterType -> Internal,
|
---|
172 | Value -> 1-(MW/MZ)^2,
|
---|
173 | Description -> "Squared Sin of the Weinberg angle"},
|
---|
174 |
|
---|
175 | ee == {
|
---|
176 | TeX -> e,
|
---|
177 | ParameterType -> Internal,
|
---|
178 | Value -> Sqrt[4 Pi \[Alpha]EW],
|
---|
179 | InteractionOrder -> {QED, 1},
|
---|
180 | Description -> "Electric coupling constant"},
|
---|
181 |
|
---|
182 | cw == {
|
---|
183 | TeX -> Subscript[c, w],
|
---|
184 | ParameterType -> Internal,
|
---|
185 | Value -> Sqrt[1 - sw2],
|
---|
186 | Description -> "Cos of the Weinberg angle"},
|
---|
187 |
|
---|
188 | sw == {
|
---|
189 | TeX -> Subscript[s, w],
|
---|
190 | ParameterType -> Internal,
|
---|
191 | Value -> Sqrt[sw2],
|
---|
192 | Description -> "Sin of the Weinberg angle"},
|
---|
193 |
|
---|
194 | gw == {
|
---|
195 | TeX -> Subscript[g, w],
|
---|
196 | ParameterType -> Internal,
|
---|
197 | Value -> ee / sw,
|
---|
198 | InteractionOrder -> {QED, 1},
|
---|
199 | Description -> "Weak coupling constant"},
|
---|
200 |
|
---|
201 | g1 == {
|
---|
202 | TeX -> Subscript[g, 1],
|
---|
203 | ParameterType -> Internal,
|
---|
204 | Value -> ee / cw,
|
---|
205 | InteractionOrder -> {QED, 1},
|
---|
206 | Description -> "U(1)Y coupling constant"},
|
---|
207 |
|
---|
208 | gs == {
|
---|
209 | TeX -> Subscript[g, s],
|
---|
210 | ParameterType -> Internal,
|
---|
211 | Value -> Sqrt[4 Pi \[Alpha]S],
|
---|
212 | InteractionOrder -> {QCD, 1},
|
---|
213 | ParameterName -> G,
|
---|
214 | Description -> "Strong coupling constant"},
|
---|
215 |
|
---|
216 |
|
---|
217 | v == {
|
---|
218 | ParameterType -> Internal,
|
---|
219 | Value -> 2*MW*sw/ee,
|
---|
220 | InteractionOrder -> {QED, -1},
|
---|
221 | Description -> "Higgs VEV"},
|
---|
222 |
|
---|
223 | \[Lambda] == {
|
---|
224 | ParameterType -> Internal,
|
---|
225 | Value -> MH^2/(2*v^2),
|
---|
226 | InteractionOrder -> {QED, 2},
|
---|
227 | ParameterName -> lam,
|
---|
228 | Description -> "Higgs quartic coupling"},
|
---|
229 |
|
---|
230 | muH == {
|
---|
231 | ParameterType -> Internal,
|
---|
232 | Value -> Sqrt[v^2 \[Lambda]],
|
---|
233 | TeX -> \[Mu],
|
---|
234 | Description -> "Coefficient of the quadratic piece of the Higgs potential"},
|
---|
235 |
|
---|
236 |
|
---|
237 | yl == {
|
---|
238 | TeX -> Superscript[y, l],
|
---|
239 | Indices -> {Index[Generation]},
|
---|
240 | AllowSummation -> True,
|
---|
241 | ParameterType -> Internal,
|
---|
242 | Value -> {yl[1] -> 0, yl[2] -> 0, yl[3] -> Sqrt[2] ymtau / v},
|
---|
243 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
|
---|
244 | InteractionOrder -> {QED, 1},
|
---|
245 | ComplexParameter -> False,
|
---|
246 | Description -> "Lepton Yukawa coupling"},
|
---|
247 |
|
---|
248 | yu == {
|
---|
249 | TeX -> Superscript[y, u],
|
---|
250 | Indices -> {Index[QuarkGeneration]},
|
---|
251 | AllowSummation -> True,
|
---|
252 | ParameterType -> Internal,
|
---|
253 | Value -> {yu[1] -> 0, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v, yu[4] -> Sqrt[2] ymtp / v},
|
---|
254 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt, yu[4] -> ytp},
|
---|
255 | InteractionOrder -> {QED, 1},
|
---|
256 | ComplexParameter -> False,
|
---|
257 | Description -> "U-quark Yukawa coupling"},
|
---|
258 |
|
---|
259 | yd == {
|
---|
260 | TeX -> Superscript[y, d],
|
---|
261 | Indices -> {Index[QuarkGeneration]},
|
---|
262 | AllowSummation -> True,
|
---|
263 | ParameterType -> Internal,
|
---|
264 | Value -> {yd[1] -> 0, yd[2] -> 0, yd[3] -> Sqrt[2] ymb / v, yd[4] -> Sqrt[2] ymbp / v},
|
---|
265 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb, yd[4] -> ybp},
|
---|
266 | InteractionOrder -> {QED, 1},
|
---|
267 | ComplexParameter -> False,
|
---|
268 | Description -> "D-quark Yukawa coupling"},
|
---|
269 |
|
---|
270 | (* N. B. : only Cabibbo mixing! *)
|
---|
271 |
|
---|
272 |
|
---|
273 |
|
---|
274 | RCKM == {
|
---|
275 | ParameterType -> External,
|
---|
276 | Indices -> {Index[QuarkGeneration], Index[QuarkGeneration]},
|
---|
277 | BlockName -> RCKM,
|
---|
278 | ComplexParameter -> False,
|
---|
279 | Value -> {RCKM[1,1] :> 1,
|
---|
280 | RCKM[1,2] :> 0,
|
---|
281 | RCKM[1,3] :> 0,
|
---|
282 | RCKM[1,4] :> 0,
|
---|
283 | RCKM[2,1] :> 0,
|
---|
284 | RCKM[2,2] :> 0.99995,
|
---|
285 | RCKM[2,3] :> 0,
|
---|
286 | RCKM[2,4] :> 0.01,
|
---|
287 | RCKM[3,1] :> 0,
|
---|
288 | RCKM[3,2] :> -0.001,
|
---|
289 | RCKM[3,3] :> 0.995,
|
---|
290 | RCKM[3,4] :> 0.1,
|
---|
291 | RCKM[4,1] :> 0,
|
---|
292 | RCKM[4,2] :> -0.01,
|
---|
293 | RCKM[4,3] :> -0.1,
|
---|
294 | RCKM[4,4] :> 0.99495},
|
---|
295 | Description -> "Real Part of the CKM matrix"},
|
---|
296 |
|
---|
297 | ICKM == {
|
---|
298 | ParameterType -> External,
|
---|
299 | Indices -> {Index[QuarkGeneration], Index[QuarkGeneration]},
|
---|
300 | BlockName -> ICKM,
|
---|
301 | ComplexParameter -> False,
|
---|
302 | Value -> {ICKM[1,1] :> 0,
|
---|
303 | ICKM[1,2] :> 0,
|
---|
304 | ICKM[1,3] :> 0,
|
---|
305 | ICKM[1,4] :> 0,
|
---|
306 | ICKM[2,1] :> 0,
|
---|
307 | ICKM[2,2] :> 0,
|
---|
308 | ICKM[2,3] :> 0,
|
---|
309 | ICKM[2,4] :> 0,
|
---|
310 | ICKM[3,1] :> 0,
|
---|
311 | ICKM[3,2] :> 0,
|
---|
312 | ICKM[3,3] :> 0,
|
---|
313 | ICKM[3,4] :> 0,
|
---|
314 | ICKM[4,1] :> 0,
|
---|
315 | ICKM[4,2] :> 0,
|
---|
316 | ICKM[4,3] :> 0,
|
---|
317 | ICKM[4,4] :> 0},
|
---|
318 | Description -> "Imaginary Part of the CKM matrix"},
|
---|
319 |
|
---|
320 |
|
---|
321 |
|
---|
322 | CKM == {
|
---|
323 | Indices -> {Index[QuarkGeneration], Index[QuarkGeneration]},
|
---|
324 | Unitary -> True,
|
---|
325 | Value -> {CKM[i_,j_] :> RCKM[i,j] + I ICKM[i,j]},
|
---|
326 | Description -> "CKM-Matrix"}
|
---|
327 | }
|
---|
328 |
|
---|
329 |
|
---|
330 | (************** Gauge Groups ******************)
|
---|
331 |
|
---|
332 | M$GaugeGroups = {
|
---|
333 |
|
---|
334 | U1Y == {
|
---|
335 | Abelian -> True,
|
---|
336 | GaugeBoson -> B,
|
---|
337 | Charge -> Y,
|
---|
338 | CouplingConstant -> g1},
|
---|
339 |
|
---|
340 | SU2L == {
|
---|
341 | Abelian -> False,
|
---|
342 | GaugeBoson -> Wi,
|
---|
343 | StructureConstant -> Eps,
|
---|
344 | CouplingConstant -> gw},
|
---|
345 |
|
---|
346 | SU3C == {
|
---|
347 | Abelian -> False,
|
---|
348 | GaugeBoson -> G,
|
---|
349 | StructureConstant -> f,
|
---|
350 | SymmetricTensor -> dSUN,
|
---|
351 | Representations -> {T, Colour},
|
---|
352 | CouplingConstant -> gs}
|
---|
353 | }
|
---|
354 |
|
---|
355 | (********* Particle Classes **********)
|
---|
356 |
|
---|
357 | M$ClassesDescription = {
|
---|
358 |
|
---|
359 | (********** Fermions ************)
|
---|
360 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *)
|
---|
361 | F[1] == {
|
---|
362 | ClassName -> vl,
|
---|
363 | ClassMembers -> {ve,vm,vt},
|
---|
364 | FlavorIndex -> Generation,
|
---|
365 | SelfConjugate -> False,
|
---|
366 | Indices -> {Index[Generation]},
|
---|
367 | Mass -> 0,
|
---|
368 | Width -> 0,
|
---|
369 | QuantumNumbers -> {LeptonNumber -> 1},
|
---|
370 | PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
|
---|
371 | PropagatorType -> S,
|
---|
372 | PropagatorArrow -> Forward,
|
---|
373 | PDG -> {12,14,16},
|
---|
374 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
|
---|
375 |
|
---|
376 | (* Leptons (electron): I_3 = -1/2, Q = -1 *)
|
---|
377 | F[2] == {
|
---|
378 | ClassName -> l,
|
---|
379 | ClassMembers -> {e, m, tt},
|
---|
380 | FlavorIndex -> Generation,
|
---|
381 | SelfConjugate -> False,
|
---|
382 | Indices -> {Index[Generation]},
|
---|
383 | Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}},
|
---|
384 | Width -> 0,
|
---|
385 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
|
---|
386 | PropagatorLabel -> {"l", "e", "m", "tt"},
|
---|
387 | PropagatorType -> Straight,
|
---|
388 | ParticleName -> {"e-", "m-", "tt-"},
|
---|
389 | AntiParticleName -> {"e+", "m+", "tt+"},
|
---|
390 | PropagatorArrow -> Forward,
|
---|
391 | PDG -> {11, 13, 15},
|
---|
392 | FullName -> {"Electron", "Muon", "Tau"} },
|
---|
393 |
|
---|
394 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *)
|
---|
395 | F[3] == {
|
---|
396 | ClassMembers -> {u, c, t, tp},
|
---|
397 | ClassName -> uq,
|
---|
398 | FlavorIndex -> QuarkGeneration,
|
---|
399 | SelfConjugate -> False,
|
---|
400 | Indices -> {Index[QuarkGeneration], Index[Colour]},
|
---|
401 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.42}, {MT, 172}, {MTp, 700}},
|
---|
402 | Width -> {0, 0, {WT, 1.4516}, {WTp, 14.109}},
|
---|
403 | QuantumNumbers -> {Q -> 2/3},
|
---|
404 | PropagatorLabel -> {"uq", "u", "c", "t", "tp"},
|
---|
405 | PropagatorType -> Straight,
|
---|
406 | PropagatorArrow -> Forward,
|
---|
407 | PDG -> {2, 4, 6, 8},
|
---|
408 | FullName -> {"u-quark", "c-quark", "t-quark", "t-prime-quark"}},
|
---|
409 |
|
---|
410 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *)
|
---|
411 | F[4] == {
|
---|
412 | ClassMembers -> {d, s, b, bp},
|
---|
413 | ClassName -> dq,
|
---|
414 | FlavorIndex -> QuarkGeneration,
|
---|
415 | SelfConjugate -> False,
|
---|
416 | Indices -> {Index[QuarkGeneration], Index[Colour]},
|
---|
417 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.104}, {MB, 4.7}, {MBp, 500}},
|
---|
418 | Width -> {0,0,0,{WBp,0.28454}},
|
---|
419 | QuantumNumbers -> {Q -> -1/3},
|
---|
420 | PropagatorLabel -> {"dq", "d", "s", "b", "bp"},
|
---|
421 | PropagatorType -> Straight,
|
---|
422 | PropagatorArrow -> Forward,
|
---|
423 | PDG -> {1,3,5,7},
|
---|
424 | FullName -> {"d-quark", "s-quark", "b-quark", "b-prime-quark"} },
|
---|
425 |
|
---|
426 | (********** Ghosts **********)
|
---|
427 | U[1] == {
|
---|
428 | ClassName -> ghA,
|
---|
429 | SelfConjugate -> False,
|
---|
430 | Indices -> {},
|
---|
431 | Ghost -> A,
|
---|
432 | Mass -> 0,
|
---|
433 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
434 | PropagatorLabel -> uA,
|
---|
435 | PropagatorType -> GhostDash,
|
---|
436 | PropagatorArrow -> Forward},
|
---|
437 |
|
---|
438 | U[2] == {
|
---|
439 | ClassName -> ghZ,
|
---|
440 | SelfConjugate -> False,
|
---|
441 | Indices -> {},
|
---|
442 | Mass -> {MZ, 91.188},
|
---|
443 | Ghost -> Z,
|
---|
444 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
445 | PropagatorLabel -> uZ,
|
---|
446 | PropagatorType -> GhostDash,
|
---|
447 | PropagatorArrow -> Forward},
|
---|
448 |
|
---|
449 | U[31] == {
|
---|
450 | ClassName -> ghWp,
|
---|
451 | SelfConjugate -> False,
|
---|
452 | Indices -> {},
|
---|
453 | Mass -> {MW, Internal},
|
---|
454 | Ghost -> W,
|
---|
455 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1},
|
---|
456 | PropagatorLabel -> uWp,
|
---|
457 | PropagatorType -> GhostDash,
|
---|
458 | PropagatorArrow -> Forward},
|
---|
459 |
|
---|
460 | U[32] == {
|
---|
461 | ClassName -> ghWm,
|
---|
462 | SelfConjugate -> False,
|
---|
463 | Indices -> {},
|
---|
464 | Mass -> {MW, Internal},
|
---|
465 | Ghost -> Wbar,
|
---|
466 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1},
|
---|
467 | PropagatorLabel -> uWm,
|
---|
468 | PropagatorType -> GhostDash,
|
---|
469 | PropagatorArrow -> Forward},
|
---|
470 |
|
---|
471 | U[4] == {
|
---|
472 | ClassName -> ghG,
|
---|
473 | SelfConjugate -> False,
|
---|
474 | Indices -> {Index[Gluon]},
|
---|
475 | Ghost -> G,
|
---|
476 | Mass -> 0,
|
---|
477 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
478 | PropagatorLabel -> uG,
|
---|
479 | PropagatorType -> GhostDash,
|
---|
480 | PropagatorArrow -> Forward},
|
---|
481 |
|
---|
482 | U[5] == {
|
---|
483 | ClassName -> ghWi,
|
---|
484 | Unphysical -> True,
|
---|
485 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2],
|
---|
486 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I,
|
---|
487 | ghWi[3] -> cw ghZ + sw ghA},
|
---|
488 | SelfConjugate -> False,
|
---|
489 | Ghost -> Wi,
|
---|
490 | Indices -> {Index[SU2W]},
|
---|
491 | FlavorIndex -> SU2W},
|
---|
492 |
|
---|
493 | U[6] == {
|
---|
494 | ClassName -> ghB,
|
---|
495 | SelfConjugate -> False,
|
---|
496 | Definitions -> {ghB -> -sw ghZ + cw ghA},
|
---|
497 | Indices -> {},
|
---|
498 | Ghost -> B,
|
---|
499 | Unphysical -> True},
|
---|
500 |
|
---|
501 | (************ Gauge Bosons ***************)
|
---|
502 | (* Gauge bosons: Q = 0 *)
|
---|
503 | V[1] == {
|
---|
504 | ClassName -> A,
|
---|
505 | SelfConjugate -> True,
|
---|
506 | Indices -> {},
|
---|
507 | Mass -> 0,
|
---|
508 | Width -> 0,
|
---|
509 | PropagatorLabel -> "a",
|
---|
510 | PropagatorType -> W,
|
---|
511 | PropagatorArrow -> None,
|
---|
512 | PDG -> 22,
|
---|
513 | FullName -> "Photon" },
|
---|
514 |
|
---|
515 | V[2] == {
|
---|
516 | ClassName -> Z,
|
---|
517 | SelfConjugate -> True,
|
---|
518 | Indices -> {},
|
---|
519 | Mass -> {MZ, 91.188},
|
---|
520 | Width -> {WZ, 2.44140351},
|
---|
521 | PropagatorLabel -> "Z",
|
---|
522 | PropagatorType -> Sine,
|
---|
523 | PropagatorArrow -> None,
|
---|
524 | PDG -> 23,
|
---|
525 | FullName -> "Z" },
|
---|
526 |
|
---|
527 | (* Gauge bosons: Q = -1 *)
|
---|
528 | V[3] == {
|
---|
529 | ClassName -> W,
|
---|
530 | SelfConjugate -> False,
|
---|
531 | Indices -> {},
|
---|
532 | Mass -> {MW, Internal},
|
---|
533 | Width -> {WW, 2.04759951},
|
---|
534 | QuantumNumbers -> {Q -> 1},
|
---|
535 | PropagatorLabel -> "W",
|
---|
536 | PropagatorType -> Sine,
|
---|
537 | PropagatorArrow -> Forward,
|
---|
538 | ParticleName ->"W+",
|
---|
539 | AntiParticleName ->"W-",
|
---|
540 | PDG -> 24,
|
---|
541 | FullName -> "W" },
|
---|
542 |
|
---|
543 | V[4] == {
|
---|
544 | ClassName -> G,
|
---|
545 | SelfConjugate -> True,
|
---|
546 | Indices -> {Index[Gluon]},
|
---|
547 | Mass -> 0,
|
---|
548 | Width -> 0,
|
---|
549 | PropagatorLabel -> G,
|
---|
550 | PropagatorType -> C,
|
---|
551 | PropagatorArrow -> None,
|
---|
552 | PDG -> 21,
|
---|
553 | FullName -> "G" },
|
---|
554 |
|
---|
555 | V[5] == {
|
---|
556 | ClassName -> Wi,
|
---|
557 | Unphysical -> True,
|
---|
558 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
|
---|
559 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
|
---|
560 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]},
|
---|
561 | SelfConjugate -> True,
|
---|
562 | Indices -> {Index[SU2W]},
|
---|
563 | FlavorIndex -> SU2W,
|
---|
564 | Mass -> 0,
|
---|
565 | PDG -> {1,2,3}},
|
---|
566 |
|
---|
567 | V[6] == {
|
---|
568 | ClassName -> B,
|
---|
569 | SelfConjugate -> True,
|
---|
570 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]},
|
---|
571 | Indices -> {},
|
---|
572 | Mass -> 0,
|
---|
573 | Unphysical -> True},
|
---|
574 |
|
---|
575 |
|
---|
576 | (************ Scalar Fields **********)
|
---|
577 | (* physical Higgs: Q = 0 *)
|
---|
578 | S[1] == {
|
---|
579 | ClassName -> H,
|
---|
580 | SelfConjugate -> True,
|
---|
581 | Mass -> {MH, 120},
|
---|
582 | Width -> {WH, 0.00575308848},
|
---|
583 | PropagatorLabel -> "H",
|
---|
584 | PropagatorType -> D,
|
---|
585 | PropagatorArrow -> None,
|
---|
586 | PDG -> 25,
|
---|
587 | TeXParticleName -> "\\phi",
|
---|
588 | TeXClassName -> "\\phi",
|
---|
589 | FullName -> "H" },
|
---|
590 |
|
---|
591 | S[2] == {
|
---|
592 | ClassName -> phi,
|
---|
593 | SelfConjugate -> True,
|
---|
594 | Mass -> {MZ, 91.188},
|
---|
595 | Width -> Wphi,
|
---|
596 | PropagatorLabel -> "Phi",
|
---|
597 | PropagatorType -> D,
|
---|
598 | PropagatorArrow -> None,
|
---|
599 | ParticleName ->"phi0",
|
---|
600 | PDG -> 250,
|
---|
601 | FullName -> "Phi",
|
---|
602 | Goldstone -> Z },
|
---|
603 |
|
---|
604 | S[3] == {
|
---|
605 | ClassName -> phi2,
|
---|
606 | SelfConjugate -> False,
|
---|
607 | Mass -> {MW, Internal},
|
---|
608 | Width -> Wphi2,
|
---|
609 | PropagatorLabel -> "Phi2",
|
---|
610 | PropagatorType -> D,
|
---|
611 | PropagatorArrow -> None,
|
---|
612 | ParticleName ->"phi+",
|
---|
613 | AntiParticleName ->"phi-",
|
---|
614 | PDG -> 251,
|
---|
615 | FullName -> "Phi2",
|
---|
616 | TeXClassName -> "\\phi^+",
|
---|
617 | TeXParticleName -> "\\phi^+",
|
---|
618 | TeXAntiParticleName -> "\\phi^-",
|
---|
619 | Goldstone -> W,
|
---|
620 | QuantumNumbers -> {Q -> 1}}
|
---|
621 | }
|
---|
622 |
|
---|
623 |
|
---|
624 |
|
---|
625 |
|
---|
626 | (*****************************************************************************************)
|
---|
627 |
|
---|
628 | (* SM Lagrangian *)
|
---|
629 |
|
---|
630 | (******************** Gauge F^2 Lagrangian terms*************************)
|
---|
631 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
632 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])*
|
---|
633 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) -
|
---|
634 |
|
---|
635 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 -
|
---|
636 |
|
---|
637 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])*
|
---|
638 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]);
|
---|
639 |
|
---|
640 |
|
---|
641 | (********************* Fermion Lagrangian terms*************************)
|
---|
642 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
643 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright},
|
---|
644 |
|
---|
645 | Lkin = I uqbar.Ga[mu].del[uq, mu] +
|
---|
646 | I dqbar.Ga[mu].del[dq, mu] +
|
---|
647 | I lbar.Ga[mu].del[l, mu] +
|
---|
648 | I vlbar.Ga[mu].del[vl, mu];
|
---|
649 |
|
---|
650 | LQCD = gs (uqbar.Ga[mu].T[a].uq +
|
---|
651 | dqbar.Ga[mu].T[a].dq)G[mu, a];
|
---|
652 |
|
---|
653 | LBright =
|
---|
654 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*)
|
---|
655 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*)
|
---|
656 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*)
|
---|
657 |
|
---|
658 | LBleft =
|
---|
659 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*)
|
---|
660 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*)
|
---|
661 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*)
|
---|
662 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*)
|
---|
663 |
|
---|
664 | LWleft = ee/sw/2(
|
---|
665 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
666 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
667 |
|
---|
668 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] +
|
---|
669 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+
|
---|
670 |
|
---|
671 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
672 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
673 |
|
---|
674 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] +
|
---|
675 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu]
|
---|
676 | );
|
---|
677 |
|
---|
678 | Lkin + LQCD + LBright + LBleft + LWleft];
|
---|
679 |
|
---|
680 | (******************** Higgs Lagrangian terms****************************)
|
---|
681 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
|
---|
682 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
|
---|
683 |
|
---|
684 |
|
---|
685 |
|
---|
686 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi},
|
---|
687 |
|
---|
688 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
689 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
690 |
|
---|
691 | (*Y_phi=1*)
|
---|
692 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
693 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
694 |
|
---|
695 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
|
---|
696 |
|
---|
697 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]];
|
---|
698 |
|
---|
699 |
|
---|
700 | (*************** Yukawa Lagrangian***********************)
|
---|
701 | LYuk := If[FeynmanGauge,
|
---|
702 |
|
---|
703 | Module[{s,r,n,m,i}, -
|
---|
704 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) -
|
---|
705 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] -
|
---|
706 |
|
---|
707 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*)
|
---|
708 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) -
|
---|
709 |
|
---|
710 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) -
|
---|
711 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2]
|
---|
712 | ],
|
---|
713 |
|
---|
714 | Module[{s,r,n,m,i}, -
|
---|
715 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] -
|
---|
716 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] -
|
---|
717 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2]
|
---|
718 | ]
|
---|
719 | ];
|
---|
720 |
|
---|
721 | LYukawa := LYuk + HC[LYuk];
|
---|
722 |
|
---|
723 |
|
---|
724 |
|
---|
725 | (**************Ghost terms**************************)
|
---|
726 | (* Now we need the ghost terms which are of the form: *)
|
---|
727 | (* - g * antighost * d_BRST G *)
|
---|
728 | (* where d_BRST G is BRST transform of the gauge fixing function. *)
|
---|
729 |
|
---|
730 | LGhost := If[FeynmanGauge,
|
---|
731 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB},
|
---|
732 |
|
---|
733 | (***********First the pure gauge piece.**********************)
|
---|
734 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
---|
735 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
---|
736 |
|
---|
737 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ];
|
---|
738 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu];
|
---|
739 |
|
---|
740 | dBRSTB[mu_] := cw/ee del[ghB, mu];
|
---|
741 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu];
|
---|
742 |
|
---|
743 | (***********Next the piece from the scalar field.************)
|
---|
744 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) +
|
---|
745 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) -
|
---|
746 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) -
|
---|
747 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) -
|
---|
748 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ;
|
---|
749 |
|
---|
750 |
|
---|
751 | (***********Now add the pieces together.********************)
|
---|
752 | LGhostG + LGhostWi + LGhostB + LGhostphi]
|
---|
753 |
|
---|
754 | , 0];
|
---|
755 |
|
---|
756 | (*********Total SM Lagrangian*******)
|
---|
757 | L4Gen := LGauge + LHiggs + LFermions + LYukawa + LGhost;
|
---|