1 | (* **************************************************************************************** *)
|
---|
2 | (* ***** ***** *)
|
---|
3 | (* ***** FeynRules model file: Simplified s-channel DM models with Gauge Invariance ***** *)
|
---|
4 | (* ***** Author: G.Busoni ***** *)
|
---|
5 | (* ***** ***** *)
|
---|
6 | (* **************************************************************************************** *)
|
---|
7 |
|
---|
8 |
|
---|
9 | (* ************************** *)
|
---|
10 | (* ***** Information ***** *)
|
---|
11 | (* ************************** *)
|
---|
12 | M$ModelName = "S2HDM";
|
---|
13 |
|
---|
14 | M$Information = {
|
---|
15 | Authors -> {"G.Busoni"},
|
---|
16 | Institutions -> {"The University of Melbourne"},
|
---|
17 | Emails -> {"giorgio.busoni@unimelb.edu.au"},
|
---|
18 | URLs -> "http://feynrules.irmp.ucl.ac.be/wiki/DMsimp/",
|
---|
19 | References -> {"N. Bell et al., 1612.03475, 1710.10764"},
|
---|
20 | Version -> "1.0",
|
---|
21 | Date -> "2017.10.31"
|
---|
22 | };
|
---|
23 |
|
---|
24 | (* ************************** *)
|
---|
25 | (* ***** Change log ***** *)
|
---|
26 | (* ************************** *)
|
---|
27 |
|
---|
28 | (* 2017.10.31 v1.0 - Initial release *)
|
---|
29 |
|
---|
30 | (***** Setting for interaction order (as e.g. used by MadGraph 5) ******)
|
---|
31 | (*
|
---|
32 | M$InteractionOrderLimit = {
|
---|
33 | {DMS, 1}
|
---|
34 | };
|
---|
35 |
|
---|
36 | M$InteractionOrderHierarchy = {
|
---|
37 | {QCD, 1}, {DMS, 2}, {QED, 3}
|
---|
38 | };
|
---|
39 | *)
|
---|
40 |
|
---|
41 | FR$LoopSwitches = {{Gf, MW}, {lambda12s, t2theta}};
|
---|
42 |
|
---|
43 | (* ************************** *)
|
---|
44 | (* ***** vevs ***** *)
|
---|
45 | (* ************************** *)
|
---|
46 | M$vevs = { {phi1[2],vev*cbeta},{phi2[2],vev*sbeta} };
|
---|
47 |
|
---|
48 | M$ClassesDescription = {
|
---|
49 |
|
---|
50 | (* ************************** *)
|
---|
51 | (* ***** Fields ***** *)
|
---|
52 | (* ************************** *)
|
---|
53 |
|
---|
54 | F[7] == { ClassName -> Xd,
|
---|
55 | SelfConjugate -> False,
|
---|
56 | Mass -> {MXd, 300.},
|
---|
57 | Width -> 0,
|
---|
58 | ParticleName -> "~Xd",
|
---|
59 | AntiParticleName -> "~Xd~",
|
---|
60 | PDG -> 52,
|
---|
61 | PropagatorLabel -> "Xd",
|
---|
62 | PropagatorType -> Straight,
|
---|
63 | PropagatorArrow -> Forward,
|
---|
64 | TeX -> Subscript[X,d],
|
---|
65 | FullName -> "DM" },
|
---|
66 |
|
---|
67 | S[108] == { ClassName -> S1,
|
---|
68 | SelfConjugate -> True,
|
---|
69 | Mass -> {MS1, 200.},
|
---|
70 | Width -> {WS1,63.7546},
|
---|
71 | PDG -> 100001,
|
---|
72 | PropagatorLabel -> "S1",
|
---|
73 | PropagatorType -> D,
|
---|
74 | PropagatorArrow -> None,
|
---|
75 | TeX -> Subscript[S,1],
|
---|
76 | FullName -> "S1" },
|
---|
77 |
|
---|
78 | S[109] == { ClassName -> S2,
|
---|
79 | SelfConjugate -> True,
|
---|
80 | Mass -> {MS2, 800.},
|
---|
81 | Width -> {WS2,0.525971 },
|
---|
82 | PDG -> 100002,
|
---|
83 | PropagatorLabel -> "S2",
|
---|
84 | PropagatorType -> D,
|
---|
85 | PropagatorArrow -> None,
|
---|
86 | TeX -> Subscript[S,2],
|
---|
87 | FullName -> "S2" },
|
---|
88 |
|
---|
89 | S[1110] == { ClassName -> R,
|
---|
90 | SelfConjugate -> True,
|
---|
91 | Mass -> {MR, 400.},
|
---|
92 | Width -> {WR,65.4399},
|
---|
93 | PDG -> 100003,
|
---|
94 | PropagatorLabel -> "R",
|
---|
95 | PropagatorType -> D,
|
---|
96 | PropagatorArrow -> None,
|
---|
97 | TeX -> R,
|
---|
98 | FullName -> "R" },
|
---|
99 |
|
---|
100 | S[111] == {
|
---|
101 | ClassName -> HP,
|
---|
102 | SelfConjugate -> False,
|
---|
103 | QuantumNumbers -> {Q -> 1},
|
---|
104 | Mass -> {MHP, 400.},
|
---|
105 | Width -> {WHP,63.9267},
|
---|
106 | ParticleName -> "h+",
|
---|
107 | AntiParticleName -> "h-",
|
---|
108 | PDG -> 100004,
|
---|
109 | PropagatorLabel -> "H+",
|
---|
110 | PropagatorType -> D,
|
---|
111 | PropagatorArrow -> None,
|
---|
112 | TeX -> "H^+",
|
---|
113 | FullName -> "HP" },
|
---|
114 |
|
---|
115 |
|
---|
116 | (* ************************************* *)
|
---|
117 | (* ***** unphysical Fields ***** *)
|
---|
118 | (* ************************************* *)
|
---|
119 |
|
---|
120 | S[101] == {
|
---|
121 | ClassName -> phi1,
|
---|
122 | Unphysical -> True,
|
---|
123 | SelfConjugate -> False,
|
---|
124 | ParticleName -> "phi1",
|
---|
125 | AntiParticleName -> "phi1bar",
|
---|
126 | Indices -> {Index[SU2D]},
|
---|
127 | FlavorIndex -> SU2D,
|
---|
128 | QuantumNumbers-> {Y -> 1/2},
|
---|
129 | Definitions -> { phi1[1] -> cbeta phih[1] - sbeta phiH[1], phi1[2] -> cbeta phih[2] - sbeta phiH[2] },
|
---|
130 | FullName -> "Phi1"
|
---|
131 | },
|
---|
132 |
|
---|
133 | S[102] == {
|
---|
134 | ClassName -> phi2,
|
---|
135 | Unphysical -> True,
|
---|
136 | SelfConjugate -> False,
|
---|
137 | ParticleName -> "phi2",
|
---|
138 | AntiParticleName -> "phi2bar",
|
---|
139 | Indices -> {Index[SU2D]},
|
---|
140 | FlavorIndex -> SU2D,
|
---|
141 | QuantumNumbers-> {Y -> 1/2},
|
---|
142 | Definitions -> { phi2[1] -> sbeta phih[1] + cbeta phiH[1], phi2[2] -> sbeta phih[2] + cbeta phiH[2] },
|
---|
143 | FullName -> "Phi2"
|
---|
144 | },
|
---|
145 |
|
---|
146 | S[103] == {
|
---|
147 | ClassName -> phih,
|
---|
148 | Unphysical -> True,
|
---|
149 | SelfConjugate -> False,
|
---|
150 | ParticleName -> "phih",
|
---|
151 | AntiParticleName -> "phihbar",
|
---|
152 | Indices -> {Index[SU2D]},
|
---|
153 | FlavorIndex -> SU2D,
|
---|
154 | QuantumNumbers-> {Y -> 1/2},
|
---|
155 | Definitions -> { phih[1] -> GP, phih[2] -> (vev + H + I G0)/Sqrt[2] },
|
---|
156 | FullName -> "Phih"
|
---|
157 | },
|
---|
158 |
|
---|
159 | S[104] == {
|
---|
160 | ClassName -> phiH,
|
---|
161 | Unphysical -> True,
|
---|
162 | SelfConjugate -> False,
|
---|
163 | ParticleName -> "phiH",
|
---|
164 | AntiParticleName -> "phiHbar",
|
---|
165 | Indices -> {Index[SU2D]},
|
---|
166 | FlavorIndex -> SU2D,
|
---|
167 | QuantumNumbers-> {Y -> 1/2},
|
---|
168 | Definitions -> { phiH[1] -> HP, phiH[2] -> (H0 + I R)/Sqrt[2] },
|
---|
169 | FullName -> "PhiH"
|
---|
170 | },
|
---|
171 |
|
---|
172 | S[105] == {
|
---|
173 | ClassName -> SS,
|
---|
174 | Unphysical -> True,
|
---|
175 | SelfConjugate -> True,
|
---|
176 | Definitions -> { SS -> (vs + S0 ) },
|
---|
177 | FullName -> "SS"
|
---|
178 | },
|
---|
179 |
|
---|
180 | S[106] == {
|
---|
181 | ClassName -> H0,
|
---|
182 | Unphysical -> True,
|
---|
183 | SelfConjugate -> True,
|
---|
184 | ParticleName -> "h0",
|
---|
185 | Definitions -> { H0 -> ctheta S1 - stheta S2 },
|
---|
186 | FullName -> "H0"
|
---|
187 | },
|
---|
188 |
|
---|
189 | S[107] == {
|
---|
190 | ClassName -> S0,
|
---|
191 | Unphysical -> True,
|
---|
192 | SelfConjugate -> True,
|
---|
193 | ParticleName -> "s0",
|
---|
194 | Definitions -> { S0 -> stheta S1 + ctheta S2 },
|
---|
195 | FullName -> "S0"
|
---|
196 | }
|
---|
197 |
|
---|
198 | };
|
---|
199 |
|
---|
200 | (* ************************** *)
|
---|
201 | (* ***** Parameters ***** *)
|
---|
202 | (* ************************** *)
|
---|
203 | M$Parameters = {
|
---|
204 |
|
---|
205 | (* *********************************** *)
|
---|
206 | (* ***** External Parameters ***** *)
|
---|
207 | (* *********************************** *)
|
---|
208 |
|
---|
209 | tbeta == {
|
---|
210 | BlockName -> Higgs,
|
---|
211 | OrderBlock -> 1,
|
---|
212 | ComplexParameter -> False,
|
---|
213 | ParameterType -> External,
|
---|
214 | Value -> 1,
|
---|
215 | Description -> "tan beta"
|
---|
216 | },
|
---|
217 |
|
---|
218 | t2theta == {
|
---|
219 | BlockName -> Higgs,
|
---|
220 | OrderBlock -> 2,
|
---|
221 | ComplexParameter -> False,
|
---|
222 | ParameterType -> External,
|
---|
223 | Value -> -0.99,
|
---|
224 | Description -> "tan 2 theta"
|
---|
225 | },
|
---|
226 |
|
---|
227 | lambdaHHs == {
|
---|
228 | BlockName -> Higgs,
|
---|
229 | OrderBlock -> 3,
|
---|
230 | ComplexParameter -> False,
|
---|
231 | ParameterType -> External,
|
---|
232 | Value -> 1,
|
---|
233 | InteractionOrder -> {QED,2},
|
---|
234 | Description -> "phi2^2 S^2 interaction"
|
---|
235 | },
|
---|
236 |
|
---|
237 | vs == {
|
---|
238 | BlockName -> Higgs,
|
---|
239 | OrderBlock -> 4,
|
---|
240 | ComplexParameter -> False,
|
---|
241 | ParameterType -> External,
|
---|
242 | Value -> 4000,
|
---|
243 | InteractionOrder -> {QED,-1},
|
---|
244 | Description -> "vs"
|
---|
245 | },
|
---|
246 |
|
---|
247 | yDM == {
|
---|
248 | BlockName -> Higgs,
|
---|
249 | OrderBlock -> 5,
|
---|
250 | ComplexParameter -> False,
|
---|
251 | ParameterType -> External,
|
---|
252 | Value -> 1,
|
---|
253 | InteractionOrder -> {DMS,1},
|
---|
254 | Description -> "DM yukawa coupling"
|
---|
255 | },
|
---|
256 |
|
---|
257 | tgammau == {
|
---|
258 | BlockName -> YukawaNew,
|
---|
259 | OrderBlock -> 1,
|
---|
260 | ComplexParameter -> False,
|
---|
261 | ParameterType -> External,
|
---|
262 | Value -> 0.5,
|
---|
263 | InteractionOrder -> {DMS,1},
|
---|
264 | Description -> "New Higgs up quarks yukawa coupling"
|
---|
265 | },
|
---|
266 |
|
---|
267 | tgammad == {
|
---|
268 | BlockName -> YukawaNew,
|
---|
269 | OrderBlock -> 2,
|
---|
270 | ComplexParameter -> False,
|
---|
271 | ParameterType -> External,
|
---|
272 | Value -> 1,
|
---|
273 | InteractionOrder -> {DMS,1},
|
---|
274 | Description -> "New Higgs down quarks yukawa coupling"
|
---|
275 | },
|
---|
276 |
|
---|
277 | tgammal == {
|
---|
278 | BlockName -> YukawaNew,
|
---|
279 | OrderBlock -> 3,
|
---|
280 | ComplexParameter -> False,
|
---|
281 | ParameterType -> External,
|
---|
282 | Value -> 0,
|
---|
283 | InteractionOrder -> {DMS,1},
|
---|
284 | Description -> "New Higgs leptons yukawa coupling"
|
---|
285 | },
|
---|
286 |
|
---|
287 | AA == {
|
---|
288 | BlockName -> YukawaNew,
|
---|
289 | OrderBlock -> 4,
|
---|
290 | ComplexParameter -> False,
|
---|
291 | ParameterType -> External,
|
---|
292 | Value -> 0.1,
|
---|
293 | InteractionOrder -> {DMS,1},
|
---|
294 | Description -> "New Higgs light up quarks yukawa coupling"
|
---|
295 | },
|
---|
296 |
|
---|
297 | BB == {
|
---|
298 | BlockName -> YukawaNew,
|
---|
299 | OrderBlock -> 5,
|
---|
300 | ComplexParameter -> False,
|
---|
301 | ParameterType -> External,
|
---|
302 | Value -> 0.01,
|
---|
303 | InteractionOrder -> {DMS,1},
|
---|
304 | Description -> "New Higgs light down quarks yukawa coupling"
|
---|
305 | },
|
---|
306 |
|
---|
307 | (* *********************************** *)
|
---|
308 | (* ***** Internal Parameters ***** *)
|
---|
309 | (* *********************************** *)
|
---|
310 |
|
---|
311 | cbeta == {
|
---|
312 | ComplexParameter -> False,
|
---|
313 | ParameterType -> Internal,
|
---|
314 | Value -> 1/Sqrt[1+tbeta^2],
|
---|
315 | Description -> "cos beta"
|
---|
316 | },
|
---|
317 |
|
---|
318 | sbeta == {
|
---|
319 | ComplexParameter -> False,
|
---|
320 | ParameterType -> Internal,
|
---|
321 | Value -> tbeta*cbeta,
|
---|
322 | Description -> "sin beta"
|
---|
323 | },
|
---|
324 |
|
---|
325 | c2theta == {
|
---|
326 | ComplexParameter -> False,
|
---|
327 | ParameterType -> Internal,
|
---|
328 | Value -> 1/Sqrt[1+t2theta^2],
|
---|
329 | Description -> "cos beta"
|
---|
330 | },
|
---|
331 |
|
---|
332 | s2theta == {
|
---|
333 | ComplexParameter -> False,
|
---|
334 | ParameterType -> Internal,
|
---|
335 | Value -> t2theta*c2theta,
|
---|
336 | Description -> "sin beta"
|
---|
337 | },
|
---|
338 |
|
---|
339 | ctheta == {
|
---|
340 | ComplexParameter -> False,
|
---|
341 | ParameterType -> Internal,
|
---|
342 | Value -> Cos[ArcSin[s2theta]/2],
|
---|
343 | Description -> "cos beta"
|
---|
344 | },
|
---|
345 |
|
---|
346 | stheta == {
|
---|
347 | ComplexParameter -> False,
|
---|
348 | ParameterType -> Internal,
|
---|
349 | Value -> Sin[ArcSin[s2theta]/2],
|
---|
350 | Description -> "sin beta"
|
---|
351 | },
|
---|
352 |
|
---|
353 | mm11 == {
|
---|
354 | ComplexParameter -> False,
|
---|
355 | ParameterType -> Internal,
|
---|
356 | Value -> 1/2 (-lambda1 vev^2-lambda11s vs^2), (*minima condition*)
|
---|
357 | Description -> "m11"
|
---|
358 | },
|
---|
359 |
|
---|
360 | mmss == {
|
---|
361 | ComplexParameter -> False,
|
---|
362 | ParameterType -> Internal,
|
---|
363 | Value -> (- lambdas vs^2-lambda11s vev^2/2), (*mimima condition*)
|
---|
364 | Description -> "mss"
|
---|
365 | },
|
---|
366 |
|
---|
367 | lambda11s == {
|
---|
368 | ComplexParameter -> False,
|
---|
369 | ParameterType -> Internal,
|
---|
370 | Value -> (stheta/ctheta)(2mm12+vs^2 lambda12s)/(2 vev vs), (*alignment condition*)
|
---|
371 | InteractionOrder -> {QED,2},
|
---|
372 | Description -> "phi1 phi1 S^2 interaction"
|
---|
373 | },
|
---|
374 |
|
---|
375 | mm12 == {
|
---|
376 | ComplexParameter -> False,
|
---|
377 | ParameterType -> Internal,
|
---|
378 | Value -> 1/2 (- lambda12s vs^2), (*minima condition*)
|
---|
379 | Description -> "m12"
|
---|
380 | },
|
---|
381 |
|
---|
382 | mm22 == {
|
---|
383 | ComplexParameter -> False,
|
---|
384 | ParameterType -> Internal,
|
---|
385 | Value -> 1/2 ((2 MHP^2 - lambda3 vev^2) - lambdaHHs vs^2), (*masses condition*)
|
---|
386 | Description -> "m22"
|
---|
387 | },
|
---|
388 |
|
---|
389 | lambda5 == {
|
---|
390 | ComplexParameter -> False,
|
---|
391 | ParameterType -> Internal,
|
---|
392 | Value -> lambda4 - (2 (-MHP^2 + MR^2))/vev^2, (*masses condition*)
|
---|
393 | InteractionOrder -> {QED,2},
|
---|
394 | Description -> "lambda5"
|
---|
395 | },
|
---|
396 |
|
---|
397 | lambda12s == {
|
---|
398 | ComplexParameter -> False,
|
---|
399 | ParameterType -> Internal,
|
---|
400 | Value -> (1/(2 vev vs))( t2theta ( + MR^2 + lambda5 vev^2 - 2 lambdas vs^2)), (*mixing angle definition*)
|
---|
401 | InteractionOrder -> {QED,2},
|
---|
402 | Description -> "phi1 phi2 S^2 interaction"
|
---|
403 | },
|
---|
404 |
|
---|
405 | lambdas == {
|
---|
406 | ComplexParameter -> False,
|
---|
407 | ParameterType -> Internal,
|
---|
408 | Value -> (MS1^2+MS2^2+(MS2^2-MS1^2)c2theta)/4/vs^2, (*masses*)
|
---|
409 | InteractionOrder -> {QED,2},
|
---|
410 | Description -> "Singlet self interaction coupling"
|
---|
411 | },
|
---|
412 |
|
---|
413 | lambda4 == {
|
---|
414 | ComplexParameter -> False,
|
---|
415 | ParameterType -> Internal,
|
---|
416 | Value -> (-4 MHP^2 + 2 MR^2 + MS1^2 + MS2^2 + c2theta (MS1^2 - MS2^2))/(2 vev^2), (*masses*)
|
---|
417 | InteractionOrder -> {QED,2},
|
---|
418 | Description -> "lambda4"
|
---|
419 | },
|
---|
420 |
|
---|
421 | lambda1 == {
|
---|
422 | ComplexParameter -> False,
|
---|
423 | ParameterType -> Internal,
|
---|
424 | Value -> MH^2/(vev^2), (*masses condition*)
|
---|
425 | InteractionOrder -> {QED,2},
|
---|
426 | Description -> "First higgs self interaction term"
|
---|
427 | },
|
---|
428 |
|
---|
429 | lambda2 == {
|
---|
430 | ComplexParameter -> False,
|
---|
431 | ParameterType -> Internal,
|
---|
432 | Value -> lambda1, (*CP2*)
|
---|
433 | InteractionOrder -> {QED,2},
|
---|
434 | Description -> "Second higgs self interaction term"
|
---|
435 | },
|
---|
436 |
|
---|
437 | lambda3 == {
|
---|
438 | ComplexParameter -> False,
|
---|
439 | ParameterType -> Internal,
|
---|
440 | Value -> lambda1-lambda4-lambda5, (*CP2*)
|
---|
441 | InteractionOrder -> {QED,2},
|
---|
442 | Description -> "lambda3"
|
---|
443 | },
|
---|
444 |
|
---|
445 | mm0 == {
|
---|
446 | ComplexParameter -> False,
|
---|
447 | ParameterType -> Internal,
|
---|
448 | Value -> MXd - yDM*vs,
|
---|
449 | Description -> "DM bare mass term"
|
---|
450 | },
|
---|
451 | yuA == {
|
---|
452 | ParameterType -> Internal,
|
---|
453 | Indices -> {Index[Generation], Index[Generation]},
|
---|
454 | Definitions -> {yuA[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
---|
455 | Value -> {yuA[1,1] -> AA, yuA[2,2] -> AA, yuA[3,3] -> 0},
|
---|
456 | InteractionOrder -> {DMS, 1},
|
---|
457 | TeX -> Superscript[Y, u],
|
---|
458 | Description -> "Up-type Yukawa couplings new doublet"
|
---|
459 | },
|
---|
460 | ydB == {
|
---|
461 | ParameterType -> Internal,
|
---|
462 | Indices -> {Index[Generation], Index[Generation]},
|
---|
463 | Definitions -> {ydB[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
---|
464 | Value -> {ydB[1,1] -> BB, ydB[2,2] -> BB, ydB[3,3] -> 0},
|
---|
465 | InteractionOrder -> {DMS, 1},
|
---|
466 | TeX -> Superscript[Y, d],
|
---|
467 | Description -> "Down-type Yukawa couplings new doublet"
|
---|
468 | }
|
---|
469 |
|
---|
470 | };
|
---|
471 |
|
---|
472 |
|
---|
473 | (* ************************** *)
|
---|
474 | (* ***** Lagrangian ***** *)
|
---|
475 | (* ************************** *)
|
---|
476 |
|
---|
477 | LHiggsKin := Block[{ii, mu, feynmangaugerules},
|
---|
478 | feynmangaugerules = If[Not[FeynmanGauge], {G0 | GP | GPbar -> 0}, {}];
|
---|
479 | ExpandIndices[
|
---|
480 | DC[phi1bar[ii], mu] DC[phi1[ii], mu] +
|
---|
481 | DC[phi2bar[ii], mu] DC[phi2[ii], mu],
|
---|
482 | FlavorExpand -> {SU2D, SU2W}] /. feynmangaugerules];
|
---|
483 |
|
---|
484 | LHiggsKin2 := Block[{ii, mu, feynmangaugerules},
|
---|
485 | feynmangaugerules = If[Not[FeynmanGauge], {G0 | GP | GPbar -> 0}, {}];
|
---|
486 | ExpandIndices[
|
---|
487 | DC[phihbar[ii], mu] DC[phih[ii], mu] +
|
---|
488 | DC[phiHbar[ii], mu] DC[phiH[ii], mu],
|
---|
489 | FlavorExpand -> {SU2D, SU2W}] /. feynmangaugerules];
|
---|
490 |
|
---|
491 | LSkin := Block[{mu}, DC[SS,mu] DC[SS,mu]]/2;
|
---|
492 |
|
---|
493 | VS := mmss SS^2/2 + lambdas SS^4/4;
|
---|
494 |
|
---|
495 | P1 = Block[{feynmangaugerules},
|
---|
496 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
497 | {phih[1], phih[2]}/.feynmangaugerules];
|
---|
498 | P2 = Block[{feynmangaugerules},
|
---|
499 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
500 | {phiH[1], phiH[2]}/.feynmangaugerules];
|
---|
501 |
|
---|
502 | P1bar = HC[P1];
|
---|
503 | P2bar = HC[P2];
|
---|
504 |
|
---|
505 | P11 = HC[P1].P1;
|
---|
506 | P12 = HC[P1].P2;
|
---|
507 | P21 = HC[P2].P1;
|
---|
508 | P22 = HC[P2].P2;
|
---|
509 |
|
---|
510 | V2HDM := mm11 P11 + mm22 P22 + mm12 (P12 + P21) +
|
---|
511 | lambda1 P11^2/2 + lambda2 P22^2/2 + lambda3 P11 P22 +
|
---|
512 | lambda4 P12 P21 + lambda5 (P12^2 + P21^2)/2;
|
---|
513 |
|
---|
514 |
|
---|
515 | VSH := lambda11s P11 SS^2/2 + lambdaHHs P22 SS^2/2 + lambda12s (P12 + P21) SS^2/2;
|
---|
516 |
|
---|
517 | LS := LSkin - VS - VSH;
|
---|
518 |
|
---|
519 | L2Higgs := LHiggsKin2 - V2HDM;
|
---|
520 |
|
---|
521 | LDM := Block[{mu}, I*(Xdbar.Ga[mu].DC[Xd, mu] )] - mm0 Xdbar.Xd - yDM SS Xdbar.Xd;
|
---|
522 |
|
---|
523 | LGhost2 := Block[{LGh1,LGhw,LGhs,LGhphi,mu, generators,gh,ghbar,Vectorize,phi3,phi4,togoldstones,doublet,doublet0},
|
---|
524 | (* Pure gauge piece *)
|
---|
525 | LGh1 = -ghBbar.del[DC[ghB,mu],mu];
|
---|
526 | LGhw = -ghWibar.del[DC[ghWi,mu],mu];
|
---|
527 | LGhs = -ghGbar.del[DC[ghG,mu],mu];
|
---|
528 |
|
---|
529 | (* Scalar pieces: see Peskin pages 739-742 *)
|
---|
530 | (* phi1 and phi2 are the real degrees of freedom of GP *)
|
---|
531 | (* Vectorize transforms a doublet in a vector in the phi-basis, i.e. the basis of real degrees of freedom *)
|
---|
532 | gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
|
---|
533 | ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
|
---|
534 | generators = {-I/2 g1 IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
---|
535 | doublet = Expand[{(-I phi3 - phi4)/Sqrt[2], phih[2]} /. MR$Definitions /. vev -> 0];
|
---|
536 | doublet0 = {0, vev/Sqrt[2]};
|
---|
537 | Vectorize[{a_, b_}]:= Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]}/.{Im[_]->0, Re[num_]->num}];
|
---|
538 | togoldstones := {phi3 -> (GP + GPbar)/Sqrt[2], phi4 -> (-GP + GPbar)/(I Sqrt[2])};
|
---|
539 | LGhphi=Plus@@Flatten[Table[-ghbar[[kkk]].gh[[lll]] Vectorize[generators[[kkk]].doublet0].Vectorize[generators[[lll]].(doublet+doublet0)],{kkk,4},{lll,4}]] /.togoldstones;
|
---|
540 |
|
---|
541 | ExpandIndices[ LGhs + If[FeynmanGauge, LGh1 + LGhw + LGhphi,0], FlavorExpand->SU2W]];
|
---|
542 |
|
---|
543 | LYukawaTypeI := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
544 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
545 |
|
---|
546 | yuk = ExpandIndices[
|
---|
547 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phi2[ii]/sbeta -
|
---|
548 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phi2[ii]/sbeta -
|
---|
549 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phi2bar[jj] Eps[ii, jj]/sbeta, FlavorExpand -> SU2D];
|
---|
550 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
551 | yuk+HC[yuk]/.feynmangaugerules
|
---|
552 | ];
|
---|
553 |
|
---|
554 | LYukawaTypeII := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
555 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
556 |
|
---|
557 | yuk = ExpandIndices[
|
---|
558 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phi1[ii]/cbeta -
|
---|
559 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phi1[ii]/cbeta -
|
---|
560 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phi2bar[jj] Eps[ii, jj]/sbeta, FlavorExpand -> SU2D];
|
---|
561 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
562 | yuk+HC[yuk]/.feynmangaugerules
|
---|
563 | ];
|
---|
564 |
|
---|
565 | LYukawaTypeX := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
566 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
567 |
|
---|
568 | yuk = ExpandIndices[
|
---|
569 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phi2[ii]/sbeta -
|
---|
570 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phi1[ii]/cbeta -
|
---|
571 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phi2bar[jj] Eps[ii, jj]/sbeta, FlavorExpand -> SU2D];
|
---|
572 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
573 | yuk+HC[yuk]/.feynmangaugerules
|
---|
574 | ];
|
---|
575 |
|
---|
576 | LYukawaTypeY := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
577 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
578 |
|
---|
579 | yuk = ExpandIndices[
|
---|
580 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phi1[ii]/cbeta -
|
---|
581 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phi2[ii]/sbeta -
|
---|
582 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phi2bar[jj] Eps[ii, jj]/sbeta, FlavorExpand -> SU2D];
|
---|
583 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
584 | yuk+HC[yuk]/.feynmangaugerules
|
---|
585 | ];
|
---|
586 |
|
---|
587 | LYukawaAlign := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
588 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
589 |
|
---|
590 | yuk = ExpandIndices[
|
---|
591 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phih[ii] -
|
---|
592 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phih[ii] -
|
---|
593 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phihbar[jj] Eps[ii, jj]
|
---|
594 | -tgammad*yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phiH[ii] -
|
---|
595 | tgammal*yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phiH[ii] -
|
---|
596 | tgammau*yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phiHbar[jj] Eps[ii, jj], FlavorExpand -> SU2D];
|
---|
597 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
598 | yuk+HC[yuk]/.feynmangaugerules
|
---|
599 | ];
|
---|
600 |
|
---|
601 | LYukawa2gen := Block[{sp,ii,jj,cc,ff1,ff2,ff3,yuk,feynmangaugerules},
|
---|
602 | feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
|
---|
603 |
|
---|
604 | yuk = ExpandIndices[
|
---|
605 | -yd[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phih[ii] -
|
---|
606 | yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] phih[ii] -
|
---|
607 | yu[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phihbar[jj] Eps[ii, jj]
|
---|
608 | -ydB[ff2, ff3] CKM[ff1, ff2] QLbar[sp, ii, ff1, cc].dR [sp, ff3, cc] phiH[ii] -
|
---|
609 | yuA[ff1, ff2] QLbar[sp, ii, ff1, cc].uR [sp, ff2, cc] phiHbar[jj] Eps[ii, jj], FlavorExpand -> SU2D];
|
---|
610 | yuk = yuk /. { CKM[a_, b_] Conjugate[CKM[a_, c_]] -> IndexDelta[b, c], CKM[b_, a_] Conjugate[CKM[c_, a_]] -> IndexDelta[b, c]};
|
---|
611 | yuk+HC[yuk]/.feynmangaugerules
|
---|
612 | ];
|
---|
613 |
|
---|
614 | L2HDM:= L2Higgs + LS + LDM;
|
---|
615 |
|
---|
616 | LS2HDM:= LGauge + LFermions + L2HDM + LGhost2;
|
---|
617 |
|
---|
618 | LTypeI:= LS2HDM +LYukawaTypeI;
|
---|
619 | LTypeII:= LS2HDM +LYukawaTypeII;
|
---|
620 | LTypeX:= LS2HDM +LYukawaTypeX;
|
---|
621 | LTypeY:= LS2HDM +LYukawaTypeY;
|
---|
622 | LInert:= LS2HDM;
|
---|
623 | LAlign:= LS2HDM +LYukawaAlign;
|
---|
624 | L2gen:= LS2HDM +LYukawa2gen;
|
---|