1 | (***************************************************************************************************************)
|
---|
2 | (****** This is the FeynRules mod-file for the Standard model ******)
|
---|
3 | (****** ******)
|
---|
4 | (****** Authors: N. Christensen, C. Duhr ******)
|
---|
5 | (****** ******)
|
---|
6 | (****** Choose whether Feynman gauge is desired. ******)
|
---|
7 | (****** If set to False, unitary gauge is assumed. ****)
|
---|
8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
---|
9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
---|
10 | (***************************************************************************************************************)
|
---|
11 |
|
---|
12 | M$ModelName = "Standard Model and anomalous quartic couplings";
|
---|
13 |
|
---|
14 |
|
---|
15 | M$Information = {Authors -> {"N. Christensen", "C. Duhr", "modified by OJPE and MCGG"},
|
---|
16 | Version -> "1.4",
|
---|
17 | Date -> "02. 06. 2009, last change 13. 08. 2012",
|
---|
18 | Institutions -> {"Michigan State University", "Universite catholique de Louvain (CP3)",
|
---|
19 | "USP", "Stony Brook"},
|
---|
20 | Emails -> {"neil@pa.msu.edu", "claude.duhr@uclouvain.be", "eboli@fma.if.usp.br",
|
---|
21 | "concha@max2.physics.sunysb.edu"},
|
---|
22 | URLs -> "http://feynrules.phys.ucl.ac.be/view/Main/StandardModel"};
|
---|
23 |
|
---|
24 | (*
|
---|
25 | V1.3 - Updated Top quark mass to 2010 PDG value (172 GeV)
|
---|
26 | V1.2 - Set FeynmanGauge=True as default.
|
---|
27 | Set Gluonic ghosts to be included in both gauges.
|
---|
28 | V1.1 - Fixed yukawa couplings in Feynman gauge.
|
---|
29 | Changed yd[n] CKM[n,m] to yd[m] CKM[n,m].
|
---|
30 | Changed yu[n] Conjugate[CKM[m,n]] to yu[m] Conjugate[CKM[m,n]].
|
---|
31 | V1.3 - Added yukawa couplings for all fermions for gauge invariance.
|
---|
32 | Added yukawa couplings for 1st generation fermions to Massless.rst.
|
---|
33 | Updated parameters to PDG 2010.
|
---|
34 | V1.4 Anomalous quartic gauge-boson couplings added by OJPE and MCGG
|
---|
35 | *)
|
---|
36 |
|
---|
37 | FeynmanGauge = True;
|
---|
38 |
|
---|
39 | (* FR$DSign=-1 *)
|
---|
40 |
|
---|
41 | (******* Index definitions ********)
|
---|
42 |
|
---|
43 | IndexRange[ Index[Generation] ] = Range[3]
|
---|
44 |
|
---|
45 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
|
---|
46 |
|
---|
47 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
|
---|
48 |
|
---|
49 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]]
|
---|
50 |
|
---|
51 |
|
---|
52 | IndexStyle[Colour, i]
|
---|
53 |
|
---|
54 | IndexStyle[Generation, f]
|
---|
55 |
|
---|
56 | IndexStyle[Gluon ,a]
|
---|
57 |
|
---|
58 | IndexStyle[SU2W ,k]
|
---|
59 |
|
---|
60 |
|
---|
61 | (******* Gauge parameters (for FeynArts) ********)
|
---|
62 |
|
---|
63 | GaugeXi[ V[1] ] = GaugeXi[A];
|
---|
64 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
---|
65 | GaugeXi[ V[3] ] = GaugeXi[W];
|
---|
66 | GaugeXi[ V[4] ] = GaugeXi[G];
|
---|
67 | GaugeXi[ S[1] ] = 1;
|
---|
68 | GaugeXi[ S[2] ] = GaugeXi[Z];
|
---|
69 | GaugeXi[ S[3] ] = GaugeXi[W];
|
---|
70 | GaugeXi[ U[1] ] = GaugeXi[A];
|
---|
71 | GaugeXi[ U[2] ] = GaugeXi[Z];
|
---|
72 | GaugeXi[ U[31] ] = GaugeXi[W];
|
---|
73 | GaugeXi[ U[32] ] = GaugeXi[W];
|
---|
74 | GaugeXi[ U[4] ] = GaugeXi[G];
|
---|
75 |
|
---|
76 |
|
---|
77 | (**************** Parameters *************)
|
---|
78 |
|
---|
79 | M$Parameters = {
|
---|
80 |
|
---|
81 | (* External parameters *)
|
---|
82 |
|
---|
83 | \[Alpha]EWM1== {
|
---|
84 | ParameterType -> External,
|
---|
85 | BlockName -> SMINPUTS,
|
---|
86 | ParameterName -> aEWM1,
|
---|
87 | InteractionOrder -> {QED, -2},
|
---|
88 | Value -> 127.9,
|
---|
89 | Description -> "Inverse of the electroweak coupling constant"},
|
---|
90 |
|
---|
91 |
|
---|
92 | Gf == {
|
---|
93 | ParameterType -> External,
|
---|
94 | BlockName -> SMINPUTS,
|
---|
95 | TeX -> Subscript[G, f],
|
---|
96 | InteractionOrder -> {QED, 2},
|
---|
97 | Value -> 1.16637 * 10^(-5),
|
---|
98 | Description -> "Fermi constant"},
|
---|
99 |
|
---|
100 | \[Alpha]S == {
|
---|
101 | ParameterType -> External,
|
---|
102 | BlockName -> SMINPUTS,
|
---|
103 | TeX -> Subscript[\[Alpha], s],
|
---|
104 | ParameterName -> aS,
|
---|
105 | InteractionOrder -> {QCD, 2},
|
---|
106 | Value -> 0.1184,
|
---|
107 | Description -> "Strong coupling constant at the Z pole."},
|
---|
108 |
|
---|
109 | ymdo == {
|
---|
110 | ParameterType -> External,
|
---|
111 | BlockName -> YUKAWA,
|
---|
112 | Value -> 5.04*10^(-3),
|
---|
113 | OrderBlock -> {1},
|
---|
114 | Description -> "Down Yukawa mass"},
|
---|
115 |
|
---|
116 |
|
---|
117 | ymup == {
|
---|
118 | ParameterType -> External,
|
---|
119 | BlockName -> YUKAWA,
|
---|
120 | Value -> 2.55*10^(-3),
|
---|
121 | OrderBlock -> {2},
|
---|
122 | Description -> "Up Yukawa mass"},
|
---|
123 |
|
---|
124 | yms == {
|
---|
125 | ParameterType -> External,
|
---|
126 | BlockName -> YUKAWA,
|
---|
127 | Value -> 0.101,
|
---|
128 | OrderBlock -> {3},
|
---|
129 | Description -> "Strange Yukawa mass"},
|
---|
130 |
|
---|
131 |
|
---|
132 | ymc == {
|
---|
133 | ParameterType -> External,
|
---|
134 | BlockName -> YUKAWA,
|
---|
135 | Value -> 1.27,
|
---|
136 | OrderBlock -> {4},
|
---|
137 | Description -> "Charm Yukawa mass"},
|
---|
138 |
|
---|
139 | ymb == {
|
---|
140 | ParameterType -> External,
|
---|
141 | BlockName -> YUKAWA,
|
---|
142 | Value -> 4.7,
|
---|
143 | OrderBlock -> {5},
|
---|
144 | Description -> "Bottom Yukawa mass"},
|
---|
145 |
|
---|
146 | ymt == {
|
---|
147 | ParameterType -> External,
|
---|
148 | BlockName -> YUKAWA,
|
---|
149 | Value -> 172.0,
|
---|
150 | OrderBlock -> {6},
|
---|
151 | Description -> "Top Yukawa mass"},
|
---|
152 |
|
---|
153 | yme == {
|
---|
154 | ParameterType -> External,
|
---|
155 | BlockName -> YUKAWA,
|
---|
156 | Value -> 5.11*10^(-4),
|
---|
157 | OrderBlock -> {11},
|
---|
158 | Description -> "Electron Yukawa mass"},
|
---|
159 |
|
---|
160 | ymm == {
|
---|
161 | ParameterType -> External,
|
---|
162 | BlockName -> YUKAWA,
|
---|
163 | Value -> 0.10566,
|
---|
164 | OrderBlock -> {13},
|
---|
165 | Description -> "Muon Yukawa mass"},
|
---|
166 |
|
---|
167 | ymtau == {
|
---|
168 | ParameterType -> External,
|
---|
169 | BlockName -> YUKAWA,
|
---|
170 | Value -> 1.777,
|
---|
171 | OrderBlock -> {15},
|
---|
172 | Description -> "Tau Yukawa mass"},
|
---|
173 |
|
---|
174 | cabi == {
|
---|
175 | TeX -> Subscript[\[Theta], c],
|
---|
176 | ParameterType -> External,
|
---|
177 | BlockName -> CKMBLOCK,
|
---|
178 | Value -> 0.227736,
|
---|
179 | Description -> "Cabibbo angle"},
|
---|
180 |
|
---|
181 | (* OjpE *)
|
---|
182 |
|
---|
183 | FS0 == {
|
---|
184 | ParameterType -> External,
|
---|
185 | BlockName -> ANOINPUTS,
|
---|
186 | TeX -> Subscript[f, S0],
|
---|
187 | InteractionOrder -> {NP, 1},
|
---|
188 | Value -> 1.,
|
---|
189 | Description -> "L_S,0 coefficient"},
|
---|
190 |
|
---|
191 |
|
---|
192 | FS1 == {
|
---|
193 | ParameterType -> External,
|
---|
194 | BlockName -> ANOINPUTS,
|
---|
195 | TeX -> Subscript[f, S1],
|
---|
196 | InteractionOrder -> {NP, 1},
|
---|
197 | Value -> 1.,
|
---|
198 | Description -> "L_S,1 coefficient"},
|
---|
199 |
|
---|
200 | FM0 == {
|
---|
201 | ParameterType -> External,
|
---|
202 | BlockName -> ANOINPUTS,
|
---|
203 | TeX -> Subscript[f, M0],
|
---|
204 | InteractionOrder -> {NP, 1},
|
---|
205 | Value -> 1.,
|
---|
206 | Description -> "L_M,0 coefficient"},
|
---|
207 |
|
---|
208 | FM1 == {
|
---|
209 | ParameterType -> External,
|
---|
210 | BlockName -> ANOINPUTS,
|
---|
211 | TeX -> Subscript[f, M1],
|
---|
212 | InteractionOrder -> {NP, 1},
|
---|
213 | Value -> 1.,
|
---|
214 | Description -> "L_M,1 coefficient"},
|
---|
215 |
|
---|
216 | FM2 == {
|
---|
217 | ParameterType -> External,
|
---|
218 | BlockName -> ANOINPUTS,
|
---|
219 | TeX -> Subscript[f, M2],
|
---|
220 | InteractionOrder -> {NP, 1},
|
---|
221 | Value -> 1.,
|
---|
222 | Description -> "L_M,2 coefficient"},
|
---|
223 |
|
---|
224 | FM3 == {
|
---|
225 | ParameterType -> External,
|
---|
226 | BlockName -> ANOINPUTS,
|
---|
227 | TeX -> Subscript[f, M3],
|
---|
228 | InteractionOrder -> {NP, 1},
|
---|
229 | Value -> 1.,
|
---|
230 | Description -> "L_M,3 coefficient"},
|
---|
231 |
|
---|
232 | FM4 == {
|
---|
233 | ParameterType -> External,
|
---|
234 | BlockName -> ANOINPUTS,
|
---|
235 | TeX -> Subscript[f, M4],
|
---|
236 | InteractionOrder -> {NP, 1},
|
---|
237 | Value -> 1.,
|
---|
238 | Description -> "L_M,4 coefficient"},
|
---|
239 |
|
---|
240 | FM5 == {
|
---|
241 | ParameterType -> External,
|
---|
242 | BlockName -> ANOINPUTS,
|
---|
243 | TeX -> Subscript[f, M5],
|
---|
244 | InteractionOrder -> {NP, 1},
|
---|
245 | Value -> 1.,
|
---|
246 | Description -> "L_M,5 coefficient"},
|
---|
247 |
|
---|
248 | FM6 == {
|
---|
249 | ParameterType -> External,
|
---|
250 | BlockName -> ANOINPUTS,
|
---|
251 | TeX -> Subscript[f, M6],
|
---|
252 | InteractionOrder -> {NP, 1},
|
---|
253 | Value -> 1.,
|
---|
254 | Description -> "L_M,6 coefficient"},
|
---|
255 |
|
---|
256 | FM7 == {
|
---|
257 | ParameterType -> External,
|
---|
258 | BlockName -> ANOINPUTS,
|
---|
259 | TeX -> Subscript[f, M7],
|
---|
260 | InteractionOrder -> {NP, 1},
|
---|
261 | Value -> 1.,
|
---|
262 | Description -> "L_M,7 coefficient"},
|
---|
263 |
|
---|
264 | FT0 == {
|
---|
265 | ParameterType -> External,
|
---|
266 | BlockName -> ANOINPUTS,
|
---|
267 | TeX -> Subscript[f, T0],
|
---|
268 | InteractionOrder -> {NP, 1},
|
---|
269 | Value -> 1.,
|
---|
270 | Description -> "L_T,0 coefficient"},
|
---|
271 |
|
---|
272 | FT1 == {
|
---|
273 | ParameterType -> External,
|
---|
274 | BlockName -> ANOINPUTS,
|
---|
275 | TeX -> Subscript[f, T1],
|
---|
276 | InteractionOrder -> {NP, 1},
|
---|
277 | Value -> 1.,
|
---|
278 | Description -> "L_T,1 coefficient"},
|
---|
279 |
|
---|
280 | FT2 == {
|
---|
281 | ParameterType -> External,
|
---|
282 | BlockName -> ANOINPUTS,
|
---|
283 | TeX -> Subscript[f, T2],
|
---|
284 | InteractionOrder -> {NP, 1},
|
---|
285 | Value -> 1.,
|
---|
286 | Description -> "L_T,2 coefficient"},
|
---|
287 |
|
---|
288 | FT3 == {
|
---|
289 | ParameterType -> External,
|
---|
290 | BlockName -> ANOINPUTS,
|
---|
291 | TeX -> Subscript[f, T3],
|
---|
292 | InteractionOrder -> {NP, 1},
|
---|
293 | Value -> 1.,
|
---|
294 | Description -> "L_T,3 coefficient"},
|
---|
295 |
|
---|
296 | FT4 == {
|
---|
297 | ParameterType -> External,
|
---|
298 | BlockName -> ANOINPUTS,
|
---|
299 | TeX -> Subscript[f, T4],
|
---|
300 | InteractionOrder -> {NP, 1},
|
---|
301 | Value -> 1.,
|
---|
302 | Description -> "L_T,4 coefficient"},
|
---|
303 |
|
---|
304 | FT5 == {
|
---|
305 | ParameterType -> External,
|
---|
306 | BlockName -> ANOINPUTS,
|
---|
307 | TeX -> Subscript[f, T5],
|
---|
308 | InteractionOrder -> {NP, 1},
|
---|
309 | Value -> 1.,
|
---|
310 | Description -> "L_T,5 coefficient"},
|
---|
311 |
|
---|
312 | FT6 == {
|
---|
313 | ParameterType -> External,
|
---|
314 | BlockName -> ANOINPUTS,
|
---|
315 | TeX -> Subscript[f, T6],
|
---|
316 | InteractionOrder -> {NP, 1},
|
---|
317 | Value -> 1.,
|
---|
318 | Description -> "L_T,6 coefficient"},
|
---|
319 |
|
---|
320 | FT7 == {
|
---|
321 | ParameterType -> External,
|
---|
322 | BlockName -> ANOINPUTS,
|
---|
323 | TeX -> Subscript[f, T7],
|
---|
324 | InteractionOrder -> {NP, 1},
|
---|
325 | Value -> 1.,
|
---|
326 | Description -> "L_T,7 coefficient"},
|
---|
327 |
|
---|
328 | FT8 == {
|
---|
329 | ParameterType -> External,
|
---|
330 | BlockName -> ANOINPUTS,
|
---|
331 | TeX -> Subscript[f, T8],
|
---|
332 | InteractionOrder -> {NP, 1},
|
---|
333 | Value -> 1.,
|
---|
334 | Description -> "L_T,8 coefficient"},
|
---|
335 |
|
---|
336 | FT9 == {
|
---|
337 | ParameterType -> External,
|
---|
338 | BlockName -> ANOINPUTS,
|
---|
339 | TeX -> Subscript[f, T9],
|
---|
340 | InteractionOrder -> {NP, 1},
|
---|
341 | Value -> 1.,
|
---|
342 | Description -> "L_T,9 coefficient"},
|
---|
343 |
|
---|
344 | (* ------------------------------------------------------- *)
|
---|
345 |
|
---|
346 | (* Internal Parameters *)
|
---|
347 |
|
---|
348 | \[Alpha]EW == {
|
---|
349 | ParameterType -> Internal,
|
---|
350 | Value -> 1/\[Alpha]EWM1,
|
---|
351 | TeX -> Subscript[\[Alpha], EW],
|
---|
352 | ParameterName -> aEW,
|
---|
353 | InteractionOrder -> {QED, 2},
|
---|
354 | Description -> "Electroweak coupling contant"},
|
---|
355 |
|
---|
356 |
|
---|
357 | MW == {
|
---|
358 | ParameterType -> Internal,
|
---|
359 | Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]],
|
---|
360 | TeX -> Subscript[M, W],
|
---|
361 | Description -> "W mass"},
|
---|
362 |
|
---|
363 | sw2 == {
|
---|
364 | ParameterType -> Internal,
|
---|
365 | Value -> 1-(MW/MZ)^2,
|
---|
366 | Description -> "Squared Sin of the Weinberg angle"},
|
---|
367 |
|
---|
368 | ee == {
|
---|
369 | TeX -> e,
|
---|
370 | ParameterType -> Internal,
|
---|
371 | Value -> Sqrt[4 Pi \[Alpha]EW],
|
---|
372 | InteractionOrder -> {QED, 1},
|
---|
373 | Description -> "Electric coupling constant"},
|
---|
374 |
|
---|
375 | cw == {
|
---|
376 | TeX -> Subscript[c, w],
|
---|
377 | ParameterType -> Internal,
|
---|
378 | Value -> Sqrt[1 - sw2],
|
---|
379 | Description -> "Cos of the Weinberg angle"},
|
---|
380 |
|
---|
381 | sw == {
|
---|
382 | TeX -> Subscript[s, w],
|
---|
383 | ParameterType -> Internal,
|
---|
384 | Value -> Sqrt[sw2],
|
---|
385 | Description -> "Sin of the Weinberg angle"},
|
---|
386 |
|
---|
387 | gw == {
|
---|
388 | TeX -> Subscript[g, w],
|
---|
389 | ParameterType -> Internal,
|
---|
390 | Value -> ee / sw,
|
---|
391 | InteractionOrder -> {QED, 1},
|
---|
392 | Description -> "Weak coupling constant"},
|
---|
393 |
|
---|
394 | g1 == {
|
---|
395 | TeX -> Subscript[g, 1],
|
---|
396 | ParameterType -> Internal,
|
---|
397 | Value -> ee / cw,
|
---|
398 | InteractionOrder -> {QED, 1},
|
---|
399 | Description -> "U(1)Y coupling constant"},
|
---|
400 |
|
---|
401 | gs == {
|
---|
402 | TeX -> Subscript[g, s],
|
---|
403 | ParameterType -> Internal,
|
---|
404 | Value -> Sqrt[4 Pi \[Alpha]S],
|
---|
405 | InteractionOrder -> {QCD, 1},
|
---|
406 | ParameterName -> G,
|
---|
407 | Description -> "Strong coupling constant"},
|
---|
408 |
|
---|
409 |
|
---|
410 | v == {
|
---|
411 | ParameterType -> Internal,
|
---|
412 | Value -> 2*MW*sw/ee,
|
---|
413 | InteractionOrder -> {QED, -1},
|
---|
414 | Description -> "Higgs VEV"},
|
---|
415 |
|
---|
416 | \[Lambda] == {
|
---|
417 | ParameterType -> Internal,
|
---|
418 | Value -> MH^2/(2*v^2),
|
---|
419 | InteractionOrder -> {QED, 2},
|
---|
420 | ParameterName -> lam,
|
---|
421 | Description -> "Higgs quartic coupling"},
|
---|
422 |
|
---|
423 | muH == {
|
---|
424 | ParameterType -> Internal,
|
---|
425 | Value -> Sqrt[v^2 \[Lambda]],
|
---|
426 | TeX -> \[Mu],
|
---|
427 | Description -> "Coefficient of the quadratic piece of the Higgs potential"},
|
---|
428 |
|
---|
429 |
|
---|
430 | yl == {
|
---|
431 | TeX -> Superscript[y, l],
|
---|
432 | Indices -> {Index[Generation]},
|
---|
433 | AllowSummation -> True,
|
---|
434 | ParameterType -> Internal,
|
---|
435 | Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymm / v, yl[3] -> Sqrt[2] ymtau / v},
|
---|
436 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
|
---|
437 | InteractionOrder -> {QED, 1},
|
---|
438 | ComplexParameter -> False,
|
---|
439 | Description -> "Lepton Yukawa coupling"},
|
---|
440 |
|
---|
441 | yu == {
|
---|
442 | TeX -> Superscript[y, u],
|
---|
443 | Indices -> {Index[Generation]},
|
---|
444 | AllowSummation -> True,
|
---|
445 | ParameterType -> Internal,
|
---|
446 | Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v},
|
---|
447 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt},
|
---|
448 | InteractionOrder -> {QED, 1},
|
---|
449 | ComplexParameter -> False,
|
---|
450 | Description -> "U-quark Yukawa coupling"},
|
---|
451 |
|
---|
452 | yd == {
|
---|
453 | TeX -> Superscript[y, d],
|
---|
454 | Indices -> {Index[Generation]},
|
---|
455 | AllowSummation -> True,
|
---|
456 | ParameterType -> Internal,
|
---|
457 | Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v},
|
---|
458 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb},
|
---|
459 | InteractionOrder -> {QED, 1},
|
---|
460 | ComplexParameter -> False,
|
---|
461 | Description -> "D-quark Yukawa coupling"},
|
---|
462 |
|
---|
463 | (* N. B. : only Cabibbo mixing! *)
|
---|
464 | CKM == {
|
---|
465 | Indices -> {Index[Generation], Index[Generation]},
|
---|
466 | TensorClass -> CKM,
|
---|
467 | Unitary -> True,
|
---|
468 | Value -> {CKM[1,1] -> Cos[cabi],
|
---|
469 | CKM[1,2] -> Sin[cabi],
|
---|
470 | CKM[1,3] -> 0,
|
---|
471 | CKM[2,1] -> -Sin[cabi],
|
---|
472 | CKM[2,2] -> Cos[cabi],
|
---|
473 | CKM[2,3] -> 0,
|
---|
474 | CKM[3,1] -> 0,
|
---|
475 | CKM[3,2] -> 0,
|
---|
476 | CKM[3,3] -> 1},
|
---|
477 | Description -> "CKM-Matrix"}
|
---|
478 | }
|
---|
479 |
|
---|
480 |
|
---|
481 | (************** Gauge Groups ******************)
|
---|
482 |
|
---|
483 | M$GaugeGroups = {
|
---|
484 |
|
---|
485 | U1Y == {
|
---|
486 | Abelian -> True,
|
---|
487 | GaugeBoson -> B,
|
---|
488 | Charge -> Y,
|
---|
489 | CouplingConstant -> g1},
|
---|
490 |
|
---|
491 | SU2L == {
|
---|
492 | Abelian -> False,
|
---|
493 | GaugeBoson -> Wi,
|
---|
494 | StructureConstant -> Eps,
|
---|
495 | CouplingConstant -> gw},
|
---|
496 |
|
---|
497 | SU3C == {
|
---|
498 | Abelian -> False,
|
---|
499 | GaugeBoson -> G,
|
---|
500 | StructureConstant -> f,
|
---|
501 | SymmetricTensor -> dSUN,
|
---|
502 | Representations -> {T, Colour},
|
---|
503 | CouplingConstant -> gs}
|
---|
504 | }
|
---|
505 |
|
---|
506 | (********* Particle Classes **********)
|
---|
507 |
|
---|
508 | M$ClassesDescription = {
|
---|
509 |
|
---|
510 | (********** Fermions ************)
|
---|
511 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *)
|
---|
512 | F[1] == {
|
---|
513 | ClassName -> vl,
|
---|
514 | ClassMembers -> {ve,vm,vt},
|
---|
515 | FlavorIndex -> Generation,
|
---|
516 | SelfConjugate -> False,
|
---|
517 | Indices -> {Index[Generation]},
|
---|
518 | Mass -> 0,
|
---|
519 | Width -> 0,
|
---|
520 | QuantumNumbers -> {LeptonNumber -> 1},
|
---|
521 | PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
|
---|
522 | PropagatorType -> S,
|
---|
523 | PropagatorArrow -> Forward,
|
---|
524 | PDG -> {12,14,16},
|
---|
525 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
|
---|
526 |
|
---|
527 | (* Leptons (electron): I_3 = -1/2, Q = -1 *)
|
---|
528 | F[2] == {
|
---|
529 | ClassName -> l,
|
---|
530 | ClassMembers -> {e, m, tt},
|
---|
531 | FlavorIndex -> Generation,
|
---|
532 | SelfConjugate -> False,
|
---|
533 | Indices -> {Index[Generation]},
|
---|
534 | Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}},
|
---|
535 | Width -> 0,
|
---|
536 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
|
---|
537 | PropagatorLabel -> {"l", "e", "m", "tt"},
|
---|
538 | PropagatorType -> Straight,
|
---|
539 | ParticleName -> {"e-", "m-", "tt-"},
|
---|
540 | AntiParticleName -> {"e+", "m+", "tt+"},
|
---|
541 | PropagatorArrow -> Forward,
|
---|
542 | PDG -> {11, 13, 15},
|
---|
543 | FullName -> {"Electron", "Muon", "Tau"} },
|
---|
544 |
|
---|
545 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *)
|
---|
546 | F[3] == {
|
---|
547 | ClassMembers -> {u, c, t},
|
---|
548 | ClassName -> uq,
|
---|
549 | FlavorIndex -> Generation,
|
---|
550 | SelfConjugate -> False,
|
---|
551 | Indices -> {Index[Generation], Index[Colour]},
|
---|
552 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.42}, {MT, 172}},
|
---|
553 | Width -> {0, 0, {WT, 1.50833649}},
|
---|
554 | QuantumNumbers -> {Q -> 2/3},
|
---|
555 | PropagatorLabel -> {"uq", "u", "c", "t"},
|
---|
556 | PropagatorType -> Straight,
|
---|
557 | PropagatorArrow -> Forward,
|
---|
558 | PDG -> {2, 4, 6},
|
---|
559 | FullName -> {"u-quark", "c-quark", "t-quark"}},
|
---|
560 |
|
---|
561 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *)
|
---|
562 | F[4] == {
|
---|
563 | ClassMembers -> {d, s, b},
|
---|
564 | ClassName -> dq,
|
---|
565 | FlavorIndex -> Generation,
|
---|
566 | SelfConjugate -> False,
|
---|
567 | Indices -> {Index[Generation], Index[Colour]},
|
---|
568 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.101}, {MB, 4.7}},
|
---|
569 | Width -> 0,
|
---|
570 | QuantumNumbers -> {Q -> -1/3},
|
---|
571 | PropagatorLabel -> {"dq", "d", "s", "b"},
|
---|
572 | PropagatorType -> Straight,
|
---|
573 | PropagatorArrow -> Forward,
|
---|
574 | PDG -> {1,3,5},
|
---|
575 | FullName -> {"d-quark", "s-quark", "b-quark"} },
|
---|
576 |
|
---|
577 | (********** Ghosts **********)
|
---|
578 | U[1] == {
|
---|
579 | ClassName -> ghA,
|
---|
580 | SelfConjugate -> False,
|
---|
581 | Indices -> {},
|
---|
582 | Ghost -> A,
|
---|
583 | Mass -> 0,
|
---|
584 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
585 | PropagatorLabel -> uA,
|
---|
586 | PropagatorType -> GhostDash,
|
---|
587 | PropagatorArrow -> Forward},
|
---|
588 |
|
---|
589 | U[2] == {
|
---|
590 | ClassName -> ghZ,
|
---|
591 | SelfConjugate -> False,
|
---|
592 | Indices -> {},
|
---|
593 | Mass -> {MZ, 91.1876},
|
---|
594 | Ghost -> Z,
|
---|
595 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
596 | PropagatorLabel -> uZ,
|
---|
597 | PropagatorType -> GhostDash,
|
---|
598 | PropagatorArrow -> Forward},
|
---|
599 |
|
---|
600 | U[31] == {
|
---|
601 | ClassName -> ghWp,
|
---|
602 | SelfConjugate -> False,
|
---|
603 | Indices -> {},
|
---|
604 | Mass -> {MW, Internal},
|
---|
605 | Ghost -> W,
|
---|
606 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1},
|
---|
607 | PropagatorLabel -> uWp,
|
---|
608 | PropagatorType -> GhostDash,
|
---|
609 | PropagatorArrow -> Forward},
|
---|
610 |
|
---|
611 | U[32] == {
|
---|
612 | ClassName -> ghWm,
|
---|
613 | SelfConjugate -> False,
|
---|
614 | Indices -> {},
|
---|
615 | Mass -> {MW, Internal},
|
---|
616 | Ghost -> Wbar,
|
---|
617 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1},
|
---|
618 | PropagatorLabel -> uWm,
|
---|
619 | PropagatorType -> GhostDash,
|
---|
620 | PropagatorArrow -> Forward},
|
---|
621 |
|
---|
622 | U[4] == {
|
---|
623 | ClassName -> ghG,
|
---|
624 | SelfConjugate -> False,
|
---|
625 | Indices -> {Index[Gluon]},
|
---|
626 | Ghost -> G,
|
---|
627 | Mass -> 0,
|
---|
628 | QuantumNumbers -> {GhostNumber -> 1},
|
---|
629 | PropagatorLabel -> uG,
|
---|
630 | PropagatorType -> GhostDash,
|
---|
631 | PropagatorArrow -> Forward},
|
---|
632 |
|
---|
633 | U[5] == {
|
---|
634 | ClassName -> ghWi,
|
---|
635 | Unphysical -> True,
|
---|
636 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2],
|
---|
637 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I,
|
---|
638 | ghWi[3] -> cw ghZ + sw ghA},
|
---|
639 | SelfConjugate -> False,
|
---|
640 | Ghost -> Wi,
|
---|
641 | Indices -> {Index[SU2W]},
|
---|
642 | FlavorIndex -> SU2W},
|
---|
643 |
|
---|
644 | U[6] == {
|
---|
645 | ClassName -> ghB,
|
---|
646 | SelfConjugate -> False,
|
---|
647 | Definitions -> {ghB -> -sw ghZ + cw ghA},
|
---|
648 | Indices -> {},
|
---|
649 | Ghost -> B,
|
---|
650 | Unphysical -> True},
|
---|
651 |
|
---|
652 | (************ Gauge Bosons ***************)
|
---|
653 | (* Gauge bosons: Q = 0 *)
|
---|
654 | V[1] == {
|
---|
655 | ClassName -> A,
|
---|
656 | SelfConjugate -> True,
|
---|
657 | Indices -> {},
|
---|
658 | Mass -> 0,
|
---|
659 | Width -> 0,
|
---|
660 | PropagatorLabel -> "a",
|
---|
661 | PropagatorType -> W,
|
---|
662 | PropagatorArrow -> None,
|
---|
663 | PDG -> 22,
|
---|
664 | FullName -> "Photon" },
|
---|
665 |
|
---|
666 | V[2] == {
|
---|
667 | ClassName -> Z,
|
---|
668 | SelfConjugate -> True,
|
---|
669 | Indices -> {},
|
---|
670 | Mass -> {MZ, 91.1876},
|
---|
671 | Width -> {WZ, 2.4952},
|
---|
672 | PropagatorLabel -> "Z",
|
---|
673 | PropagatorType -> Sine,
|
---|
674 | PropagatorArrow -> None,
|
---|
675 | PDG -> 23,
|
---|
676 | FullName -> "Z" },
|
---|
677 |
|
---|
678 | (* Gauge bosons: Q = -1 *)
|
---|
679 | V[3] == {
|
---|
680 | ClassName -> W,
|
---|
681 | SelfConjugate -> False,
|
---|
682 | Indices -> {},
|
---|
683 | Mass -> {MW, Internal},
|
---|
684 | Width -> {WW, 2.085},
|
---|
685 | QuantumNumbers -> {Q -> 1},
|
---|
686 | PropagatorLabel -> "W",
|
---|
687 | PropagatorType -> Sine,
|
---|
688 | PropagatorArrow -> Forward,
|
---|
689 | ParticleName ->"W+",
|
---|
690 | AntiParticleName ->"W-",
|
---|
691 | PDG -> 24,
|
---|
692 | FullName -> "W" },
|
---|
693 |
|
---|
694 | V[4] == {
|
---|
695 | ClassName -> G,
|
---|
696 | SelfConjugate -> True,
|
---|
697 | Indices -> {Index[Gluon]},
|
---|
698 | Mass -> 0,
|
---|
699 | Width -> 0,
|
---|
700 | PropagatorLabel -> G,
|
---|
701 | PropagatorType -> C,
|
---|
702 | PropagatorArrow -> None,
|
---|
703 | PDG -> 21,
|
---|
704 | FullName -> "G" },
|
---|
705 |
|
---|
706 | V[5] == {
|
---|
707 | ClassName -> Wi,
|
---|
708 | Unphysical -> True,
|
---|
709 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
|
---|
710 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
|
---|
711 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]},
|
---|
712 | SelfConjugate -> True,
|
---|
713 | Indices -> {Index[SU2W]},
|
---|
714 | FlavorIndex -> SU2W,
|
---|
715 | Mass -> 0,
|
---|
716 | PDG -> {1,2,3}},
|
---|
717 |
|
---|
718 | V[6] == {
|
---|
719 | ClassName -> B,
|
---|
720 | SelfConjugate -> True,
|
---|
721 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]},
|
---|
722 | Indices -> {},
|
---|
723 | Mass -> 0,
|
---|
724 | Unphysical -> True},
|
---|
725 |
|
---|
726 |
|
---|
727 | (************ Scalar Fields **********)
|
---|
728 | (* physical Higgs: Q = 0 *)
|
---|
729 | S[1] == {
|
---|
730 | ClassName -> H,
|
---|
731 | SelfConjugate -> True,
|
---|
732 | Mass -> {MH, 125},
|
---|
733 | Width -> {WH, 0.00575308848},
|
---|
734 | PropagatorLabel -> "H",
|
---|
735 | PropagatorType -> D,
|
---|
736 | PropagatorArrow -> None,
|
---|
737 | PDG -> 25,
|
---|
738 | TeXParticleName -> "\\phi",
|
---|
739 | TeXClassName -> "\\phi",
|
---|
740 | FullName -> "H" },
|
---|
741 |
|
---|
742 | S[2] == {
|
---|
743 | ClassName -> phi,
|
---|
744 | SelfConjugate -> True,
|
---|
745 | Mass -> {MZ, 91.1876},
|
---|
746 | Width -> Wphi,
|
---|
747 | PropagatorLabel -> "Phi",
|
---|
748 | PropagatorType -> D,
|
---|
749 | PropagatorArrow -> None,
|
---|
750 | ParticleName ->"phi0",
|
---|
751 | PDG -> 250,
|
---|
752 | FullName -> "Phi",
|
---|
753 | Goldstone -> Z },
|
---|
754 |
|
---|
755 | S[3] == {
|
---|
756 | ClassName -> phi2,
|
---|
757 | SelfConjugate -> False,
|
---|
758 | Mass -> {MW, Internal},
|
---|
759 | Width -> Wphi2,
|
---|
760 | PropagatorLabel -> "Phi2",
|
---|
761 | PropagatorType -> D,
|
---|
762 | PropagatorArrow -> None,
|
---|
763 | ParticleName ->"phi+",
|
---|
764 | AntiParticleName ->"phi-",
|
---|
765 | PDG -> 251,
|
---|
766 | FullName -> "Phi2",
|
---|
767 | TeXClassName -> "\\phi^+",
|
---|
768 | TeXParticleName -> "\\phi^+",
|
---|
769 | TeXAntiParticleName -> "\\phi^-",
|
---|
770 | Goldstone -> W,
|
---|
771 | QuantumNumbers -> {Q -> 1}}
|
---|
772 | }
|
---|
773 |
|
---|
774 |
|
---|
775 |
|
---|
776 |
|
---|
777 | (*****************************************************************************************)
|
---|
778 |
|
---|
779 | (* SM Lagrangian *)
|
---|
780 |
|
---|
781 | (******************** Gauge F^2 Lagrangian terms*************************)
|
---|
782 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
783 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])*
|
---|
784 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) -
|
---|
785 |
|
---|
786 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 -
|
---|
787 |
|
---|
788 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])*
|
---|
789 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]);
|
---|
790 |
|
---|
791 |
|
---|
792 | (********************* Fermion Lagrangian terms*************************)
|
---|
793 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
---|
794 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright},
|
---|
795 |
|
---|
796 | Lkin = I uqbar.Ga[mu].del[uq, mu] +
|
---|
797 | I dqbar.Ga[mu].del[dq, mu] +
|
---|
798 | I lbar.Ga[mu].del[l, mu] +
|
---|
799 | I vlbar.Ga[mu].del[vl, mu];
|
---|
800 |
|
---|
801 | LQCD = gs (uqbar.Ga[mu].T[a].uq +
|
---|
802 | dqbar.Ga[mu].T[a].dq)G[mu, a];
|
---|
803 |
|
---|
804 | LBright =
|
---|
805 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*)
|
---|
806 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*)
|
---|
807 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*)
|
---|
808 |
|
---|
809 | LBleft =
|
---|
810 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*)
|
---|
811 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*)
|
---|
812 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*)
|
---|
813 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*)
|
---|
814 |
|
---|
815 | LWleft = ee/sw/2(
|
---|
816 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
817 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
818 |
|
---|
819 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] +
|
---|
820 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+
|
---|
821 |
|
---|
822 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
---|
823 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*)
|
---|
824 |
|
---|
825 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] +
|
---|
826 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu]
|
---|
827 | );
|
---|
828 |
|
---|
829 | Lkin + LQCD + LBright + LBleft + LWleft];
|
---|
830 |
|
---|
831 | (******************** Higgs Lagrangian terms****************************)
|
---|
832 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
|
---|
833 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
|
---|
834 |
|
---|
835 |
|
---|
836 |
|
---|
837 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi},
|
---|
838 |
|
---|
839 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
840 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
841 |
|
---|
842 | (*Y_phi=1*)
|
---|
843 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
844 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
845 |
|
---|
846 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
|
---|
847 |
|
---|
848 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]];
|
---|
849 |
|
---|
850 |
|
---|
851 |
|
---|
852 |
|
---|
853 |
|
---|
854 | (*************** Yukawa Lagrangian***********************)
|
---|
855 | LYuk := If[FeynmanGauge,
|
---|
856 |
|
---|
857 | Module[{s,r,n,m,i}, -
|
---|
858 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) -
|
---|
859 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] -
|
---|
860 |
|
---|
861 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*)
|
---|
862 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) -
|
---|
863 |
|
---|
864 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) -
|
---|
865 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2]
|
---|
866 | ],
|
---|
867 |
|
---|
868 | Module[{s,r,n,m,i}, -
|
---|
869 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] -
|
---|
870 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] -
|
---|
871 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2]
|
---|
872 | ]
|
---|
873 | ];
|
---|
874 |
|
---|
875 | LYukawa := LYuk + HC[LYuk];
|
---|
876 |
|
---|
877 |
|
---|
878 |
|
---|
879 | (**************Ghost terms**************************)
|
---|
880 | (* Now we need the ghost terms which are of the form: *)
|
---|
881 | (* - g * antighost * d_BRST G *)
|
---|
882 | (* where d_BRST G is BRST transform of the gauge fixing function. *)
|
---|
883 |
|
---|
884 | LGhost := If[FeynmanGauge,
|
---|
885 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB},
|
---|
886 |
|
---|
887 | (***********First the pure gauge piece.**********************)
|
---|
888 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
---|
889 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
---|
890 |
|
---|
891 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ];
|
---|
892 |
|
---|
893 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu];
|
---|
894 |
|
---|
895 | dBRSTB[mu_] := cw/ee del[ghB, mu];
|
---|
896 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu];
|
---|
897 |
|
---|
898 | (***********Next the piece from the scalar field.************)
|
---|
899 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) +
|
---|
900 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) -
|
---|
901 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) -
|
---|
902 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) -
|
---|
903 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ;
|
---|
904 |
|
---|
905 |
|
---|
906 | (***********Now add the pieces together.********************)
|
---|
907 | LGhostG + LGhostWi + LGhostB + LGhostphi]
|
---|
908 |
|
---|
909 | ,
|
---|
910 |
|
---|
911 | (*If unitary gauge, only include the gluonic ghost.*)
|
---|
912 | Block[{dBRSTG,LGhostG},
|
---|
913 |
|
---|
914 | (***********First the pure gauge piece.**********************)
|
---|
915 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
---|
916 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
---|
917 |
|
---|
918 | (***********Now add the pieces together.********************)
|
---|
919 | LGhostG]
|
---|
920 |
|
---|
921 | ];
|
---|
922 |
|
---|
923 |
|
---|
924 | (* anomalous quartic couplings as defined in PRD74, 073005 *)
|
---|
925 |
|
---|
926 |
|
---|
927 | (* S,0 *)
|
---|
928 |
|
---|
929 | LS0 := Block[{PMVec, WVec, Dc, Dcbar},
|
---|
930 |
|
---|
931 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
932 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
933 |
|
---|
934 | (*Y_phi=1*)
|
---|
935 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
936 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
937 |
|
---|
938 | FS0 (Dcbar[Phibar, mu]). Dc[Phi, nu] (Dcbar[Phibar, mu]).Dc[Phi, nu]
|
---|
939 |
|
---|
940 | ];
|
---|
941 |
|
---|
942 | (* S,1 *)
|
---|
943 |
|
---|
944 | LS1 := Block[{PMVec, WVec, Dc, Dcbar},
|
---|
945 |
|
---|
946 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
947 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
948 |
|
---|
949 | (*Y_phi=1*)
|
---|
950 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
951 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
952 |
|
---|
953 | FS1 (Dcbar[Phibar, mu]). Dc[Phi, mu] (Dcbar[Phibar, nu]).Dc[Phi, nu]
|
---|
954 |
|
---|
955 | ];
|
---|
956 |
|
---|
957 |
|
---|
958 | (* M,0 *)
|
---|
959 |
|
---|
960 | LM0 := Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
---|
961 |
|
---|
962 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
963 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
964 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
965 |
|
---|
966 | (*Y_phi=1*)
|
---|
967 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
968 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
969 |
|
---|
970 |
|
---|
971 | FM0/4 (Dcbar[Phibar, alpha]).Dc[Phi, alpha] Tr[(FSvec[mu,nu].PMVec).(FSvec[mu,nu].PMVec)]
|
---|
972 |
|
---|
973 | ];
|
---|
974 |
|
---|
975 |
|
---|
976 | (* M,1 *)
|
---|
977 |
|
---|
978 | LM1 := Block[{PMVec, WVec, FSvec, Dc, Dcbar},
|
---|
979 |
|
---|
980 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
981 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
982 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
983 |
|
---|
984 | (*Y_phi=1*)
|
---|
985 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
986 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
987 |
|
---|
988 |
|
---|
989 | FM1/4 (Dcbar[Phibar, beta]).Dc[Phi, mu] Tr[(FSvec[mu,nu].PMVec).(FSvec[nu,beta].PMVec)]
|
---|
990 |
|
---|
991 | ];
|
---|
992 |
|
---|
993 |
|
---|
994 |
|
---|
995 | (* M,2 *)
|
---|
996 |
|
---|
997 | LM2 := Block[{PMVec, WVec, Dc, Dcbar},
|
---|
998 |
|
---|
999 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1000 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1001 |
|
---|
1002 | (*Y_phi=1*)
|
---|
1003 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1004 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1005 |
|
---|
1006 |
|
---|
1007 | (* FM2 (Dcbar[Phibar, mu]).Dc[Phi, mu] FS[B,mu,nu] FS[B,mu,nu] *)
|
---|
1008 |
|
---|
1009 | FM2 (Dcbar[Phibar, beta]).Dc[Phi, beta] FS[B,mu,nu] FS[B,mu,nu]
|
---|
1010 |
|
---|
1011 | ];
|
---|
1012 |
|
---|
1013 | (* M,3 *)
|
---|
1014 |
|
---|
1015 | LM3 := Block[{PMVec, WVec, Dc, Dcbar},
|
---|
1016 |
|
---|
1017 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1018 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1019 |
|
---|
1020 | (*Y_phi=1*)
|
---|
1021 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1022 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1023 |
|
---|
1024 |
|
---|
1025 |
|
---|
1026 | FM3 (Dcbar[Phibar, mu]).Dc[Phi, beta] FS[B,mu,nu] FS[B,nu,beta]
|
---|
1027 | ];
|
---|
1028 |
|
---|
1029 |
|
---|
1030 | (* M,4 *)
|
---|
1031 |
|
---|
1032 | LM4 := Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
---|
1033 |
|
---|
1034 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1035 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1036 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1037 |
|
---|
1038 | (*Y_phi=1*)
|
---|
1039 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1040 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1041 |
|
---|
1042 |
|
---|
1043 |
|
---|
1044 | FM4/2 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).Dc[Phi, mu] FS[B,beta,nu]
|
---|
1045 |
|
---|
1046 |
|
---|
1047 | ];
|
---|
1048 |
|
---|
1049 | (* M,5 *)
|
---|
1050 |
|
---|
1051 | LM5 := Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
---|
1052 |
|
---|
1053 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1054 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1055 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1056 |
|
---|
1057 | (*Y_phi=1*)
|
---|
1058 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1059 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1060 |
|
---|
1061 |
|
---|
1062 | FM5/2 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).Dc[Phi, nu] FS[B,beta,mu]
|
---|
1063 |
|
---|
1064 | ];
|
---|
1065 |
|
---|
1066 |
|
---|
1067 | (* M,6 *)
|
---|
1068 |
|
---|
1069 | LM6 :=Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
---|
1070 |
|
---|
1071 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1072 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1073 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1074 |
|
---|
1075 | (*Y_phi=1*)
|
---|
1076 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1077 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | FM6/4 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).(FSvec[beta,nu].PMVec).Dc[Phi, mu]
|
---|
1081 |
|
---|
1082 | ];
|
---|
1083 |
|
---|
1084 | (* M,7 *)
|
---|
1085 |
|
---|
1086 | LM7 :=Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
---|
1087 |
|
---|
1088 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1089 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1090 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1091 |
|
---|
1092 | (*Y_phi=1*)
|
---|
1093 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
---|
1094 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
---|
1095 |
|
---|
1096 |
|
---|
1097 | FM7/4 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).(FSvec[beta,mu].PMVec).Dc[Phi, nu]
|
---|
1098 |
|
---|
1099 | ];
|
---|
1100 |
|
---|
1101 |
|
---|
1102 | (* T,0 *)
|
---|
1103 |
|
---|
1104 | LT0 := Block[{PMVec, FSVec },
|
---|
1105 |
|
---|
1106 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1107 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1108 |
|
---|
1109 | FT0/16 Tr[(FSvec[alpha,beta].PMVec).(FSvec[alpha,beta].PMVec)] Tr[(FSvec[mu,nu].PMVec).(FSvec[mu,nu].PMVec)]
|
---|
1110 |
|
---|
1111 | ];
|
---|
1112 |
|
---|
1113 | (* T,1 *)
|
---|
1114 |
|
---|
1115 | LT1 := Block[{PMVec, FSVec},
|
---|
1116 |
|
---|
1117 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1118 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1119 |
|
---|
1120 | FT1/16 Tr[(FSvec[alpha,nu].PMVec).(FSvec[mu,beta].PMVec)] Tr[(FSvec[mu,beta].PMVec).(FSvec[alpha,nu].PMVec)]
|
---|
1121 |
|
---|
1122 | ];
|
---|
1123 |
|
---|
1124 |
|
---|
1125 | (* T,2 *)
|
---|
1126 |
|
---|
1127 | LT2 := Block[{PMVec, FSVec},
|
---|
1128 |
|
---|
1129 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1130 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1131 |
|
---|
1132 | FT2/16 Tr[(FSvec[alpha,mu].PMVec).(FSvec[mu,beta].PMVec)] Tr[(FSvec[beta,nu].PMVec).(FSvec[nu,alpha].PMVec)]
|
---|
1133 |
|
---|
1134 | ];
|
---|
1135 |
|
---|
1136 | (* T,3 identicaly zero!*)
|
---|
1137 |
|
---|
1138 | LT3 := Block[{PMVec, FSVec},
|
---|
1139 |
|
---|
1140 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1141 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1142 |
|
---|
1143 | FT3/8 Tr[(FSvec[alpha,mu].PMVec).(FSvec[mu,beta].PMVec).(FSvec[nu,alpha].PMVec)] FS[B, beta, nu]
|
---|
1144 |
|
---|
1145 | ];
|
---|
1146 |
|
---|
1147 |
|
---|
1148 | (* T,4: identicaly zero *)
|
---|
1149 |
|
---|
1150 | LT4 := Block[{PMVec, FSVec},
|
---|
1151 |
|
---|
1152 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1153 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1154 |
|
---|
1155 |
|
---|
1156 | FT4/8 Tr[(FSvec[alpha,mu].PMVec).(FSvec[alpha, mu].PMVec).(FSvec[beta, nu].PMVec)] FS[B, beta, nu]
|
---|
1157 |
|
---|
1158 | ];
|
---|
1159 |
|
---|
1160 |
|
---|
1161 | (* T,5 *)
|
---|
1162 |
|
---|
1163 | LT5 := Block[{PMVec, FSVec},
|
---|
1164 |
|
---|
1165 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1166 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1167 |
|
---|
1168 |
|
---|
1169 | FT5/4 Tr[(FSvec[mu,nu].PMVec).(FSvec[mu, nu].PMVec)] FS[B, beta, alpha] FS[B, beta, alpha]
|
---|
1170 |
|
---|
1171 | ];
|
---|
1172 |
|
---|
1173 |
|
---|
1174 | (* T,6 *)
|
---|
1175 |
|
---|
1176 | LT6 := Block[{PMVec, FSVec},
|
---|
1177 |
|
---|
1178 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1179 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1180 |
|
---|
1181 | FT6/4 Tr[(FSvec[alpha,nu].PMVec).(FSvec[mu, beta].PMVec)] FS[B, mu, beta] FS[B, alpha, nu]
|
---|
1182 |
|
---|
1183 | ];
|
---|
1184 |
|
---|
1185 |
|
---|
1186 | (* T,7 *)
|
---|
1187 |
|
---|
1188 | LT7 := Block[{PMVec, FSVec},
|
---|
1189 |
|
---|
1190 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1191 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
---|
1192 |
|
---|
1193 | FT7/4 Tr[(FSvec[alpha, mu].PMVec).(FSvec[mu, beta].PMVec)] FS[B, beta, nu] FS[B, nu, alpha]
|
---|
1194 |
|
---|
1195 | ];
|
---|
1196 |
|
---|
1197 |
|
---|
1198 | (* T,8: *)
|
---|
1199 |
|
---|
1200 | LT8 := Block[{PMVec, WVec},
|
---|
1201 |
|
---|
1202 | PMVec = Table[PauliSigma[i], {i, 3}];
|
---|
1203 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1204 |
|
---|
1205 |
|
---|
1206 | FT8 (del[B[nu], mu] - del[B[mu], nu] )*
|
---|
1207 | (del[B[nu], mu] - del[B[mu], nu] )*
|
---|
1208 | (del[B[beta], alpha] - del[B[alpha], beta] )*
|
---|
1209 | (del[B[beta], alpha] - del[B[alpha], beta] )
|
---|
1210 |
|
---|
1211 | ];
|
---|
1212 |
|
---|
1213 | (* T,9: *)
|
---|
1214 |
|
---|
1215 | LT9 := Block[{PMVec, WVec},
|
---|
1216 |
|
---|
1217 | PMVec = Table[PauliSigma[i], {I, 3}];
|
---|
1218 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
---|
1219 |
|
---|
1220 | FT9 FS[B, mu, nu] FS[B, nu, alpha] FS[B, alpha, beta] FS[B, beta, mu]
|
---|
1221 |
|
---|
1222 | ];
|
---|
1223 |
|
---|
1224 |
|
---|
1225 | (* ------------------------------------------------------- *)
|
---|
1226 |
|
---|
1227 |
|
---|
1228 | (*********Total SM Lagrangian in the unitary gauge*******)
|
---|
1229 |
|
---|
1230 | LSM := LGauge + LHiggs + LFermions + LYukawa ;
|
---|
1231 |
|
---|
1232 | LQS = LS0 + LS1;
|
---|
1233 |
|
---|
1234 | LQM = LM0 + LM1 + LM2 + LM3 + LM4 + LM5 + LM6 + LM7;
|
---|
1235 |
|
---|
1236 | LQT = LT0 + LT1 + LT2 + LT3 + LT4 + LT5 + LT6 + LT7 + LT8 + LT9;
|
---|
1237 |
|
---|
1238 | LQuartic := LSM + LQS + LQM + LQT;
|
---|
1239 |
|
---|
1240 |
|
---|
1241 |
|
---|
1242 |
|
---|
1243 |
|
---|