1 | (***************************************************************************************************************)
|
---|
2 | (****** This is the FeynRules mod-file for the minimal Zp models ******)
|
---|
3 | (****** ******)
|
---|
4 | (****** Author: L. Basso ******)
|
---|
5 | (****** ******)
|
---|
6 | (****** Choose whether Feynman gauge is desired. ******)
|
---|
7 | (****** If set to False, unitary gauge is assumed. ****)
|
---|
8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
---|
9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
---|
10 | (***************************************************************************************************************)
|
---|
11 |
|
---|
12 | M$ModelName = "minimal_Zp";
|
---|
13 |
|
---|
14 |
|
---|
15 | M$Information = {Authors -> "L. Basso",
|
---|
16 | Version -> "2.0",
|
---|
17 | Date -> "09-06-2011",
|
---|
18 | Institutions -> {"University of Southampton", "RAL-PPD, Didcot, UK", "Albert-Ludwigs-UniversitÀt Freiburg"},
|
---|
19 | Emails -> {"lorenzo.basso@physik.uni-freiburg.de"},
|
---|
20 | References -> {"L.~Basso, G.M.~Pruna and S.~Moretti, \"A Renormalisation Group Equation Study of the Scalar Sector of the Minimal B-L Extension of the Standard Model,\", Phys.,Rev. D 82, 055018 (2010) [arXiv:1004.3039 [hep-ph]]", "L.~Basso, G.M.~Pruna and S.~Moretti, \"A Theoretical constraints on the couplings of non-exotic minimal Z' bosons,\", JHEP 1108 122 (2011) [arXiv:1106.4762 [hep-ph]]"},
|
---|
21 | URLs -> "http://feynrules.phys.ucl.ac.be/..."};
|
---|
22 |
|
---|
23 | FeynmanGauge = True;
|
---|
24 |
|
---|
25 |
|
---|
26 | (******* Index definitions ********)
|
---|
27 |
|
---|
28 | IndexRange[ Index[Generation] ] = Range[3]
|
---|
29 |
|
---|
30 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
|
---|
31 |
|
---|
32 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
|
---|
33 |
|
---|
34 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]]
|
---|
35 |
|
---|
36 |
|
---|
37 | IndexStyle[Colour, i]
|
---|
38 |
|
---|
39 | IndexStyle[Generation, f]
|
---|
40 |
|
---|
41 | IndexStyle[Gluon ,a]
|
---|
42 |
|
---|
43 | IndexStyle[SU2W ,k]
|
---|
44 |
|
---|
45 |
|
---|
46 |
|
---|
47 | (******* Gauge parameters (for FeynArts) ********)
|
---|
48 |
|
---|
49 | GaugeXi[ V[1] ] = GaugeXi[A];
|
---|
50 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
---|
51 | GaugeXi[ V[3] ] = GaugeXi[W];
|
---|
52 | GaugeXi[ V[4] ] = GaugeXi[G];
|
---|
53 | GaugeXi[ V[7] ] = GaugeXi[Zp];
|
---|
54 | GaugeXi[ S[1] ] = 1;
|
---|
55 | GaugeXi[ S[2] ] = GaugeXi[Z];
|
---|
56 | GaugeXi[ S[3] ] = GaugeXi[W];
|
---|
57 | GaugeXi[ S[4] ] = 1;
|
---|
58 | GaugeXi[ S[5] ] = GaugeXi[Zp];
|
---|
59 | GaugeXi[ U[1] ] = GaugeXi[A];
|
---|
60 | GaugeXi[ U[2] ] = GaugeXi[Z];
|
---|
61 | GaugeXi[ U[31] ] = GaugeXi[W];
|
---|
62 | GaugeXi[ U[32] ] = GaugeXi[W];
|
---|
63 | GaugeXi[ U[4] ] = GaugeXi[G];
|
---|
64 | GaugeXi[ U[7] ] = GaugeXi[Zp];
|
---|
65 |
|
---|
66 |
|
---|
67 | (***** Setting for interaction order (as e.g. used by MadGraph 5) ******)
|
---|
68 |
|
---|
69 | M$InteractionOrderHierarchy = {
|
---|
70 | {QCD, 1},
|
---|
71 | {QED, 2}
|
---|
72 | };
|
---|
73 |
|
---|
74 |
|
---|
75 | (**************** Parameters *************)
|
---|
76 |
|
---|
77 | M$Parameters = {
|
---|
78 |
|
---|
79 | (* External parameters *)
|
---|
80 |
|
---|
81 |
|
---|
82 | \[Alpha]EWM1== {
|
---|
83 | ParameterType -> External,
|
---|
84 | BlockName -> BLINPUTS,
|
---|
85 | ParameterName -> aEWM1,
|
---|
86 | InteractionOrder -> {QED, -2},
|
---|
87 | Value -> 127.9,
|
---|
88 | Description -> "Inverse of the electroweak coupling constant at Z-pole"},
|
---|
89 |
|
---|
90 | Gf == {
|
---|
91 | ParameterType -> External,
|
---|
92 | BlockName -> BLINPUTS,
|
---|
93 | InteractionOrder -> {QED, 2},
|
---|
94 | Value -> 1.16637 * 10^(-5),
|
---|
95 | Description -> "Fermi constant"},
|
---|
96 |
|
---|
97 | \[Alpha]S == {
|
---|
98 | ParameterType -> External,
|
---|
99 | BlockName -> BLINPUTS,
|
---|
100 | TeX -> Subscript[\[Alpha], s],
|
---|
101 | ParameterName -> aS,
|
---|
102 | InteractionOrder -> {QCD, 2},
|
---|
103 | Value -> 0.1184,
|
---|
104 | Description -> "Strong coupling constant at the Z pole."},
|
---|
105 |
|
---|
106 | MW == {
|
---|
107 | ParameterType -> External,
|
---|
108 | BlockName -> BLINPUTS,
|
---|
109 | Value -> 80.292,
|
---|
110 | Description -> "W mass"},
|
---|
111 |
|
---|
112 | MZp == {
|
---|
113 | ParameterType -> External,
|
---|
114 | BlockName -> BLINPUTS,
|
---|
115 | Value -> 1500.00,
|
---|
116 | Description -> "Zp mass"},
|
---|
117 |
|
---|
118 | g1p == {
|
---|
119 | ParameterType -> External,
|
---|
120 | BlockName -> BLINPUTS,
|
---|
121 | InteractionOrder -> {QED, 1},
|
---|
122 | Value -> 0.2,
|
---|
123 | Description -> "Zp coupling"},
|
---|
124 |
|
---|
125 | gt == {
|
---|
126 | ParameterType -> External,
|
---|
127 | BlockName -> BLINPUTS,
|
---|
128 | InteractionOrder -> {QED, 1},
|
---|
129 | Value -> -0.1,
|
---|
130 | Description -> "Z-Zp mixing coupling"},
|
---|
131 |
|
---|
132 | ymdo == {
|
---|
133 | ParameterType -> External,
|
---|
134 | BlockName -> YUKAWA,
|
---|
135 | Value -> 5.04*10^(-3),
|
---|
136 | OrderBlock -> {1},
|
---|
137 | Description -> "Down Yukawa mass"},
|
---|
138 |
|
---|
139 |
|
---|
140 | ymup == {
|
---|
141 | ParameterType -> External,
|
---|
142 | BlockName -> YUKAWA,
|
---|
143 | Value -> 2.55*10^(-3),
|
---|
144 | OrderBlock -> {2},
|
---|
145 | Description -> "Up Yukawa mass"},
|
---|
146 |
|
---|
147 | yms == {
|
---|
148 | ParameterType -> External,
|
---|
149 | BlockName -> YUKAWA,
|
---|
150 | Value -> 0.101,
|
---|
151 | OrderBlock -> {3},
|
---|
152 | Description -> "Strange Yukawa mass"},
|
---|
153 |
|
---|
154 | ymc == {
|
---|
155 | ParameterType -> External,
|
---|
156 | BlockName -> YUKAWA,
|
---|
157 | Value -> 1.27,
|
---|
158 | OrderBlock -> {4},
|
---|
159 | Description -> "Charm Yukawa mass"},
|
---|
160 |
|
---|
161 | ymb == {
|
---|
162 | ParameterType -> External,
|
---|
163 | BlockName -> YUKAWA,
|
---|
164 | Value -> 4.7,
|
---|
165 | OrderBlock -> {5},
|
---|
166 | Description -> "Bottom Yukawa mass"},
|
---|
167 |
|
---|
168 | ymt == {
|
---|
169 | ParameterType -> External,
|
---|
170 | BlockName -> YUKAWA,
|
---|
171 | Value -> 172.0,
|
---|
172 | OrderBlock -> {6},
|
---|
173 | Description -> "Top Yukawa mass"},
|
---|
174 |
|
---|
175 | yme == {
|
---|
176 | ParameterType -> External,
|
---|
177 | BlockName -> YUKAWA,
|
---|
178 | Value -> 0.000511,
|
---|
179 | OrderBlock -> {11},
|
---|
180 | Description -> "Electron Yukawa mass"},
|
---|
181 |
|
---|
182 | ymmu == {
|
---|
183 | ParameterType -> External,
|
---|
184 | BlockName -> YUKAWA,
|
---|
185 | Value -> 0.1057,
|
---|
186 | OrderBlock -> {13},
|
---|
187 | Description -> "Muon Yukawa mass"},
|
---|
188 |
|
---|
189 | ymtau == {
|
---|
190 | ParameterType -> External,
|
---|
191 | BlockName -> YUKAWA,
|
---|
192 | Value -> 1.777,
|
---|
193 | OrderBlock -> {15},
|
---|
194 | Description -> "Tau Yukawa mass"},
|
---|
195 |
|
---|
196 | MH1 == {
|
---|
197 | ParameterType -> External,
|
---|
198 | BlockName -> BLINPUTS,
|
---|
199 | Value -> 120.00,
|
---|
200 | Description -> "H1 mass"},
|
---|
201 |
|
---|
202 | MH2 == {
|
---|
203 | ParameterType -> External,
|
---|
204 | BlockName -> BLINPUTS,
|
---|
205 | Value -> 450.00,
|
---|
206 | Description -> "H2 mass"},
|
---|
207 |
|
---|
208 |
|
---|
209 | Sa == {
|
---|
210 | ParameterType -> External,
|
---|
211 | BlockName -> BLINPUTS,
|
---|
212 | Value -> 0.1,
|
---|
213 | Description -> "Sine of Higgses mixing angle"},
|
---|
214 |
|
---|
215 | sw2 == {
|
---|
216 | ParameterType -> External,
|
---|
217 | BlockName -> BLINPUTS,
|
---|
218 | Value -> 0.232,
|
---|
219 | Description -> "Squared Sin of the Weinberg angle"},
|
---|
220 |
|
---|
221 |
|
---|
222 |
|
---|
223 | (* Internal Parameters *)
|
---|
224 |
|
---|
225 | \[Alpha]EW == {
|
---|
226 | ParameterType -> Internal,
|
---|
227 | Value -> 1/\[Alpha]EWM1,
|
---|
228 | TeX -> Subscript[\[Alpha], EW],
|
---|
229 | ParameterName -> aEW,
|
---|
230 | InteractionOrder -> {QED, 2},
|
---|
231 | Description -> "Electroweak coupling contant"},
|
---|
232 |
|
---|
233 |
|
---|
234 | ee == {
|
---|
235 | TeX -> e,
|
---|
236 | ParameterType -> Internal,
|
---|
237 | Value -> Sqrt[4 Pi \[Alpha]EW],
|
---|
238 | InteractionOrder -> {QED, 1},
|
---|
239 | Description -> "Electric coupling constant"},
|
---|
240 |
|
---|
241 | cw == {
|
---|
242 | TeX -> Subscript[c, w],
|
---|
243 | ParameterType -> Internal,
|
---|
244 | Value -> Sqrt[1 - sw2],
|
---|
245 | Description -> "Cos of the Weinberg angle"},
|
---|
246 |
|
---|
247 | sw == {
|
---|
248 | TeX -> Subscript[s, w],
|
---|
249 | ParameterType -> Internal,
|
---|
250 | Value -> Sqrt[sw2],
|
---|
251 | Description -> "Sin of the Weinberg angle"},
|
---|
252 |
|
---|
253 | gw == {
|
---|
254 | TeX -> Subscript[g, w],
|
---|
255 | ParameterType -> Internal,
|
---|
256 | Value -> ee / sw,
|
---|
257 | Definitions -> {gw -> ee / sw},
|
---|
258 | InteractionOrder -> {QED, 1},
|
---|
259 | Description -> "Weak coupling constant"},
|
---|
260 |
|
---|
261 | g1 == {
|
---|
262 | TeX -> Subscript[g, 1],
|
---|
263 | ParameterType -> Internal,
|
---|
264 | Value -> ee / cw,
|
---|
265 | Definitions -> {g1 -> ee / cw},
|
---|
266 | InteractionOrder -> {QED, 1},
|
---|
267 | Description -> "U(1)Y coupling constant"},
|
---|
268 |
|
---|
269 | gs == {
|
---|
270 | TeX -> Subscript[g, s],
|
---|
271 | ParameterType -> Internal,
|
---|
272 | Value -> Sqrt[4 Pi \[Alpha]S],
|
---|
273 | InteractionOrder -> {QCD, 1},
|
---|
274 | ParameterName -> G,
|
---|
275 | Description -> "Strong coupling constant"},
|
---|
276 |
|
---|
277 | v == {
|
---|
278 | ParameterType -> Internal,
|
---|
279 | BlockName -> VEV,
|
---|
280 | Value -> 2*MW*sw/ee,
|
---|
281 | InteractionOrder -> {QED, -1},
|
---|
282 | Description -> "H1 VEV"},
|
---|
283 |
|
---|
284 |
|
---|
285 | x == {
|
---|
286 | ParameterType -> Internal,
|
---|
287 | BlockName -> VEV,
|
---|
288 | Value -> MZp/(2*g1p)*Sqrt[1-gt^2*v^2/(4*MZp^2-v^2*(gw^2+g1^2))],
|
---|
289 | InteractionOrder -> {QED, -1},
|
---|
290 | Description -> "H2 VEV"},
|
---|
291 |
|
---|
292 |
|
---|
293 | Ca == {
|
---|
294 | ParameterType -> Internal,
|
---|
295 | Value -> Sqrt[1-Sa^2],
|
---|
296 | ParameterName -> Ca,
|
---|
297 | Description -> "Cosine of Higgses mixing angle"},
|
---|
298 |
|
---|
299 |
|
---|
300 | yl == {
|
---|
301 | TeX -> Superscript[y, l],
|
---|
302 | Indices -> {Index[Generation]},
|
---|
303 | AllowSummation -> True,
|
---|
304 | ParameterType -> Internal,
|
---|
305 | Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymmu / v, yl[3] -> Sqrt[2] ymtau / v},
|
---|
306 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
|
---|
307 | InteractionOrder -> {QED, 1},
|
---|
308 | ComplexParameter -> False,
|
---|
309 | Description -> "Lepton Yukawa coupling"},
|
---|
310 |
|
---|
311 | yu == {
|
---|
312 | Indices -> {Index[Generation]},
|
---|
313 | AllowSummation -> True,
|
---|
314 | AllowSummation -> True,
|
---|
315 | ParameterType -> Internal,
|
---|
316 | Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v},
|
---|
317 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt},
|
---|
318 | InteractionOrder -> {QED, 1},
|
---|
319 | ComplexParameter -> False,
|
---|
320 | Description -> "U-quark Yukawa coupling"},
|
---|
321 |
|
---|
322 | yd == {
|
---|
323 | TeX -> Superscript[y, d],
|
---|
324 | Indices -> {Index[Generation]},
|
---|
325 | AllowSummation -> True,
|
---|
326 | ParameterType -> Internal,
|
---|
327 | Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v},
|
---|
328 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb},
|
---|
329 | InteractionOrder -> {QED, 1},
|
---|
330 | ComplexParameter -> False,
|
---|
331 | Description -> "D-quark Yukawa coupling"},
|
---|
332 |
|
---|
333 | ynd == {
|
---|
334 | Indices -> {Index[Generation]},
|
---|
335 | AllowSummation -> True,
|
---|
336 | ParameterType -> Internal,
|
---|
337 | Value -> {ynd[1] -> Sqrt[2*MnL1*MnH1]/v,
|
---|
338 | ynd[2] -> Sqrt[2*MnL2*MnH2]/v,
|
---|
339 | ynd[3] -> Sqrt[2*MnL3*MnH3]/v},
|
---|
340 | ParameterName -> {ynd[1] -> ynd1,
|
---|
341 | ynd[2] -> ynd2,
|
---|
342 | ynd[3] -> ynd3},
|
---|
343 | InteractionOrder -> {QED, 1},
|
---|
344 | ComplexParameter -> False,
|
---|
345 | Description -> "Dirac neutrino Yukawa coupling"},
|
---|
346 |
|
---|
347 | ynm == {
|
---|
348 | Indices -> {Index[Generation]},
|
---|
349 | AllowSummation -> True,
|
---|
350 | ParameterType -> Internal,
|
---|
351 | Value -> {ynm[1] -> (MnH1-MnL1)/Sqrt[2]/x,
|
---|
352 | ynm[2] -> (MnH2-MnL2)/Sqrt[2]/x,
|
---|
353 | ynm[3] -> (MnH3-MnL3)/Sqrt[2]/x},
|
---|
354 | ParameterName -> {ynm[1] -> ynm1, ynm[2] -> ynm2, ynm[3] -> ynm3},
|
---|
355 | InteractionOrder -> {QED, 1},
|
---|
356 | ComplexParameter -> False,
|
---|
357 | Description -> "Majorana neutrino Yukawa coupling"},
|
---|
358 |
|
---|
359 | Mdd == {
|
---|
360 | Indices -> {Index[Generation]},
|
---|
361 | AllowSummation -> True,
|
---|
362 | ParameterType -> Internal,
|
---|
363 | Value -> {Mdd[1] -> ynd1*v/Sqrt[2],
|
---|
364 | Mdd[2] -> ynd2*v/Sqrt[2],
|
---|
365 | Mdd[3] -> ynd3*v/Sqrt[2]},
|
---|
366 | ParameterName -> {Mdd[1] -> Mdd1, Mdd[2] -> Mdd2, Mdd[3] -> Mdd3},
|
---|
367 | ComplexParameter -> False,
|
---|
368 | Description -> "Neutrino Dirac Mass"},
|
---|
369 |
|
---|
370 | s12 == {
|
---|
371 | TeX -> Subscript[S\[Theta], 12],
|
---|
372 | ParameterType -> External,
|
---|
373 | BlockName -> CKMBLOCK,
|
---|
374 | Value -> 0.221,
|
---|
375 | Description -> "Sin(theta_12), PDG-94"},
|
---|
376 |
|
---|
377 | s23 == {
|
---|
378 | TeX -> Subscript[S\[Theta], 23],
|
---|
379 | ParameterType -> External,
|
---|
380 | BlockName -> CKMBLOCK,
|
---|
381 | Value -> 0.040,
|
---|
382 | Description -> "Sin(theta_23), PDG-94"},
|
---|
383 |
|
---|
384 | s13 == {
|
---|
385 | TeX -> Subscript[S\[Theta], 13],
|
---|
386 | ParameterType -> External,
|
---|
387 | BlockName -> CKMBLOCK,
|
---|
388 | Value -> 0.0035,
|
---|
389 | Description -> "Sin(theta_13), PDG-94"},
|
---|
390 |
|
---|
391 | c12 == {
|
---|
392 | TeX -> Subscript[C\[Theta], 12],
|
---|
393 | ParameterType -> Internal,
|
---|
394 | BlockName -> CKMBLOCK,
|
---|
395 | Value -> Sqrt[1-s12^2],
|
---|
396 | Description -> "Cos(theta_12)"},
|
---|
397 |
|
---|
398 | c23 == {
|
---|
399 | TeX -> Subscript[C\[Theta], 23],
|
---|
400 | ParameterType -> Internal,
|
---|
401 | BlockName -> CKMBLOCK,
|
---|
402 | Value -> Sqrt[1-s23^2],
|
---|
403 | Description -> "Cos(theta_23)"},
|
---|
404 |
|
---|
405 | c13 == {
|
---|
406 | TeX -> Subscript[C\[Theta], 13],
|
---|
407 | ParameterType -> Internal,
|
---|
408 | BlockName -> CKMBLOCK,
|
---|
409 | Value -> Sqrt[1-s13^2],
|
---|
410 | Description -> "Cos(theta_13)"},
|
---|
411 |
|
---|
412 | CKM == {
|
---|
413 | Indices -> {Index[Generation], Index[Generation]},
|
---|
414 | TensorClass -> CKM,
|
---|
415 | Unitary -> True,
|
---|
416 | Value -> {CKM[1,1] -> c12*c13,
|
---|
417 | CKM[1,2] -> s12*c13,
|
---|
418 | CKM[1,3] -> s13,
|
---|
419 | CKM[2,1] -> -s12*c23-c12*s23*s13,
|
---|
420 | CKM[2,2] -> c12*c23-s12*s23*s13,
|
---|
421 | CKM[2,3] -> s23*c13,
|
---|
422 | CKM[3,1] -> s12*s23-c12*c23*s13,
|
---|
423 | CKM[3,2] -> -c12*s23-s12*c23*s13,
|
---|
424 | CKM[3,3] -> c23*c13},
|
---|
425 | Description -> "CKM-Matrix"},
|
---|
426 |
|
---|
427 | San == {
|
---|
428 | Indices -> {Index[Generation]},
|
---|
429 | AllowSummation -> True,
|
---|
430 | ParameterType -> Internal,
|
---|
431 | Value -> {San[1] -> Sin[ArcSin[-2*Mdd1/Sqrt[4*Mdd1^2+(MnH1-MnL1)^2]]/2],
|
---|
432 | San[2] -> Sin[ArcSin[-2*Mdd2/Sqrt[4*Mdd2^2+(MnH2-MnL2)^2]]/2],
|
---|
433 | San[3] -> Sin[ArcSin[-2*Mdd3/Sqrt[4*Mdd3^2+(MnH3-MnL3)^2]]/2]},
|
---|
434 | ParameterName -> {San[1] -> San1, San[2] -> San2, San[3] -> San3},
|
---|
435 | ComplexParameter -> False,
|
---|
436 | Description -> "Sin-array of neutrino mass-eigenstates"},
|
---|
437 |
|
---|
438 | Can == {
|
---|
439 | Indices -> {Index[Generation]},
|
---|
440 | AllowSummation -> True,
|
---|
441 | ParameterType -> Internal,
|
---|
442 | Value -> {Can[1] -> Sqrt[1-San1^2],
|
---|
443 | Can[2] -> Sqrt[1-San2^2],
|
---|
444 | Can[3] -> Sqrt[1-San3^2]},
|
---|
445 | Definitions -> {Can[1]*San1-> Sa2n1/2,
|
---|
446 | Can[2]*San2-> Sa2n2/2,
|
---|
447 | Can[3]*San3-> Sa2n3/2,
|
---|
448 | Can[1]^2 -San1^2-> Ca2n1,
|
---|
449 | Can[2]^2 -San2^2-> Ca2n2,
|
---|
450 | Can[3]^2 -San3^2-> Ca2n3},
|
---|
451 | ParameterName -> {Can[1] -> Can1, Can[2] -> Can2, Can[3] -> Can3},
|
---|
452 | ComplexParameter -> False,
|
---|
453 | Description -> "Cos-array of neutrino mass-eigenstates"},
|
---|
454 |
|
---|
455 |
|
---|
456 |
|
---|
457 | \[Lambda]1 == {
|
---|
458 | ParameterType -> Internal,
|
---|
459 | Value -> MH1^2 /(2*v^2)*Ca^2 + MH2^2 /(2*v^2)*Sa^2,
|
---|
460 | ParameterName -> lam1,
|
---|
461 | InteractionOrder -> {QED, 2},
|
---|
462 | Description -> "Lambda 1"},
|
---|
463 |
|
---|
464 | \[Lambda]2 == {
|
---|
465 | ParameterType -> Internal,
|
---|
466 | Value -> MH1^2 /(2*x^2)*Sa^2 + MH2^2 /(2*x^2)*Ca^2,
|
---|
467 | ParameterName -> lam2,
|
---|
468 | InteractionOrder -> {QED, 2},
|
---|
469 | Description -> "Lambda 2"},
|
---|
470 |
|
---|
471 | \[Lambda]3 == {
|
---|
472 | ParameterType -> Internal,
|
---|
473 | Value -> (MH2^2 - MH1^2)/(x*v)*Sa*Ca,
|
---|
474 | ParameterName -> lam3,
|
---|
475 | InteractionOrder -> {QED, 2},
|
---|
476 | Description -> "Lambda 3, mixing parameter"},
|
---|
477 |
|
---|
478 | mu2H1 == {
|
---|
479 | ParameterType -> Internal,
|
---|
480 | Value -> - \[Lambda]1 * v^2 - \[Lambda]3 /2 * x^2,
|
---|
481 | TeX -> m^2,
|
---|
482 | Description -> "Coefficient of the quadratic piece of the H1 potential"},
|
---|
483 |
|
---|
484 | mu2H2 == {
|
---|
485 | ParameterType -> Internal,
|
---|
486 | Value -> - \[Lambda]3 /2 * v^2 - \[Lambda]2 * x^2,
|
---|
487 | TeX -> \[Mu]^2,
|
---|
488 | Description -> "Coefficient of the quadratic piece of the H2 potential"},
|
---|
489 |
|
---|
490 |
|
---|
491 | Sp2num == {
|
---|
492 | ParameterType -> Internal,
|
---|
493 | Value -> 2*gt*Sqrt[(ee/sw)^2+(ee/cw)^2]},
|
---|
494 |
|
---|
495 | Cp2num == {
|
---|
496 | ParameterType -> Internal,
|
---|
497 | Value -> gt^2+16*(x/v)^2*g1p^2-(ee/sw)^2-(ee/cw)^2},
|
---|
498 |
|
---|
499 | Sp == {
|
---|
500 | AllowSummation -> True,
|
---|
501 | ParameterType -> Internal,
|
---|
502 | Value -> Sin[ArcSin[Sp2num/Sqrt[Sp2num^2+Cp2num^2]]/2],
|
---|
503 | ComplexParameter -> False,
|
---|
504 | Description -> "Sin-array of neutrino mass-eigenstates"},
|
---|
505 |
|
---|
506 | Cp == {
|
---|
507 | AllowSummation -> True,
|
---|
508 | ParameterType -> Internal,
|
---|
509 | Value -> Sqrt[1-Sp^2],
|
---|
510 | ComplexParameter -> False,
|
---|
511 | Description -> "Cos-array of neutrino mass-eigenstates"},
|
---|
512 |
|
---|
513 |
|
---|
514 | Cn == {
|
---|
515 | ParameterType -> Internal,
|
---|
516 | ComplexParameter -> False,
|
---|
517 | Value -> (ee/sw)^2+(ee/cw)^2+gt^2+16*(x/v)^2*g1p^2},
|
---|
518 |
|
---|
519 | Dn == {
|
---|
520 | ParameterType -> Internal,
|
---|
521 | ComplexParameter -> False,
|
---|
522 | Value -> 64*((ee/sw)^2+(ee/cw)^2)*g1p^2*v^2*x^2},
|
---|
523 |
|
---|
524 |
|
---|
525 | MZ == {
|
---|
526 | ParameterType -> Internal,
|
---|
527 | Value -> Sqrt[(Cn*v^2-Sqrt[-Dn+v^4*Cn^2])/8],
|
---|
528 | Description -> "Z mass"},
|
---|
529 |
|
---|
530 | S2gNum == {
|
---|
531 | ParameterType -> Internal,
|
---|
532 | ComplexParameter -> False,
|
---|
533 | Value -> 8*x/v*gt*g1p},
|
---|
534 |
|
---|
535 | C2gNum == {
|
---|
536 | ParameterType -> Internal,
|
---|
537 | ComplexParameter -> False,
|
---|
538 | Value -> (ee/sw)^2+(ee/cw)^2+gt^2-16*(x/v)^2*g1p^2},
|
---|
539 |
|
---|
540 |
|
---|
541 | sg == {
|
---|
542 | ParameterType -> Internal,
|
---|
543 | ComplexParameter -> False,
|
---|
544 | Value -> Sin[ArcSin[-S2gNum/Sqrt[S2gNum^2+C2gNum^2]]/2],
|
---|
545 | Description -> "cosine of Z-Zp goldostone mixing angle"},
|
---|
546 |
|
---|
547 | cg == {
|
---|
548 | ParameterType -> Internal,
|
---|
549 | ComplexParameter -> False,
|
---|
550 | Value -> Sqrt[1-sg^2],
|
---|
551 | Description -> "sine of Z-Zp goldstone mixing angle"}
|
---|
552 | (* Value -> Cos[ArcCos[-C2gNum/Sqrt[S2gNum^2+C2gNum^2]]/2], *)
|
---|
553 | }
|
---|
554 |
|
---|
555 | (************** Gauge Groups ******************)
|
---|
556 |
|
---|
557 | M$GaugeGroups = {
|
---|
558 |
|
---|
559 | U1BL == {
|
---|
560 | Abelian -> True,
|
---|
561 | GaugeBoson -> Bp,
|
---|
562 | Charge -> BL,
|
---|
563 | CouplingConstant -> g1p},
|
---|
564 |
|
---|
565 | U1Y == {
|
---|
566 | Abelian -> True,
|
---|
567 | GaugeBoson -> B,
|
---|
568 | Charge -> Y,
|
---|
569 | CouplingConstant -> g1},
|
---|
570 |
|
---|
571 | SU2L == {
|
---|
572 | Abelian -> False,
|
---|
573 | GaugeBoson -> Wi,
|
---|
574 | StructureConstant -> Eps,
|
---|
575 | CouplingConstant -> gw},
|
---|
576 |
|
---|
577 | SU3C == {
|
---|
578 | Abelian -> False,
|
---|
579 | GaugeBoson -> G,
|
---|
580 | StructureConstant -> f,
|
---|
581 | SymmetricTensor -> dSUN,
|
---|
582 | Representations -> {T, Colour},
|
---|
583 | CouplingConstant -> gs}
|
---|
584 | }
|
---|
585 |
|
---|
586 | (********* Particle Classes **********)
|
---|
587 |
|
---|
588 | M$ClassesDescription = {
|
---|
589 |
|
---|
590 | (********** Fermions ************)
|
---|
591 |
|
---|
592 | (* Mass-Eigenstate light neutrino: Q = 0, BL= -1 *)
|
---|
593 |
|
---|
594 | F[11] == {
|
---|
595 | ClassName -> nL,
|
---|
596 | ClassMembers -> {nL1, nL2, nL3},
|
---|
597 | FlavorIndex -> Generation,
|
---|
598 | SelfConjugate -> True,
|
---|
599 | Indices -> {Index[Generation]},
|
---|
600 | Mass -> {MnL, {MnL1, 10^(-9)}, {MnL2, 10^(-9)}, {MnL3, 10^(-9)}},
|
---|
601 | Width -> 0,
|
---|
602 | PropagatorLabel -> {"nL", "nul1", "nul2", "nul3"},
|
---|
603 | PropagatorType -> Straight,
|
---|
604 | ParticleName -> {"n1", "n2", "n3"},
|
---|
605 | PropagatorArrow -> Forward,
|
---|
606 | PDG -> {12, 14, 16},
|
---|
607 | FullName -> {"Light neutrino 1", "Light neutrino 2", "Light neutrino 3"} },
|
---|
608 |
|
---|
609 | (* Mass-Eigenstate heavy neutrino: Q = 0, BL= -1 *)
|
---|
610 |
|
---|
611 | F[12] == {
|
---|
612 | ClassName -> nH,
|
---|
613 | ClassMembers -> {nH1, nH2, nH3},
|
---|
614 | FlavorIndex -> Generation,
|
---|
615 | SelfConjugate -> True,
|
---|
616 | Indices -> {Index[Generation]},
|
---|
617 | Mass -> {MnH, {MnH1, 200.00}, {MnH2, 200.00}, {MnH3, 200.00}},
|
---|
618 | Width -> 10^(-13),
|
---|
619 | PropagatorLabel -> {"nH", "nuh1", "nuh2", "nuh3"},
|
---|
620 | PropagatorType -> Straight,
|
---|
621 | ParticleName -> {"~n1", "~n2", "~n3"},
|
---|
622 | PropagatorArrow -> Forward,
|
---|
623 | PDG -> {9100012, 9100014, 9100016},
|
---|
624 | FullName -> {"Heavy neutrino 1", "Heavy neutrino 2", "Heavy neutrino 3"} },
|
---|
625 |
|
---|
626 | (* Left-handed neutrino: unphysical *)
|
---|
627 | F[13] == {
|
---|
628 | ClassName -> nF,
|
---|
629 | ClassMembers -> {nF1,nF2,nF3},
|
---|
630 | FlavorIndex -> Generation,
|
---|
631 | SelfConjugate -> True,
|
---|
632 | Indices -> {Index[Generation]},
|
---|
633 | Unphysical -> True,
|
---|
634 | Definitions -> {nF[s_,i_] -> Can[i] nL[s,i]-San[i] nH[s,i]},
|
---|
635 | FullName -> {"Majorana LH component of Dirac neutrino 1",
|
---|
636 | "Majorana LH component of Dirac neutrino 2", "Majorana LH component of Dirac neutrino 3"} },
|
---|
637 |
|
---|
638 | (* Right-handed neutrino: unphysical *)
|
---|
639 | F[14] == {
|
---|
640 | ClassName -> nR,
|
---|
641 | ClassMembers -> {nR1,nR2,nR3},
|
---|
642 | FlavorIndex -> Generation,
|
---|
643 | SelfConjugate -> True,
|
---|
644 | Indices -> {Index[Generation]},
|
---|
645 | Unphysical -> True,
|
---|
646 | Definitions -> {nR[s_,i_] -> San[i] nL[s,i]+Can[i] nH[s,i]},
|
---|
647 | FullName -> {"Majorana LH component of Dirac neutrino 1", "Majorana LH component of Dirac neutrino 2", "Majorana LH component of Dirac neutrino 3"} },
|
---|
648 |
|
---|
649 |
|
---|
650 | (* Flavour-eigenstate neutrino: unphysical *)
|
---|
651 | F[15] == {
|
---|
652 | ClassName -> vl,
|
---|
653 | ClassMembers -> {vle,vlm,vlt},
|
---|
654 | FlavorIndex -> Generation,
|
---|
655 | SelfConjugate -> False,
|
---|
656 | Indices -> {Index[Generation]},
|
---|
657 | QuantumNumbers -> {Q -> 0, LeptonNumber -> 1, BarionLepton -> -1},
|
---|
658 | Unphysical -> True,
|
---|
659 | Definitions -> {vl[s_,i_] -> left[nF[s,i]]+right[nR[s,i]]},
|
---|
660 | ParticleName -> {"nue", "num", "nut"},
|
---|
661 | AntiParticleName -> {"nue-bar", "num-bar", "nut-bar"},
|
---|
662 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
|
---|
663 |
|
---|
664 |
|
---|
665 | (* Leptons (electron): I_3 = -1/2, Q = -1, BL= -1 *)
|
---|
666 | F[2] == {
|
---|
667 | ClassName -> l,
|
---|
668 | ClassMembers -> {e, m, tt},
|
---|
669 | FlavorIndex -> Generation,
|
---|
670 | SelfConjugate -> False,
|
---|
671 | Indices -> {Index[Generation]},
|
---|
672 | Mass -> {Ml, {ME, 0.000511}, {MM, 0.1057}, {MTA, 1.777}},
|
---|
673 | Width -> 0,
|
---|
674 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1, BarionLepton -> -1},
|
---|
675 | PropagatorLabel -> {"l", "e", "m", "tt"},
|
---|
676 | PropagatorType -> Straight,
|
---|
677 | ParticleName -> {"e", "m", "l"},
|
---|
678 | AntiParticleName -> {"E", "M", "L"},
|
---|
679 | PropagatorArrow -> Forward,
|
---|
680 | PDG -> {11, 13, 15},
|
---|
681 | FullName -> {"Electron", "Muon", "Tau"} },
|
---|
682 |
|
---|
683 | (* Quarks (u): I_3 = +1/2, Q = +2/3, BL=1/3 *)
|
---|
684 | F[3] == {
|
---|
685 | ClassMembers -> {u, c, t},
|
---|
686 | ClassName -> uq,
|
---|
687 | FlavorIndex -> Generation,
|
---|
688 | SelfConjugate -> False,
|
---|
689 | Indices -> {Index[Generation], Index[Colour]},
|
---|
690 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.27}, {MT, 172.0}},
|
---|
691 | Width -> {0, 0, {WT, 1.50833649}},
|
---|
692 | QuantumNumbers -> {Q -> 2/3, BarionLepton -> 1/3},
|
---|
693 | PropagatorLabel -> {"uq", "u", "c", "t"},
|
---|
694 | ParticleName -> {"u", "c", "t"},
|
---|
695 | AntiParticleName -> {"U", "C", "T"},
|
---|
696 | PropagatorType -> Straight,
|
---|
697 | PropagatorArrow -> Forward,
|
---|
698 | PDG -> {2, 4, 6},
|
---|
699 | FullName -> {"u-quark", "c-quark", "t-quark"}},
|
---|
700 |
|
---|
701 | (* Quarks (d): I_3 = -1/2, Q = -1/3, BL=1/3 *)
|
---|
702 | F[4] == {
|
---|
703 | ClassMembers -> {d, s, b},
|
---|
704 | ClassName -> dq,
|
---|
705 | FlavorIndex -> Generation,
|
---|
706 | SelfConjugate -> False,
|
---|
707 | Indices -> {Index[Generation], Index[Colour]},
|
---|
708 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.101}, {MB, 4.7}},
|
---|
709 | Width -> 0,
|
---|
710 | QuantumNumbers -> {Q -> -1/3, BarionLepton -> 1/3},
|
---|
711 | ParticleName -> {"d", "s", "b"},
|
---|
712 | AntiParticleName -> {"D", "S", "B"},
|
---|
713 | PropagatorLabel -> {"dq", "d", "s", "b"},
|
---|
714 | PropagatorType -> Straight,
|
---|
715 | PropagatorArrow -> Forward,
|
---|
716 | PDG -> {1,3,5},
|
---|
717 | FullName -> {"d-quark", "s-quark", "b-quark"} },
|
---|
718 |
|
---|
719 |
|
---|
720 | (********** Ghosts **********)
|
---|
721 | U[1] == {
|
---|
722 | ClassName -> ghA,
|
---|
723 | SelfConjugate -> False,
|
---|
724 | Indices -> {},
|
---|
725 | Ghost -> A,
|
---|
726 | Mass -> 0,
|
---|
727 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
728 | PropagatorLabel -> uA,
|
---|
729 | PropagatorType -> GhostDash,
|
---|
730 | PropagatorArrow -> Forward},
|
---|
731 |
|
---|
732 | U[2] == {
|
---|
733 | ClassName -> ghZ,
|
---|
734 | SelfConjugate -> False,
|
---|
735 | Indices -> {},
|
---|
736 | Mass -> {MZ, Internal},
|
---|
737 | Ghost -> Z,
|
---|
738 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
739 | PropagatorLabel -> uZ,
|
---|
740 | PropagatorType -> GhostDash,
|
---|
741 | PropagatorArrow -> Forward},
|
---|
742 |
|
---|
743 | U[31] == {
|
---|
744 | ClassName -> ghWp,
|
---|
745 | SelfConjugate -> False,
|
---|
746 | Indices -> {},
|
---|
747 | Mass -> {MW, Internal},
|
---|
748 | Ghost -> W,
|
---|
749 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1},
|
---|
750 | PropagatorLabel -> uWp,
|
---|
751 | PropagatorType -> GhostDash,
|
---|
752 | PropagatorArrow -> Forward},
|
---|
753 |
|
---|
754 | U[32] == {
|
---|
755 | ClassName -> ghWm,
|
---|
756 | SelfConjugate -> False,
|
---|
757 | Indices -> {},
|
---|
758 | Mass -> {MW, Internal},
|
---|
759 | Ghost -> Wbar,
|
---|
760 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1},
|
---|
761 | PropagatorLabel -> uWm,
|
---|
762 | PropagatorType -> GhostDash,
|
---|
763 | PropagatorArrow -> Forward},
|
---|
764 |
|
---|
765 | U[4] == {
|
---|
766 | ClassName -> ghG,
|
---|
767 | SelfConjugate -> False,
|
---|
768 | Indices -> {Index[Gluon]},
|
---|
769 | Ghost -> G,
|
---|
770 | Mass -> 0,
|
---|
771 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
772 | PropagatorLabel -> uG,
|
---|
773 | PropagatorType -> GhostDash,
|
---|
774 | PropagatorArrow -> Forward},
|
---|
775 |
|
---|
776 | U[5] == {
|
---|
777 | ClassName -> ghWi,
|
---|
778 | Unphysical -> True,
|
---|
779 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2],
|
---|
780 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I,
|
---|
781 | ghWi[3] -> cw*Cp ghZ + sw ghA - cw*Sp ghZp},
|
---|
782 | SelfConjugate -> False,
|
---|
783 | Indices -> {Index[SU2W]},
|
---|
784 | FlavorIndex -> SU2W,
|
---|
785 | Ghost -> Wi},
|
---|
786 |
|
---|
787 | U[6] == {
|
---|
788 | ClassName -> ghB,
|
---|
789 | SelfConjugate -> False,
|
---|
790 | Definitions -> {ghB -> -sw*Cp ghZ + cw ghA + sw*Sp ghZp},
|
---|
791 | Indices -> {},
|
---|
792 | Unphysical -> True,
|
---|
793 | Ghost -> B},
|
---|
794 |
|
---|
795 | U[7] == {
|
---|
796 | ClassName -> ghZp,
|
---|
797 | SelfConjugate -> False,
|
---|
798 | Indices -> {},
|
---|
799 | Mass -> {MZp, Internal},
|
---|
800 | Ghost -> Zp,
|
---|
801 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
802 | PropagatorLabel -> uZp,
|
---|
803 | PropagatorType -> GhostDash,
|
---|
804 | PropagatorArrow -> Forward},
|
---|
805 |
|
---|
806 | U[8] == {
|
---|
807 | ClassName -> ghBp,
|
---|
808 | SelfConjugate -> False,
|
---|
809 | Definitions -> {ghBp -> Sp ghZ + Cp ghZp},
|
---|
810 | Indices -> {},
|
---|
811 | Unphysical -> True,
|
---|
812 | Ghost -> Bp},
|
---|
813 |
|
---|
814 | (************ Gauge Bosons ***************)
|
---|
815 | (* Gauge bosons: Q = 0 *)
|
---|
816 | V[1] == {
|
---|
817 | ClassName -> A,
|
---|
818 | SelfConjugate -> True,
|
---|
819 | Indices -> {},
|
---|
820 | Mass -> 0,
|
---|
821 | Width -> 0,
|
---|
822 | PropagatorLabel -> "a",
|
---|
823 | PropagatorType -> W,
|
---|
824 | PropagatorArrow -> None,
|
---|
825 | PDG -> 22,
|
---|
826 | FullName -> "Photon" },
|
---|
827 |
|
---|
828 | V[2] == {
|
---|
829 | ClassName -> Z,
|
---|
830 | SelfConjugate -> True,
|
---|
831 | Indices -> {},
|
---|
832 | Mass -> {MZ, Internal},
|
---|
833 | Width -> {WZ, 2.4952},
|
---|
834 | PropagatorLabel -> "Z",
|
---|
835 | PropagatorType -> Sine,
|
---|
836 | PropagatorArrow -> None,
|
---|
837 | PDG -> 23,
|
---|
838 | FullName -> "Z" },
|
---|
839 |
|
---|
840 | (* Gauge bosons: Q = -1 *)
|
---|
841 | V[3] == {
|
---|
842 | ClassName -> W,
|
---|
843 | SelfConjugate -> False,
|
---|
844 | Indices -> {},
|
---|
845 | Mass -> {MW, Internal},
|
---|
846 | Width -> {WW, 2.085},
|
---|
847 | QuantumNumbers -> {Q -> 1},
|
---|
848 | PropagatorLabel -> "W",
|
---|
849 | PropagatorType -> Sine,
|
---|
850 | PropagatorArrow -> Forward,
|
---|
851 | ParticleName ->"W+",
|
---|
852 | AntiParticleName ->"W-",
|
---|
853 | PDG -> 24,
|
---|
854 | FullName -> "W" },
|
---|
855 |
|
---|
856 | V[4] == {
|
---|
857 | ClassName -> G,
|
---|
858 | SelfConjugate -> True,
|
---|
859 | Indices -> {Index[Gluon]},
|
---|
860 | Mass -> 0,
|
---|
861 | Width -> 0,
|
---|
862 | PropagatorLabel -> G,
|
---|
863 | PropagatorType -> C,
|
---|
864 | PropagatorArrow -> None,
|
---|
865 | PDG -> 21,
|
---|
866 | FullName -> "G" },
|
---|
867 |
|
---|
868 | V[5] == {
|
---|
869 | ClassName -> Wi,
|
---|
870 | Unphysical -> True,
|
---|
871 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
|
---|
872 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
|
---|
873 | Wi[mu_, 3] -> sw A[mu] + cw*Cp Z[mu] - cw*Sp Zp[mu]},
|
---|
874 | SelfConjugate -> True,
|
---|
875 | Indices -> {Index[SU2W]},
|
---|
876 | FlavorIndex -> SU2W,
|
---|
877 | Mass -> 0,
|
---|
878 | PDG -> {1,2,3}},
|
---|
879 |
|
---|
880 | V[6] == {
|
---|
881 | ClassName -> B,
|
---|
882 | SelfConjugate -> True,
|
---|
883 | Definitions -> {B[mu_] -> cw A[mu] - sw*Cp Z[mu] + sw*Sp Zp[mu]},
|
---|
884 | Indices -> {},
|
---|
885 | Mass -> 0,
|
---|
886 | Unphysical -> True},
|
---|
887 |
|
---|
888 | V[7] == {
|
---|
889 | ClassName -> Zp,
|
---|
890 | SelfConjugate -> True,
|
---|
891 | Indices -> {},
|
---|
892 | Mass -> {MZp, Internal},
|
---|
893 | Width -> {WZp, 80.00},
|
---|
894 | PropagatorLabel -> "Zp",
|
---|
895 | PropagatorType -> Sine,
|
---|
896 | PropagatorArrow -> None,
|
---|
897 | PDG -> 9900032,
|
---|
898 | FullName -> "Zp" },
|
---|
899 |
|
---|
900 | V[8] == {
|
---|
901 | ClassName -> Bp,
|
---|
902 | SelfConjugate -> True,
|
---|
903 | Definitions -> {Bp[mu_] -> Sp Z[mu] + Cp Zp[mu]},
|
---|
904 | Indices -> {},
|
---|
905 | Unphysical -> True},
|
---|
906 |
|
---|
907 |
|
---|
908 | (************ Scalar Fields **********)
|
---|
909 | (* physical Higgs: Q = 0 *)
|
---|
910 | S[1] == {
|
---|
911 | ClassName -> H1,
|
---|
912 | SelfConjugate -> True,
|
---|
913 | Mass -> {MH1, Internal},
|
---|
914 | Width -> {WH1, 1.5},
|
---|
915 | PropagatorLabel -> "H1",
|
---|
916 | PropagatorType -> D,
|
---|
917 | PropagatorArrow -> None,
|
---|
918 | PDG -> 9900025,
|
---|
919 | FullName -> "H1" },
|
---|
920 |
|
---|
921 | S[2] == {
|
---|
922 | ClassName -> phiZ,
|
---|
923 | SelfConjugate -> True,
|
---|
924 | Mass -> {MZ, Internal},
|
---|
925 | Width -> Wphi,
|
---|
926 | PropagatorLabel -> "PhiZ",
|
---|
927 | PropagatorType -> D,
|
---|
928 | PropagatorArrow -> None,
|
---|
929 | ParticleName ->"phiZ",
|
---|
930 | PDG -> 9900250,
|
---|
931 | FullName -> "PhiZ",
|
---|
932 | Goldstone -> Z },
|
---|
933 |
|
---|
934 | S[3] == {
|
---|
935 | ClassName -> phi2,
|
---|
936 | SelfConjugate -> False,
|
---|
937 | Mass -> {MW, Internal},
|
---|
938 | Width -> Wphi2,
|
---|
939 | PropagatorLabel -> "Phi2",
|
---|
940 | PropagatorType -> D,
|
---|
941 | PropagatorArrow -> None,
|
---|
942 | ParticleName ->"phi+",
|
---|
943 | AntiParticleName ->"phi-",
|
---|
944 | PDG -> 9900251,
|
---|
945 | FullName -> "Phi2",
|
---|
946 | Goldstone -> W,
|
---|
947 | QuantumNumbers -> {Q -> 1}},
|
---|
948 |
|
---|
949 | S[4] == {
|
---|
950 | ClassName -> H2,
|
---|
951 | SelfConjugate -> True,
|
---|
952 | Mass -> {MH2, Internal},
|
---|
953 | Width -> {WH2, 10},
|
---|
954 | PropagatorLabel -> "H2",
|
---|
955 | PropagatorType -> D,
|
---|
956 | PropagatorArrow -> None,
|
---|
957 | PDG -> 9900026,
|
---|
958 | FullName -> "H2" },
|
---|
959 |
|
---|
960 | S[5] == {
|
---|
961 | ClassName -> phiZp,
|
---|
962 | SelfConjugate -> True,
|
---|
963 | Mass -> {MZp, Internal},
|
---|
964 | Width -> WphiZp,
|
---|
965 | PropagatorLabel -> "PhiZp",
|
---|
966 | PropagatorType -> D,
|
---|
967 | PropagatorArrow -> None,
|
---|
968 | ParticleName ->"phiZp",
|
---|
969 | PDG -> 9900252,
|
---|
970 | FullName -> "PhiZp",
|
---|
971 | Goldstone -> Zp },
|
---|
972 |
|
---|
973 | S[6] == {
|
---|
974 | ClassName -> phi,
|
---|
975 | Unphysical -> True,
|
---|
976 | Definitions -> {phi -> cg phiZ - sg phiZp},
|
---|
977 | SelfConjugate -> True},
|
---|
978 |
|
---|
979 | S[7] == {
|
---|
980 | ClassName -> phip,
|
---|
981 | Unphysical -> True,
|
---|
982 | Definitions -> {phip -> sg phiZ + cg phiZp},
|
---|
983 | SelfConjugate -> True},
|
---|
984 |
|
---|
985 | S[8] == {
|
---|
986 | ClassName -> phic,
|
---|
987 | Unphysical -> True,
|
---|
988 | Definitions -> {phic[1] -> (phi2 + phi2bar)/Sqrt[2],
|
---|
989 | phic[2] -> (phi2bar - phi2)/Sqrt[2]/I},
|
---|
990 | SelfConjugate -> False}
|
---|
991 |
|
---|
992 | }
|
---|
993 |
|
---|
994 |
|
---|
995 | (*****************************************************************************************)
|
---|
996 |
|
---|
997 | (* mZp Lagrangian *)
|
---|
998 |
|
---|
999 | (******************** Gauge F^2 Lagrangian terms*************************)
|
---|
1000 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
1001 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])*
|
---|
1002 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) -
|
---|
1003 |
|
---|
1004 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 - 1/4 (del[Bp[nu], mu] - del[Bp[mu], nu])^2 -
|
---|
1005 |
|
---|
1006 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])*
|
---|
1007 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]);
|
---|
1008 |
|
---|
1009 |
|
---|
1010 | (********************* Fermion Lagrangian terms*************************)
|
---|
1011 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
1012 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright},
|
---|
1013 |
|
---|
1014 | Lkin = I uqbar.Ga[mu].del[uq, mu] +
|
---|
1015 | I dqbar.Ga[mu].del[dq, mu] +
|
---|
1016 | I lbar.Ga[mu].del[l, mu] +
|
---|
1017 | I left[anti[vl]].Ga[mu].del[left[vl],mu] +
|
---|
1018 | I right[anti[vl]].Ga[mu].del[right[vl],mu];
|
---|
1019 |
|
---|
1020 | LQCD = gs (uqbar.Ga[mu].T[a].uq +
|
---|
1021 | dqbar.Ga[mu].T[a].dq)G[mu, a];
|
---|
1022 |
|
---|
1023 | LBright =
|
---|
1024 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*)
|
---|
1025 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*)
|
---|
1026 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*)
|
---|
1027 |
|
---|
1028 | LBleft =
|
---|
1029 | -ee/cw B[mu]/2 left[anti[vl]].Ga[mu].ProjM.vl - (*Y_LL=-1*)
|
---|
1030 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*)
|
---|
1031 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*)
|
---|
1032 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*)
|
---|
1033 |
|
---|
1034 | LWleft = ee/sw/2(
|
---|
1035 | left[anti[vl]].Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
1036 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
1037 |
|
---|
1038 | Sqrt[2] left[anti[vl]].Ga[mu].ProjM.l W[mu] +
|
---|
1039 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+
|
---|
1040 |
|
---|
1041 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
1042 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
1043 |
|
---|
1044 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] +
|
---|
1045 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu]
|
---|
1046 | );
|
---|
1047 |
|
---|
1048 | LBpright =
|
---|
1049 | - g1p Bp[mu] right[anti[vl]].Ga[mu].ProjP.vl + (*Y_vlR=0, BL_vlR=-1*)
|
---|
1050 | (-1*gt -g1p) Bp[mu] lbar.Ga[mu].ProjP.l + (*Y_lR=-1, BL_lR=-1*)
|
---|
1051 | (2/3*gt + g1p/3) Bp[mu] uqbar.Ga[mu].ProjP.uq + (*Y_uR=2/3, BL_uR=1/3*)
|
---|
1052 | (-1/3*gt + g1p/3) Bp[mu] dqbar.Ga[mu].ProjP.dq; (*Y_dR=-1/3, BL_dR=1/3*)
|
---|
1053 |
|
---|
1054 | LBpleft =
|
---|
1055 | - (gt/2 + g1p) Bp[mu] left[anti[vl]].Ga[mu].ProjM.vl - (*Y_lL=-1/2, BL_vlL=-1*)
|
---|
1056 | (gt/2 + g1p) Bp[mu] lbar.Ga[mu].ProjM.l + (*Y_lL=-1/2, BL_lL=-1*)
|
---|
1057 | (gt/3/2 + g1p/3) Bp[mu] uqbar.Ga[mu].ProjM.uq + (*Y_qL=1/6, BL_uL=1/3*)
|
---|
1058 | (gt/3/2 + g1p/3) Bp[mu] dqbar.Ga[mu].ProjM.dq (*Y_qL=1/6, BL_dL=1/3*)
|
---|
1059 | ;
|
---|
1060 |
|
---|
1061 | Lkin + LQCD + LBright + LBleft + LWleft + LBpright + LBpleft ];
|
---|
1062 |
|
---|
1063 | (******************** Higgs Lagrangian terms****************************)
|
---|
1064 | Phi := If[FeynmanGauge, {-I phi2, (v + Ca*H1+Sa*H2 + I phi)/Sqrt[2]}, {0, (v + Ca*H1+Sa*H2)/Sqrt[2]}];
|
---|
1065 | Phibar := If[FeynmanGauge, {I phi2bar, (v + Ca*H1+Sa*H2 - I phi)/Sqrt[2]} ,{0, (v + Ca*H1+Sa*H2)/Sqrt[2]}];
|
---|
1066 |
|
---|
1067 | Chi := If[FeynmanGauge, {(x -Sa*H1+Ca*H2 + I phip)/Sqrt[2]}, {(x -Sa*H1+Ca*H2)/Sqrt[2]}];
|
---|
1068 | Chibar := If[FeynmanGauge, {(x -Sa*H1+Ca*H2 - I phip)/Sqrt[2]}, {(x -Sa*H1+Ca*H2)/Sqrt[2]}];
|
---|
1069 |
|
---|
1070 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphichi, Dcp, Dcpbar},
|
---|
1071 |
|
---|
1072 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1073 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1074 |
|
---|
1075 | (*Y_phi=1/2*)
|
---|
1076 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + gt/2 Bp[mu] f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1077 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + gt/2 Bp[mu] f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1078 |
|
---|
1079 | (*BL_phi=2*)
|
---|
1080 | Dcp[f_, mu_] := I del[f, mu] + 2*g1p Bp[mu] f ;
|
---|
1081 | Dcpbar[f_, mu_] := -I del[f, mu] + 2*g1p Bp[mu] f ;
|
---|
1082 |
|
---|
1083 | Vphichi[Phi_, Phibar_, Chi_, Chibar_] := mu2H1 Phibar.Phi + mu2H2 Chibar.Chi +
|
---|
1084 | \[Lambda]1 (Phibar.Phi)^2 + \[Lambda]2 (Chibar.Chi)^2 + \[Lambda]3 (Phibar.Phi)*(Chibar.Chi);
|
---|
1085 |
|
---|
1086 | (Dcbar[Phibar, mu]).Dc[Phi, mu] + (Dcpbar[Chibar, mu]).Dcp[Chi, mu] - Vphichi[Phi, Phibar, Chi, Chibar]
|
---|
1087 |
|
---|
1088 | ];
|
---|
1089 |
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | (*************** Yukawa Lagrangian***********************)
|
---|
1093 | (*NOTE: Neutrino states have been expanded on the LH/RH components and the LH mass terms have been changed signs*)
|
---|
1094 |
|
---|
1095 | LYuk := If[FeynmanGauge,
|
---|
1096 |
|
---|
1097 | Module[{s,r,n,m,i}, -
|
---|
1098 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) -
|
---|
1099 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+Ca*H1+Sa*H2 +I phi)/Sqrt[2] -
|
---|
1100 |
|
---|
1101 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+Ca*H1+Sa*H2 -I phi)/Sqrt[2] + (*This sign from eps matrix*)
|
---|
1102 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar)
|
---|
1103 |
|
---|
1104 | - yl[n] Can[n] anti[nL][s,n].ProjP[s,r].l[r,n] (-I phi2)
|
---|
1105 | + yl[n] San[n] anti[nH][s,n].ProjP[s,r].l[r,n] (-I phi2)
|
---|
1106 |
|
---|
1107 | - yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+Ca*H1+Sa*H2 +I phi)/Sqrt[2] +
|
---|
1108 | ynd[n] San[n] Can[n] anti[nL][s,n].ProjP[s,r].nL[r,n] (v+Ca*H1+Sa*H2 - I phi)/Sqrt[2]+
|
---|
1109 | ynd[n] San[n] Can[n] anti[nH][s,n].ProjP[s,r].nH[r,n] (v+Ca*H1+Sa*H2 - I phi)/Sqrt[2]-
|
---|
1110 |
|
---|
1111 | ynd[n] (Can[n] Can[n] - San[n] San[n]) anti[nL][s,n].ProjP[s,r].nH[r,n] (v+Ca*H1+Sa*H2 - I phi)/Sqrt[2]
|
---|
1112 |
|
---|
1113 | - ynd[n] San[n] lbar[s,n].ProjP[s,r].nL[r,n] (I phi2bar) +
|
---|
1114 | ynd[n] Can[n] lbar[s,n].ProjP[s,r].nH[r,n] (I phi2bar) +
|
---|
1115 |
|
---|
1116 | ynm[n] San[n] San[n] anti[nL][s,n].ProjP[s,r].nL[r,n] (x-Sa*H1+Ca*H2 + I phip)/Sqrt[2]-
|
---|
1117 | ynm[n] Can[n] Can[n] anti[nH][s,n].ProjP[s,r].nH[r,n] (x-Sa*H1+Ca*H2 + I phip)/Sqrt[2]-
|
---|
1118 |
|
---|
1119 | ynm[n] 2 San[n] Can[n] anti[nL][s,n].ProjP[s,r].nH[r,n] (x-Sa*H1+Ca*H2 + I phip)/Sqrt[2]
|
---|
1120 |
|
---|
1121 |
|
---|
1122 | ],
|
---|
1123 |
|
---|
1124 | Module[{s,r,n,m,i}, -
|
---|
1125 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+Ca*H1+Sa*H2)/Sqrt[2] -
|
---|
1126 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+Ca*H1+Sa*H2)/Sqrt[2]
|
---|
1127 |
|
---|
1128 | - yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+Ca*H1+Sa*H2)/Sqrt[2] +
|
---|
1129 | ynd[n] San[n] Can[n] anti[nL][s,n].ProjP[s,r].nL[r,n] (v+Ca*H1+Sa*H2)/Sqrt[2]+
|
---|
1130 | ynd[n] San[n] Can[n] anti[nH][s,n].ProjP[s,r].nH[r,n] (v+Ca*H1+Sa*H2)/Sqrt[2]-
|
---|
1131 |
|
---|
1132 | ynd[n] (Can[n] Can[n] - San[n] San[n]) anti[nL][s,n].ProjP[s,r].nH[r,n] (v+Ca*H1+Sa*H2)/Sqrt[2]+
|
---|
1133 |
|
---|
1134 |
|
---|
1135 |
|
---|
1136 | ynm[n] San[n] San[n] anti[nL][s,n].ProjP[s,r].nL[r,n] (x-Sa*H1+Ca*H2)/Sqrt[2]-
|
---|
1137 | ynm[n] Can[n] Can[n] anti[nH][s,n].ProjP[s,r].nH[r,n] (x-Sa*H1+Ca*H2)/Sqrt[2]-
|
---|
1138 |
|
---|
1139 | ynm[n] 2 San[n] Can[n] anti[nL][s,n].ProjP[s,r].nH[r,n] (x-Sa*H1+Ca*H2)/Sqrt[2]
|
---|
1140 |
|
---|
1141 | ]
|
---|
1142 | ];
|
---|
1143 |
|
---|
1144 | LYukawa := LYuk + HC[LYuk];
|
---|
1145 |
|
---|
1146 |
|
---|
1147 |
|
---|
1148 | (**************Ghost terms**************************)
|
---|
1149 | (* Now we need the ghost terms which are of the form: *)
|
---|
1150 | (* - g * antighost * d_BRST G *)
|
---|
1151 | (* where d_BRST G is BRST transform of the gauge fixing function. *)
|
---|
1152 |
|
---|
1153 | LGhost := If[FeynmanGauge,
|
---|
1154 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB, dBRSTBp, LGhostBp},
|
---|
1155 |
|
---|
1156 | (***********First the pure gauge piece.**********************)
|
---|
1157 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
---|
1158 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
---|
1159 |
|
---|
1160 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ];
|
---|
1161 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu];
|
---|
1162 |
|
---|
1163 | dBRSTB[mu_] := cw/ee del[ghB, mu];
|
---|
1164 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu];
|
---|
1165 |
|
---|
1166 | dBRSTBp[mu_] := 1/g1p del[ghBp, mu];
|
---|
1167 | LGhostBp := - g1p ghBpbar.del[dBRSTBp[mu],mu];
|
---|
1168 |
|
---|
1169 | (***********Next the piece from the scalar field.************)
|
---|
1170 | LGhostphi :=
|
---|
1171 | (*- ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) +
|
---|
1172 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) -
|
---|
1173 | ee/(2*sw) MW ( ( (v+Ca*H1+Sa*H2) + I phi) ghWpbar.ghWp +
|
---|
1174 | ( (v+Ca*H1+Sa*H2) - I phi) ghWmbar.ghWm ) -
|
---|
1175 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) -
|
---|
1176 | ee/(2*sw*cw) MZ (v+Ca*H1+Sa*H2) ghZbar.ghZ *)
|
---|
1177 |
|
---|
1178 | 1/4*gw*v (-gw*(v+Ca*H1+Sa*H2) ghWibar[1].ghWi[1] +g1 phic[2] ghWibar[1].ghB +gw phic[2] ghWibar[1].ghWi[3] -gw phi ghWibar[1].ghWi[2] + gt phic[2] ghWibar[1].ghBp) +
|
---|
1179 | 1/4*gw*v (-gw*(v+Ca*H1+Sa*H2) ghWibar[2].ghWi[2] -g1 phic[1] ghWibar[2].ghB -gw phic[1] ghWibar[2].ghWi[3] +gw phi ghWibar[2].ghWi[1] -gt phic[1] ghWibar[2].ghBp) +
|
---|
1180 | 1/4*gw*v (g1*(v+Ca*H1+Sa*H2) ghWibar[3].ghB -gw*(v+Ca*H1+Sa*H2) ghWibar[3].ghWi[3] +gw phic[1] ghWibar[3].ghWi[2]
|
---|
1181 | -gw phic[2] ghWibar[3].ghWi[1] +gt (v+Ca*H1+Sa*H2) ghWibar[3].ghBp ) +
|
---|
1182 | 1/4*g1*v (-g1*(v+Ca*H1+Sa*H2) ghBbar.ghB +gw*(v+Ca*H1+Sa*H2) ghBbar.ghWi[3] -gw phic[1] ghBbar.ghWi[2] +gw phic[2] ghBbar.ghWi[1] -gt*(v+Ca*H1+Sa*H2) ghBbar.ghBp) +
|
---|
1183 | 1/4*gt*v (-g1*(v+Ca*H1+Sa*H2) ghBpbar.ghB +gw*(v+Ca*H1+Sa*H2) ghBpbar.ghWi[3] -gw phic[1] ghBpbar.ghWi[2] +gw phic[2] ghBpbar.ghWi[1] -gt (v+Ca*H1+Sa*H2) ghBpbar.ghBp) -
|
---|
1184 | 4*g1p^2*x*(x-Sa*H1+Ca*H2) ghBpbar.ghBp
|
---|
1185 | ;
|
---|
1186 |
|
---|
1187 | (***********Now add the pieces together.********************)
|
---|
1188 | LGhostG + LGhostWi + LGhostB + LGhostphi + LGhostBp ]
|
---|
1189 |
|
---|
1190 | ,
|
---|
1191 |
|
---|
1192 | (*If unitary gauge, only include the gluonic ghost.*)
|
---|
1193 | Block[{dBRSTG,LGhostG},
|
---|
1194 |
|
---|
1195 | (***********First the pure gauge piece.**********************)
|
---|
1196 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
---|
1197 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
---|
1198 |
|
---|
1199 | (***********Now add the pieces together.********************)
|
---|
1200 | LGhostG]
|
---|
1201 |
|
---|
1202 | ];
|
---|
1203 |
|
---|
1204 | (*********Total SM Lagrangian*******)
|
---|
1205 | LmZp := LGauge + LHiggs + LFermions + LYukawa + LGhost;
|
---|