| 1 | (***************************************************************************************************************)
|
|---|
| 2 | (****** This is the FeynRules mod-file for the Standard model ******)
|
|---|
| 3 | (****** ******)
|
|---|
| 4 | (****** Authors: N. Christensen, C. Duhr ******)
|
|---|
| 5 | (****** ******)
|
|---|
| 6 | (****** Choose whether Feynman gauge is desired. ******)
|
|---|
| 7 | (****** If set to False, unitary gauge is assumed. ****)
|
|---|
| 8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
|---|
| 9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
|---|
| 10 | (***************************************************************************************************************)
|
|---|
| 11 |
|
|---|
| 12 | M$ModelName = "Standard Model and anomalous quartic couplings";
|
|---|
| 13 |
|
|---|
| 14 |
|
|---|
| 15 | M$Information = {Authors -> {"N. Christensen", "C. Duhr", "modified by OJPE and MCGG"},
|
|---|
| 16 | Version -> "1.4",
|
|---|
| 17 | Date -> "02. 06. 2009, last change 13. 08. 2012",
|
|---|
| 18 | Institutions -> {"Michigan State University", "Universite catholique de Louvain (CP3)",
|
|---|
| 19 | "USP", "Stony Brook"},
|
|---|
| 20 | Emails -> {"neil@pa.msu.edu", "claude.duhr@uclouvain.be", "eboli@fma.if.usp.br",
|
|---|
| 21 | "concha@max2.physics.sunysb.edu"},
|
|---|
| 22 | URLs -> "http://feynrules.phys.ucl.ac.be/view/Main/StandardModel"};
|
|---|
| 23 |
|
|---|
| 24 | (*
|
|---|
| 25 | V1.3 - Updated Top quark mass to 2010 PDG value (172 GeV)
|
|---|
| 26 | V1.2 - Set FeynmanGauge=True as default.
|
|---|
| 27 | Set Gluonic ghosts to be included in both gauges.
|
|---|
| 28 | V1.1 - Fixed yukawa couplings in Feynman gauge.
|
|---|
| 29 | Changed yd[n] CKM[n,m] to yd[m] CKM[n,m].
|
|---|
| 30 | Changed yu[n] Conjugate[CKM[m,n]] to yu[m] Conjugate[CKM[m,n]].
|
|---|
| 31 | V1.3 - Added yukawa couplings for all fermions for gauge invariance.
|
|---|
| 32 | Added yukawa couplings for 1st generation fermions to Massless.rst.
|
|---|
| 33 | Updated parameters to PDG 2010.
|
|---|
| 34 | V1.4 Anomalous quartic gauge-boson couplings added by OJPE and MCGG
|
|---|
| 35 | *)
|
|---|
| 36 |
|
|---|
| 37 | FeynmanGauge = True;
|
|---|
| 38 |
|
|---|
| 39 | (* FR$DSign=-1 *)
|
|---|
| 40 |
|
|---|
| 41 | (******* Index definitions ********)
|
|---|
| 42 |
|
|---|
| 43 | IndexRange[ Index[Generation] ] = Range[3]
|
|---|
| 44 |
|
|---|
| 45 | IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]
|
|---|
| 46 |
|
|---|
| 47 | IndexRange[ Index[Gluon] ] = NoUnfold[Range[8]]
|
|---|
| 48 |
|
|---|
| 49 | IndexRange[ Index[SU2W] ] = Unfold[Range[3]]
|
|---|
| 50 |
|
|---|
| 51 |
|
|---|
| 52 | IndexStyle[Colour, i]
|
|---|
| 53 |
|
|---|
| 54 | IndexStyle[Generation, f]
|
|---|
| 55 |
|
|---|
| 56 | IndexStyle[Gluon ,a]
|
|---|
| 57 |
|
|---|
| 58 | IndexStyle[SU2W ,k]
|
|---|
| 59 |
|
|---|
| 60 |
|
|---|
| 61 | (******* Gauge parameters (for FeynArts) ********)
|
|---|
| 62 |
|
|---|
| 63 | GaugeXi[ V[1] ] = GaugeXi[A];
|
|---|
| 64 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
|---|
| 65 | GaugeXi[ V[3] ] = GaugeXi[W];
|
|---|
| 66 | GaugeXi[ V[4] ] = GaugeXi[G];
|
|---|
| 67 | GaugeXi[ S[1] ] = 1;
|
|---|
| 68 | GaugeXi[ S[2] ] = GaugeXi[Z];
|
|---|
| 69 | GaugeXi[ S[3] ] = GaugeXi[W];
|
|---|
| 70 | GaugeXi[ U[1] ] = GaugeXi[A];
|
|---|
| 71 | GaugeXi[ U[2] ] = GaugeXi[Z];
|
|---|
| 72 | GaugeXi[ U[31] ] = GaugeXi[W];
|
|---|
| 73 | GaugeXi[ U[32] ] = GaugeXi[W];
|
|---|
| 74 | GaugeXi[ U[4] ] = GaugeXi[G];
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 | (**************** Parameters *************)
|
|---|
| 78 |
|
|---|
| 79 | M$Parameters = {
|
|---|
| 80 |
|
|---|
| 81 | (* External parameters *)
|
|---|
| 82 |
|
|---|
| 83 | \[Alpha]EWM1== {
|
|---|
| 84 | ParameterType -> External,
|
|---|
| 85 | BlockName -> SMINPUTS,
|
|---|
| 86 | ParameterName -> aEWM1,
|
|---|
| 87 | InteractionOrder -> {QED, -2},
|
|---|
| 88 | Value -> 127.9,
|
|---|
| 89 | Description -> "Inverse of the electroweak coupling constant"},
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | Gf == {
|
|---|
| 93 | ParameterType -> External,
|
|---|
| 94 | BlockName -> SMINPUTS,
|
|---|
| 95 | TeX -> Subscript[G, f],
|
|---|
| 96 | InteractionOrder -> {QED, 2},
|
|---|
| 97 | Value -> 1.16637 * 10^(-5),
|
|---|
| 98 | Description -> "Fermi constant"},
|
|---|
| 99 |
|
|---|
| 100 | \[Alpha]S == {
|
|---|
| 101 | ParameterType -> External,
|
|---|
| 102 | BlockName -> SMINPUTS,
|
|---|
| 103 | TeX -> Subscript[\[Alpha], s],
|
|---|
| 104 | ParameterName -> aS,
|
|---|
| 105 | InteractionOrder -> {QCD, 2},
|
|---|
| 106 | Value -> 0.1184,
|
|---|
| 107 | Description -> "Strong coupling constant at the Z pole."},
|
|---|
| 108 |
|
|---|
| 109 | ymdo == {
|
|---|
| 110 | ParameterType -> External,
|
|---|
| 111 | BlockName -> YUKAWA,
|
|---|
| 112 | Value -> 5.04*10^(-3),
|
|---|
| 113 | OrderBlock -> {1},
|
|---|
| 114 | Description -> "Down Yukawa mass"},
|
|---|
| 115 |
|
|---|
| 116 |
|
|---|
| 117 | ymup == {
|
|---|
| 118 | ParameterType -> External,
|
|---|
| 119 | BlockName -> YUKAWA,
|
|---|
| 120 | Value -> 2.55*10^(-3),
|
|---|
| 121 | OrderBlock -> {2},
|
|---|
| 122 | Description -> "Up Yukawa mass"},
|
|---|
| 123 |
|
|---|
| 124 | yms == {
|
|---|
| 125 | ParameterType -> External,
|
|---|
| 126 | BlockName -> YUKAWA,
|
|---|
| 127 | Value -> 0.101,
|
|---|
| 128 | OrderBlock -> {3},
|
|---|
| 129 | Description -> "Strange Yukawa mass"},
|
|---|
| 130 |
|
|---|
| 131 |
|
|---|
| 132 | ymc == {
|
|---|
| 133 | ParameterType -> External,
|
|---|
| 134 | BlockName -> YUKAWA,
|
|---|
| 135 | Value -> 1.27,
|
|---|
| 136 | OrderBlock -> {4},
|
|---|
| 137 | Description -> "Charm Yukawa mass"},
|
|---|
| 138 |
|
|---|
| 139 | ymb == {
|
|---|
| 140 | ParameterType -> External,
|
|---|
| 141 | BlockName -> YUKAWA,
|
|---|
| 142 | Value -> 4.7,
|
|---|
| 143 | OrderBlock -> {5},
|
|---|
| 144 | Description -> "Bottom Yukawa mass"},
|
|---|
| 145 |
|
|---|
| 146 | ymt == {
|
|---|
| 147 | ParameterType -> External,
|
|---|
| 148 | BlockName -> YUKAWA,
|
|---|
| 149 | Value -> 172.0,
|
|---|
| 150 | OrderBlock -> {6},
|
|---|
| 151 | Description -> "Top Yukawa mass"},
|
|---|
| 152 |
|
|---|
| 153 | yme == {
|
|---|
| 154 | ParameterType -> External,
|
|---|
| 155 | BlockName -> YUKAWA,
|
|---|
| 156 | Value -> 5.11*10^(-4),
|
|---|
| 157 | OrderBlock -> {11},
|
|---|
| 158 | Description -> "Electron Yukawa mass"},
|
|---|
| 159 |
|
|---|
| 160 | ymm == {
|
|---|
| 161 | ParameterType -> External,
|
|---|
| 162 | BlockName -> YUKAWA,
|
|---|
| 163 | Value -> 0.10566,
|
|---|
| 164 | OrderBlock -> {13},
|
|---|
| 165 | Description -> "Muon Yukawa mass"},
|
|---|
| 166 |
|
|---|
| 167 | ymtau == {
|
|---|
| 168 | ParameterType -> External,
|
|---|
| 169 | BlockName -> YUKAWA,
|
|---|
| 170 | Value -> 1.777,
|
|---|
| 171 | OrderBlock -> {15},
|
|---|
| 172 | Description -> "Tau Yukawa mass"},
|
|---|
| 173 |
|
|---|
| 174 | cabi == {
|
|---|
| 175 | TeX -> Subscript[\[Theta], c],
|
|---|
| 176 | ParameterType -> External,
|
|---|
| 177 | BlockName -> CKMBLOCK,
|
|---|
| 178 | Value -> 0.227736,
|
|---|
| 179 | Description -> "Cabibbo angle"},
|
|---|
| 180 |
|
|---|
| 181 | (* OjpE *)
|
|---|
| 182 |
|
|---|
| 183 | FS0 == {
|
|---|
| 184 | ParameterType -> External,
|
|---|
| 185 | BlockName -> ANOINPUTS,
|
|---|
| 186 | TeX -> Subscript[f, S0],
|
|---|
| 187 | InteractionOrder -> {NP, 1},
|
|---|
| 188 | Value -> 1.,
|
|---|
| 189 | Description -> "L_S,0 coefficient"},
|
|---|
| 190 |
|
|---|
| 191 |
|
|---|
| 192 | FS1 == {
|
|---|
| 193 | ParameterType -> External,
|
|---|
| 194 | BlockName -> ANOINPUTS,
|
|---|
| 195 | TeX -> Subscript[f, S1],
|
|---|
| 196 | InteractionOrder -> {NP, 1},
|
|---|
| 197 | Value -> 1.,
|
|---|
| 198 | Description -> "L_S,1 coefficient"},
|
|---|
| 199 |
|
|---|
| 200 | FM0 == {
|
|---|
| 201 | ParameterType -> External,
|
|---|
| 202 | BlockName -> ANOINPUTS,
|
|---|
| 203 | TeX -> Subscript[f, M0],
|
|---|
| 204 | InteractionOrder -> {NP, 1},
|
|---|
| 205 | Value -> 1.,
|
|---|
| 206 | Description -> "L_M,0 coefficient"},
|
|---|
| 207 |
|
|---|
| 208 | FM1 == {
|
|---|
| 209 | ParameterType -> External,
|
|---|
| 210 | BlockName -> ANOINPUTS,
|
|---|
| 211 | TeX -> Subscript[f, M1],
|
|---|
| 212 | InteractionOrder -> {NP, 1},
|
|---|
| 213 | Value -> 1.,
|
|---|
| 214 | Description -> "L_M,1 coefficient"},
|
|---|
| 215 |
|
|---|
| 216 | FM2 == {
|
|---|
| 217 | ParameterType -> External,
|
|---|
| 218 | BlockName -> ANOINPUTS,
|
|---|
| 219 | TeX -> Subscript[f, M2],
|
|---|
| 220 | InteractionOrder -> {NP, 1},
|
|---|
| 221 | Value -> 1.,
|
|---|
| 222 | Description -> "L_M,2 coefficient"},
|
|---|
| 223 |
|
|---|
| 224 | FM3 == {
|
|---|
| 225 | ParameterType -> External,
|
|---|
| 226 | BlockName -> ANOINPUTS,
|
|---|
| 227 | TeX -> Subscript[f, M3],
|
|---|
| 228 | InteractionOrder -> {NP, 1},
|
|---|
| 229 | Value -> 1.,
|
|---|
| 230 | Description -> "L_M,3 coefficient"},
|
|---|
| 231 |
|
|---|
| 232 | FM4 == {
|
|---|
| 233 | ParameterType -> External,
|
|---|
| 234 | BlockName -> ANOINPUTS,
|
|---|
| 235 | TeX -> Subscript[f, M4],
|
|---|
| 236 | InteractionOrder -> {NP, 1},
|
|---|
| 237 | Value -> 1.,
|
|---|
| 238 | Description -> "L_M,4 coefficient"},
|
|---|
| 239 |
|
|---|
| 240 | FM5 == {
|
|---|
| 241 | ParameterType -> External,
|
|---|
| 242 | BlockName -> ANOINPUTS,
|
|---|
| 243 | TeX -> Subscript[f, M5],
|
|---|
| 244 | InteractionOrder -> {NP, 1},
|
|---|
| 245 | Value -> 1.,
|
|---|
| 246 | Description -> "L_M,5 coefficient"},
|
|---|
| 247 |
|
|---|
| 248 | FM6 == {
|
|---|
| 249 | ParameterType -> External,
|
|---|
| 250 | BlockName -> ANOINPUTS,
|
|---|
| 251 | TeX -> Subscript[f, M6],
|
|---|
| 252 | InteractionOrder -> {NP, 1},
|
|---|
| 253 | Value -> 1.,
|
|---|
| 254 | Description -> "L_M,6 coefficient"},
|
|---|
| 255 |
|
|---|
| 256 | FM7 == {
|
|---|
| 257 | ParameterType -> External,
|
|---|
| 258 | BlockName -> ANOINPUTS,
|
|---|
| 259 | TeX -> Subscript[f, M7],
|
|---|
| 260 | InteractionOrder -> {NP, 1},
|
|---|
| 261 | Value -> 1.,
|
|---|
| 262 | Description -> "L_M,7 coefficient"},
|
|---|
| 263 |
|
|---|
| 264 | FT0 == {
|
|---|
| 265 | ParameterType -> External,
|
|---|
| 266 | BlockName -> ANOINPUTS,
|
|---|
| 267 | TeX -> Subscript[f, T0],
|
|---|
| 268 | InteractionOrder -> {NP, 1},
|
|---|
| 269 | Value -> 1.,
|
|---|
| 270 | Description -> "L_T,0 coefficient"},
|
|---|
| 271 |
|
|---|
| 272 | FT1 == {
|
|---|
| 273 | ParameterType -> External,
|
|---|
| 274 | BlockName -> ANOINPUTS,
|
|---|
| 275 | TeX -> Subscript[f, T1],
|
|---|
| 276 | InteractionOrder -> {NP, 1},
|
|---|
| 277 | Value -> 1.,
|
|---|
| 278 | Description -> "L_T,1 coefficient"},
|
|---|
| 279 |
|
|---|
| 280 | FT2 == {
|
|---|
| 281 | ParameterType -> External,
|
|---|
| 282 | BlockName -> ANOINPUTS,
|
|---|
| 283 | TeX -> Subscript[f, T2],
|
|---|
| 284 | InteractionOrder -> {NP, 1},
|
|---|
| 285 | Value -> 1.,
|
|---|
| 286 | Description -> "L_T,2 coefficient"},
|
|---|
| 287 |
|
|---|
| 288 | FT3 == {
|
|---|
| 289 | ParameterType -> External,
|
|---|
| 290 | BlockName -> ANOINPUTS,
|
|---|
| 291 | TeX -> Subscript[f, T3],
|
|---|
| 292 | InteractionOrder -> {NP, 1},
|
|---|
| 293 | Value -> 1.,
|
|---|
| 294 | Description -> "L_T,3 coefficient"},
|
|---|
| 295 |
|
|---|
| 296 | FT4 == {
|
|---|
| 297 | ParameterType -> External,
|
|---|
| 298 | BlockName -> ANOINPUTS,
|
|---|
| 299 | TeX -> Subscript[f, T4],
|
|---|
| 300 | InteractionOrder -> {NP, 1},
|
|---|
| 301 | Value -> 1.,
|
|---|
| 302 | Description -> "L_T,4 coefficient"},
|
|---|
| 303 |
|
|---|
| 304 | FT5 == {
|
|---|
| 305 | ParameterType -> External,
|
|---|
| 306 | BlockName -> ANOINPUTS,
|
|---|
| 307 | TeX -> Subscript[f, T5],
|
|---|
| 308 | InteractionOrder -> {NP, 1},
|
|---|
| 309 | Value -> 1.,
|
|---|
| 310 | Description -> "L_T,5 coefficient"},
|
|---|
| 311 |
|
|---|
| 312 | FT6 == {
|
|---|
| 313 | ParameterType -> External,
|
|---|
| 314 | BlockName -> ANOINPUTS,
|
|---|
| 315 | TeX -> Subscript[f, T6],
|
|---|
| 316 | InteractionOrder -> {NP, 1},
|
|---|
| 317 | Value -> 1.,
|
|---|
| 318 | Description -> "L_T,6 coefficient"},
|
|---|
| 319 |
|
|---|
| 320 | FT7 == {
|
|---|
| 321 | ParameterType -> External,
|
|---|
| 322 | BlockName -> ANOINPUTS,
|
|---|
| 323 | TeX -> Subscript[f, T7],
|
|---|
| 324 | InteractionOrder -> {NP, 1},
|
|---|
| 325 | Value -> 1.,
|
|---|
| 326 | Description -> "L_T,7 coefficient"},
|
|---|
| 327 |
|
|---|
| 328 | FT8 == {
|
|---|
| 329 | ParameterType -> External,
|
|---|
| 330 | BlockName -> ANOINPUTS,
|
|---|
| 331 | TeX -> Subscript[f, T8],
|
|---|
| 332 | InteractionOrder -> {NP, 1},
|
|---|
| 333 | Value -> 1.,
|
|---|
| 334 | Description -> "L_T,8 coefficient"},
|
|---|
| 335 |
|
|---|
| 336 | FT9 == {
|
|---|
| 337 | ParameterType -> External,
|
|---|
| 338 | BlockName -> ANOINPUTS,
|
|---|
| 339 | TeX -> Subscript[f, T9],
|
|---|
| 340 | InteractionOrder -> {NP, 1},
|
|---|
| 341 | Value -> 1.,
|
|---|
| 342 | Description -> "L_T,9 coefficient"},
|
|---|
| 343 |
|
|---|
| 344 | (* ------------------------------------------------------- *)
|
|---|
| 345 |
|
|---|
| 346 | (* Internal Parameters *)
|
|---|
| 347 |
|
|---|
| 348 | \[Alpha]EW == {
|
|---|
| 349 | ParameterType -> Internal,
|
|---|
| 350 | Value -> 1/\[Alpha]EWM1,
|
|---|
| 351 | TeX -> Subscript[\[Alpha], EW],
|
|---|
| 352 | ParameterName -> aEW,
|
|---|
| 353 | InteractionOrder -> {QED, 2},
|
|---|
| 354 | Description -> "Electroweak coupling contant"},
|
|---|
| 355 |
|
|---|
| 356 |
|
|---|
| 357 | MW == {
|
|---|
| 358 | ParameterType -> Internal,
|
|---|
| 359 | Value -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*\[Alpha]EW/Gf*MZ^2]],
|
|---|
| 360 | TeX -> Subscript[M, W],
|
|---|
| 361 | Description -> "W mass"},
|
|---|
| 362 |
|
|---|
| 363 | sw2 == {
|
|---|
| 364 | ParameterType -> Internal,
|
|---|
| 365 | Value -> 1-(MW/MZ)^2,
|
|---|
| 366 | Description -> "Squared Sin of the Weinberg angle"},
|
|---|
| 367 |
|
|---|
| 368 | ee == {
|
|---|
| 369 | TeX -> e,
|
|---|
| 370 | ParameterType -> Internal,
|
|---|
| 371 | Value -> Sqrt[4 Pi \[Alpha]EW],
|
|---|
| 372 | InteractionOrder -> {QED, 1},
|
|---|
| 373 | Description -> "Electric coupling constant"},
|
|---|
| 374 |
|
|---|
| 375 | cw == {
|
|---|
| 376 | TeX -> Subscript[c, w],
|
|---|
| 377 | ParameterType -> Internal,
|
|---|
| 378 | Value -> Sqrt[1 - sw2],
|
|---|
| 379 | Description -> "Cos of the Weinberg angle"},
|
|---|
| 380 |
|
|---|
| 381 | sw == {
|
|---|
| 382 | TeX -> Subscript[s, w],
|
|---|
| 383 | ParameterType -> Internal,
|
|---|
| 384 | Value -> Sqrt[sw2],
|
|---|
| 385 | Description -> "Sin of the Weinberg angle"},
|
|---|
| 386 |
|
|---|
| 387 | gw == {
|
|---|
| 388 | TeX -> Subscript[g, w],
|
|---|
| 389 | ParameterType -> Internal,
|
|---|
| 390 | Value -> ee / sw,
|
|---|
| 391 | InteractionOrder -> {QED, 1},
|
|---|
| 392 | Description -> "Weak coupling constant"},
|
|---|
| 393 |
|
|---|
| 394 | g1 == {
|
|---|
| 395 | TeX -> Subscript[g, 1],
|
|---|
| 396 | ParameterType -> Internal,
|
|---|
| 397 | Value -> ee / cw,
|
|---|
| 398 | InteractionOrder -> {QED, 1},
|
|---|
| 399 | Description -> "U(1)Y coupling constant"},
|
|---|
| 400 |
|
|---|
| 401 | gs == {
|
|---|
| 402 | TeX -> Subscript[g, s],
|
|---|
| 403 | ParameterType -> Internal,
|
|---|
| 404 | Value -> Sqrt[4 Pi \[Alpha]S],
|
|---|
| 405 | InteractionOrder -> {QCD, 1},
|
|---|
| 406 | ParameterName -> G,
|
|---|
| 407 | Description -> "Strong coupling constant"},
|
|---|
| 408 |
|
|---|
| 409 |
|
|---|
| 410 | v == {
|
|---|
| 411 | ParameterType -> Internal,
|
|---|
| 412 | Value -> 2*MW*sw/ee,
|
|---|
| 413 | InteractionOrder -> {QED, -1},
|
|---|
| 414 | Description -> "Higgs VEV"},
|
|---|
| 415 |
|
|---|
| 416 | \[Lambda] == {
|
|---|
| 417 | ParameterType -> Internal,
|
|---|
| 418 | Value -> MH^2/(2*v^2),
|
|---|
| 419 | InteractionOrder -> {QED, 2},
|
|---|
| 420 | ParameterName -> lam,
|
|---|
| 421 | Description -> "Higgs quartic coupling"},
|
|---|
| 422 |
|
|---|
| 423 | muH == {
|
|---|
| 424 | ParameterType -> Internal,
|
|---|
| 425 | Value -> Sqrt[v^2 \[Lambda]],
|
|---|
| 426 | TeX -> \[Mu],
|
|---|
| 427 | Description -> "Coefficient of the quadratic piece of the Higgs potential"},
|
|---|
| 428 |
|
|---|
| 429 |
|
|---|
| 430 | yl == {
|
|---|
| 431 | TeX -> Superscript[y, l],
|
|---|
| 432 | Indices -> {Index[Generation]},
|
|---|
| 433 | AllowSummation -> True,
|
|---|
| 434 | ParameterType -> Internal,
|
|---|
| 435 | Value -> {yl[1] -> Sqrt[2] yme / v, yl[2] -> Sqrt[2] ymm / v, yl[3] -> Sqrt[2] ymtau / v},
|
|---|
| 436 | ParameterName -> {yl[1] -> ye, yl[2] -> ym, yl[3] -> ytau},
|
|---|
| 437 | InteractionOrder -> {QED, 1},
|
|---|
| 438 | ComplexParameter -> False,
|
|---|
| 439 | Description -> "Lepton Yukawa coupling"},
|
|---|
| 440 |
|
|---|
| 441 | yu == {
|
|---|
| 442 | TeX -> Superscript[y, u],
|
|---|
| 443 | Indices -> {Index[Generation]},
|
|---|
| 444 | AllowSummation -> True,
|
|---|
| 445 | ParameterType -> Internal,
|
|---|
| 446 | Value -> {yu[1] -> Sqrt[2] ymup / v, yu[2] -> Sqrt[2] ymc / v, yu[3] -> Sqrt[2] ymt / v},
|
|---|
| 447 | ParameterName -> {yu[1] -> yup, yu[2] -> yc, yu[3] -> yt},
|
|---|
| 448 | InteractionOrder -> {QED, 1},
|
|---|
| 449 | ComplexParameter -> False,
|
|---|
| 450 | Description -> "U-quark Yukawa coupling"},
|
|---|
| 451 |
|
|---|
| 452 | yd == {
|
|---|
| 453 | TeX -> Superscript[y, d],
|
|---|
| 454 | Indices -> {Index[Generation]},
|
|---|
| 455 | AllowSummation -> True,
|
|---|
| 456 | ParameterType -> Internal,
|
|---|
| 457 | Value -> {yd[1] -> Sqrt[2] ymdo / v, yd[2] -> Sqrt[2] yms / v, yd[3] -> Sqrt[2] ymb / v},
|
|---|
| 458 | ParameterName -> {yd[1] -> ydo, yd[2] -> ys, yd[3] -> yb},
|
|---|
| 459 | InteractionOrder -> {QED, 1},
|
|---|
| 460 | ComplexParameter -> False,
|
|---|
| 461 | Description -> "D-quark Yukawa coupling"},
|
|---|
| 462 |
|
|---|
| 463 | (* N. B. : only Cabibbo mixing! *)
|
|---|
| 464 | CKM == {
|
|---|
| 465 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 466 | TensorClass -> CKM,
|
|---|
| 467 | Unitary -> True,
|
|---|
| 468 | Value -> {CKM[1,1] -> Cos[cabi],
|
|---|
| 469 | CKM[1,2] -> Sin[cabi],
|
|---|
| 470 | CKM[1,3] -> 0,
|
|---|
| 471 | CKM[2,1] -> -Sin[cabi],
|
|---|
| 472 | CKM[2,2] -> Cos[cabi],
|
|---|
| 473 | CKM[2,3] -> 0,
|
|---|
| 474 | CKM[3,1] -> 0,
|
|---|
| 475 | CKM[3,2] -> 0,
|
|---|
| 476 | CKM[3,3] -> 1},
|
|---|
| 477 | Description -> "CKM-Matrix"}
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 |
|
|---|
| 481 | (************** Gauge Groups ******************)
|
|---|
| 482 |
|
|---|
| 483 | M$GaugeGroups = {
|
|---|
| 484 |
|
|---|
| 485 | U1Y == {
|
|---|
| 486 | Abelian -> True,
|
|---|
| 487 | GaugeBoson -> B,
|
|---|
| 488 | Charge -> Y,
|
|---|
| 489 | CouplingConstant -> g1},
|
|---|
| 490 |
|
|---|
| 491 | SU2L == {
|
|---|
| 492 | Abelian -> False,
|
|---|
| 493 | GaugeBoson -> Wi,
|
|---|
| 494 | StructureConstant -> Eps,
|
|---|
| 495 | CouplingConstant -> gw},
|
|---|
| 496 |
|
|---|
| 497 | SU3C == {
|
|---|
| 498 | Abelian -> False,
|
|---|
| 499 | GaugeBoson -> G,
|
|---|
| 500 | StructureConstant -> f,
|
|---|
| 501 | SymmetricTensor -> dSUN,
|
|---|
| 502 | Representations -> {T, Colour},
|
|---|
| 503 | CouplingConstant -> gs}
|
|---|
| 504 | }
|
|---|
| 505 |
|
|---|
| 506 | (********* Particle Classes **********)
|
|---|
| 507 |
|
|---|
| 508 | M$ClassesDescription = {
|
|---|
| 509 |
|
|---|
| 510 | (********** Fermions ************)
|
|---|
| 511 | (* Leptons (neutrino): I_3 = +1/2, Q = 0 *)
|
|---|
| 512 | F[1] == {
|
|---|
| 513 | ClassName -> vl,
|
|---|
| 514 | ClassMembers -> {ve,vm,vt},
|
|---|
| 515 | FlavorIndex -> Generation,
|
|---|
| 516 | SelfConjugate -> False,
|
|---|
| 517 | Indices -> {Index[Generation]},
|
|---|
| 518 | Mass -> 0,
|
|---|
| 519 | Width -> 0,
|
|---|
| 520 | QuantumNumbers -> {LeptonNumber -> 1},
|
|---|
| 521 | PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
|
|---|
| 522 | PropagatorType -> S,
|
|---|
| 523 | PropagatorArrow -> Forward,
|
|---|
| 524 | PDG -> {12,14,16},
|
|---|
| 525 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"} },
|
|---|
| 526 |
|
|---|
| 527 | (* Leptons (electron): I_3 = -1/2, Q = -1 *)
|
|---|
| 528 | F[2] == {
|
|---|
| 529 | ClassName -> l,
|
|---|
| 530 | ClassMembers -> {e, m, tt},
|
|---|
| 531 | FlavorIndex -> Generation,
|
|---|
| 532 | SelfConjugate -> False,
|
|---|
| 533 | Indices -> {Index[Generation]},
|
|---|
| 534 | Mass -> {Ml, {Me, 5.11 * 10^(-4)}, {MM, 0.10566}, {MTA, 1.777}},
|
|---|
| 535 | Width -> 0,
|
|---|
| 536 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
|
|---|
| 537 | PropagatorLabel -> {"l", "e", "m", "tt"},
|
|---|
| 538 | PropagatorType -> Straight,
|
|---|
| 539 | ParticleName -> {"e-", "m-", "tt-"},
|
|---|
| 540 | AntiParticleName -> {"e+", "m+", "tt+"},
|
|---|
| 541 | PropagatorArrow -> Forward,
|
|---|
| 542 | PDG -> {11, 13, 15},
|
|---|
| 543 | FullName -> {"Electron", "Muon", "Tau"} },
|
|---|
| 544 |
|
|---|
| 545 | (* Quarks (u): I_3 = +1/2, Q = +2/3 *)
|
|---|
| 546 | F[3] == {
|
|---|
| 547 | ClassMembers -> {u, c, t},
|
|---|
| 548 | ClassName -> uq,
|
|---|
| 549 | FlavorIndex -> Generation,
|
|---|
| 550 | SelfConjugate -> False,
|
|---|
| 551 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 552 | Mass -> {Mu, {MU, 2.55*10^(-3)}, {MC, 1.42}, {MT, 172}},
|
|---|
| 553 | Width -> {0, 0, {WT, 1.50833649}},
|
|---|
| 554 | QuantumNumbers -> {Q -> 2/3},
|
|---|
| 555 | PropagatorLabel -> {"uq", "u", "c", "t"},
|
|---|
| 556 | PropagatorType -> Straight,
|
|---|
| 557 | PropagatorArrow -> Forward,
|
|---|
| 558 | PDG -> {2, 4, 6},
|
|---|
| 559 | FullName -> {"u-quark", "c-quark", "t-quark"}},
|
|---|
| 560 |
|
|---|
| 561 | (* Quarks (d): I_3 = -1/2, Q = -1/3 *)
|
|---|
| 562 | F[4] == {
|
|---|
| 563 | ClassMembers -> {d, s, b},
|
|---|
| 564 | ClassName -> dq,
|
|---|
| 565 | FlavorIndex -> Generation,
|
|---|
| 566 | SelfConjugate -> False,
|
|---|
| 567 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 568 | Mass -> {Md, {MD, 5.04*10^(-3)}, {MS, 0.101}, {MB, 4.7}},
|
|---|
| 569 | Width -> 0,
|
|---|
| 570 | QuantumNumbers -> {Q -> -1/3},
|
|---|
| 571 | PropagatorLabel -> {"dq", "d", "s", "b"},
|
|---|
| 572 | PropagatorType -> Straight,
|
|---|
| 573 | PropagatorArrow -> Forward,
|
|---|
| 574 | PDG -> {1,3,5},
|
|---|
| 575 | FullName -> {"d-quark", "s-quark", "b-quark"} },
|
|---|
| 576 |
|
|---|
| 577 | (********** Ghosts **********)
|
|---|
| 578 | U[1] == {
|
|---|
| 579 | ClassName -> ghA,
|
|---|
| 580 | SelfConjugate -> False,
|
|---|
| 581 | Indices -> {},
|
|---|
| 582 | Ghost -> A,
|
|---|
| 583 | Mass -> 0,
|
|---|
| 584 | QuantumNumbers -> {GhostNumber -> 1},
|
|---|
| 585 | PropagatorLabel -> uA,
|
|---|
| 586 | PropagatorType -> GhostDash,
|
|---|
| 587 | PropagatorArrow -> Forward},
|
|---|
| 588 |
|
|---|
| 589 | U[2] == {
|
|---|
| 590 | ClassName -> ghZ,
|
|---|
| 591 | SelfConjugate -> False,
|
|---|
| 592 | Indices -> {},
|
|---|
| 593 | Mass -> {MZ, 91.1876},
|
|---|
| 594 | Ghost -> Z,
|
|---|
| 595 | QuantumNumbers -> {GhostNumber -> 1},
|
|---|
| 596 | PropagatorLabel -> uZ,
|
|---|
| 597 | PropagatorType -> GhostDash,
|
|---|
| 598 | PropagatorArrow -> Forward},
|
|---|
| 599 |
|
|---|
| 600 | U[31] == {
|
|---|
| 601 | ClassName -> ghWp,
|
|---|
| 602 | SelfConjugate -> False,
|
|---|
| 603 | Indices -> {},
|
|---|
| 604 | Mass -> {MW, Internal},
|
|---|
| 605 | Ghost -> W,
|
|---|
| 606 | QuantumNumbers -> {Q-> 1, GhostNumber -> 1},
|
|---|
| 607 | PropagatorLabel -> uWp,
|
|---|
| 608 | PropagatorType -> GhostDash,
|
|---|
| 609 | PropagatorArrow -> Forward},
|
|---|
| 610 |
|
|---|
| 611 | U[32] == {
|
|---|
| 612 | ClassName -> ghWm,
|
|---|
| 613 | SelfConjugate -> False,
|
|---|
| 614 | Indices -> {},
|
|---|
| 615 | Mass -> {MW, Internal},
|
|---|
| 616 | Ghost -> Wbar,
|
|---|
| 617 | QuantumNumbers -> {Q-> -1, GhostNumber -> 1},
|
|---|
| 618 | PropagatorLabel -> uWm,
|
|---|
| 619 | PropagatorType -> GhostDash,
|
|---|
| 620 | PropagatorArrow -> Forward},
|
|---|
| 621 |
|
|---|
| 622 | U[4] == {
|
|---|
| 623 | ClassName -> ghG,
|
|---|
| 624 | SelfConjugate -> False,
|
|---|
| 625 | Indices -> {Index[Gluon]},
|
|---|
| 626 | Ghost -> G,
|
|---|
| 627 | Mass -> 0,
|
|---|
| 628 | QuantumNumbers -> {GhostNumber -> 1},
|
|---|
| 629 | PropagatorLabel -> uG,
|
|---|
| 630 | PropagatorType -> GhostDash,
|
|---|
| 631 | PropagatorArrow -> Forward},
|
|---|
| 632 |
|
|---|
| 633 | U[5] == {
|
|---|
| 634 | ClassName -> ghWi,
|
|---|
| 635 | Unphysical -> True,
|
|---|
| 636 | Definitions -> {ghWi[1] -> (ghWp + ghWm)/Sqrt[2],
|
|---|
| 637 | ghWi[2] -> (ghWm - ghWp)/Sqrt[2]/I,
|
|---|
| 638 | ghWi[3] -> cw ghZ + sw ghA},
|
|---|
| 639 | SelfConjugate -> False,
|
|---|
| 640 | Ghost -> Wi,
|
|---|
| 641 | Indices -> {Index[SU2W]},
|
|---|
| 642 | FlavorIndex -> SU2W},
|
|---|
| 643 |
|
|---|
| 644 | U[6] == {
|
|---|
| 645 | ClassName -> ghB,
|
|---|
| 646 | SelfConjugate -> False,
|
|---|
| 647 | Definitions -> {ghB -> -sw ghZ + cw ghA},
|
|---|
| 648 | Indices -> {},
|
|---|
| 649 | Ghost -> B,
|
|---|
| 650 | Unphysical -> True},
|
|---|
| 651 |
|
|---|
| 652 | (************ Gauge Bosons ***************)
|
|---|
| 653 | (* Gauge bosons: Q = 0 *)
|
|---|
| 654 | V[1] == {
|
|---|
| 655 | ClassName -> A,
|
|---|
| 656 | SelfConjugate -> True,
|
|---|
| 657 | Indices -> {},
|
|---|
| 658 | Mass -> 0,
|
|---|
| 659 | Width -> 0,
|
|---|
| 660 | PropagatorLabel -> "a",
|
|---|
| 661 | PropagatorType -> W,
|
|---|
| 662 | PropagatorArrow -> None,
|
|---|
| 663 | PDG -> 22,
|
|---|
| 664 | FullName -> "Photon" },
|
|---|
| 665 |
|
|---|
| 666 | V[2] == {
|
|---|
| 667 | ClassName -> Z,
|
|---|
| 668 | SelfConjugate -> True,
|
|---|
| 669 | Indices -> {},
|
|---|
| 670 | Mass -> {MZ, 91.1876},
|
|---|
| 671 | Width -> {WZ, 2.4952},
|
|---|
| 672 | PropagatorLabel -> "Z",
|
|---|
| 673 | PropagatorType -> Sine,
|
|---|
| 674 | PropagatorArrow -> None,
|
|---|
| 675 | PDG -> 23,
|
|---|
| 676 | FullName -> "Z" },
|
|---|
| 677 |
|
|---|
| 678 | (* Gauge bosons: Q = -1 *)
|
|---|
| 679 | V[3] == {
|
|---|
| 680 | ClassName -> W,
|
|---|
| 681 | SelfConjugate -> False,
|
|---|
| 682 | Indices -> {},
|
|---|
| 683 | Mass -> {MW, Internal},
|
|---|
| 684 | Width -> {WW, 2.085},
|
|---|
| 685 | QuantumNumbers -> {Q -> 1},
|
|---|
| 686 | PropagatorLabel -> "W",
|
|---|
| 687 | PropagatorType -> Sine,
|
|---|
| 688 | PropagatorArrow -> Forward,
|
|---|
| 689 | ParticleName ->"W+",
|
|---|
| 690 | AntiParticleName ->"W-",
|
|---|
| 691 | PDG -> 24,
|
|---|
| 692 | FullName -> "W" },
|
|---|
| 693 |
|
|---|
| 694 | V[4] == {
|
|---|
| 695 | ClassName -> G,
|
|---|
| 696 | SelfConjugate -> True,
|
|---|
| 697 | Indices -> {Index[Gluon]},
|
|---|
| 698 | Mass -> 0,
|
|---|
| 699 | Width -> 0,
|
|---|
| 700 | PropagatorLabel -> G,
|
|---|
| 701 | PropagatorType -> C,
|
|---|
| 702 | PropagatorArrow -> None,
|
|---|
| 703 | PDG -> 21,
|
|---|
| 704 | FullName -> "G" },
|
|---|
| 705 |
|
|---|
| 706 | V[5] == {
|
|---|
| 707 | ClassName -> Wi,
|
|---|
| 708 | Unphysical -> True,
|
|---|
| 709 | Definitions -> {Wi[mu_, 1] -> (W[mu] + Wbar[mu])/Sqrt[2],
|
|---|
| 710 | Wi[mu_, 2] -> (Wbar[mu] - W[mu])/Sqrt[2]/I,
|
|---|
| 711 | Wi[mu_, 3] -> cw Z[mu] + sw A[mu]},
|
|---|
| 712 | SelfConjugate -> True,
|
|---|
| 713 | Indices -> {Index[SU2W]},
|
|---|
| 714 | FlavorIndex -> SU2W,
|
|---|
| 715 | Mass -> 0,
|
|---|
| 716 | PDG -> {1,2,3}},
|
|---|
| 717 |
|
|---|
| 718 | V[6] == {
|
|---|
| 719 | ClassName -> B,
|
|---|
| 720 | SelfConjugate -> True,
|
|---|
| 721 | Definitions -> {B[mu_] -> -sw Z[mu] + cw A[mu]},
|
|---|
| 722 | Indices -> {},
|
|---|
| 723 | Mass -> 0,
|
|---|
| 724 | Unphysical -> True},
|
|---|
| 725 |
|
|---|
| 726 |
|
|---|
| 727 | (************ Scalar Fields **********)
|
|---|
| 728 | (* physical Higgs: Q = 0 *)
|
|---|
| 729 | S[1] == {
|
|---|
| 730 | ClassName -> H,
|
|---|
| 731 | SelfConjugate -> True,
|
|---|
| 732 | Mass -> {MH, 125},
|
|---|
| 733 | Width -> {WH, 0.00575308848},
|
|---|
| 734 | PropagatorLabel -> "H",
|
|---|
| 735 | PropagatorType -> D,
|
|---|
| 736 | PropagatorArrow -> None,
|
|---|
| 737 | PDG -> 25,
|
|---|
| 738 | TeXParticleName -> "\\phi",
|
|---|
| 739 | TeXClassName -> "\\phi",
|
|---|
| 740 | FullName -> "H" },
|
|---|
| 741 |
|
|---|
| 742 | S[2] == {
|
|---|
| 743 | ClassName -> phi,
|
|---|
| 744 | SelfConjugate -> True,
|
|---|
| 745 | Mass -> {MZ, 91.1876},
|
|---|
| 746 | Width -> Wphi,
|
|---|
| 747 | PropagatorLabel -> "Phi",
|
|---|
| 748 | PropagatorType -> D,
|
|---|
| 749 | PropagatorArrow -> None,
|
|---|
| 750 | ParticleName ->"phi0",
|
|---|
| 751 | PDG -> 250,
|
|---|
| 752 | FullName -> "Phi",
|
|---|
| 753 | Goldstone -> Z },
|
|---|
| 754 |
|
|---|
| 755 | S[3] == {
|
|---|
| 756 | ClassName -> phi2,
|
|---|
| 757 | SelfConjugate -> False,
|
|---|
| 758 | Mass -> {MW, Internal},
|
|---|
| 759 | Width -> Wphi2,
|
|---|
| 760 | PropagatorLabel -> "Phi2",
|
|---|
| 761 | PropagatorType -> D,
|
|---|
| 762 | PropagatorArrow -> None,
|
|---|
| 763 | ParticleName ->"phi+",
|
|---|
| 764 | AntiParticleName ->"phi-",
|
|---|
| 765 | PDG -> 251,
|
|---|
| 766 | FullName -> "Phi2",
|
|---|
| 767 | TeXClassName -> "\\phi^+",
|
|---|
| 768 | TeXParticleName -> "\\phi^+",
|
|---|
| 769 | TeXAntiParticleName -> "\\phi^-",
|
|---|
| 770 | Goldstone -> W,
|
|---|
| 771 | QuantumNumbers -> {Q -> 1}}
|
|---|
| 772 | }
|
|---|
| 773 |
|
|---|
| 774 |
|
|---|
| 775 |
|
|---|
| 776 |
|
|---|
| 777 | (*****************************************************************************************)
|
|---|
| 778 |
|
|---|
| 779 | (* SM Lagrangian *)
|
|---|
| 780 |
|
|---|
| 781 | (******************** Gauge F^2 Lagrangian terms*************************)
|
|---|
| 782 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
|---|
| 783 | LGauge = -1/4 (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i2, i3] Wi[mu, i2] Wi[nu, i3])*
|
|---|
| 784 | (del[Wi[nu, i1], mu] - del[Wi[mu, i1], nu] + gw Eps[i1, i4, i5] Wi[mu, i4] Wi[nu, i5]) -
|
|---|
| 785 |
|
|---|
| 786 | 1/4 (del[B[nu], mu] - del[B[mu], nu])^2 -
|
|---|
| 787 |
|
|---|
| 788 | 1/4 (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a2, a3] G[mu, a2] G[nu, a3])*
|
|---|
| 789 | (del[G[nu, a1], mu] - del[G[mu, a1], nu] + gs f[a1, a4, a5] G[mu, a4] G[nu, a5]);
|
|---|
| 790 |
|
|---|
| 791 |
|
|---|
| 792 | (********************* Fermion Lagrangian terms*************************)
|
|---|
| 793 | (*Sign convention from Lagrangian in between Eq. (A.9) and Eq. (A.10) of Peskin & Schroeder.*)
|
|---|
| 794 | LFermions = Module[{Lkin, LQCD, LEWleft, LEWright},
|
|---|
| 795 |
|
|---|
| 796 | Lkin = I uqbar.Ga[mu].del[uq, mu] +
|
|---|
| 797 | I dqbar.Ga[mu].del[dq, mu] +
|
|---|
| 798 | I lbar.Ga[mu].del[l, mu] +
|
|---|
| 799 | I vlbar.Ga[mu].del[vl, mu];
|
|---|
| 800 |
|
|---|
| 801 | LQCD = gs (uqbar.Ga[mu].T[a].uq +
|
|---|
| 802 | dqbar.Ga[mu].T[a].dq)G[mu, a];
|
|---|
| 803 |
|
|---|
| 804 | LBright =
|
|---|
| 805 | -2ee/cw B[mu]/2 lbar.Ga[mu].ProjP.l + (*Y_lR=-2*)
|
|---|
| 806 | 4ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjP.uq - (*Y_uR=4/3*)
|
|---|
| 807 | 2ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjP.dq; (*Y_dR=-2/3*)
|
|---|
| 808 |
|
|---|
| 809 | LBleft =
|
|---|
| 810 | -ee/cw B[mu]/2 vlbar.Ga[mu].ProjM.vl - (*Y_LL=-1*)
|
|---|
| 811 | ee/cw B[mu]/2 lbar.Ga[mu].ProjM.l + (*Y_LL=-1*)
|
|---|
| 812 | ee/3/cw B[mu]/2 uqbar.Ga[mu].ProjM.uq + (*Y_QL=1/3*)
|
|---|
| 813 | ee/3/cw B[mu]/2 dqbar.Ga[mu].ProjM.dq ; (*Y_QL=1/3*)
|
|---|
| 814 |
|
|---|
| 815 | LWleft = ee/sw/2(
|
|---|
| 816 | vlbar.Ga[mu].ProjM.vl Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
|---|
| 817 | lbar.Ga[mu].ProjM.l Wi[mu, 3] + (* ( 0 -1 )*)
|
|---|
| 818 |
|
|---|
| 819 | Sqrt[2] vlbar.Ga[mu].ProjM.l W[mu] +
|
|---|
| 820 | Sqrt[2] lbar.Ga[mu].ProjM.vl Wbar[mu]+
|
|---|
| 821 |
|
|---|
| 822 | uqbar.Ga[mu].ProjM.uq Wi[mu, 3] - (*sigma3 = ( 1 0 )*)
|
|---|
| 823 | dqbar.Ga[mu].ProjM.dq Wi[mu, 3] + (* ( 0 -1 )*)
|
|---|
| 824 |
|
|---|
| 825 | Sqrt[2] uqbar.Ga[mu].ProjM.CKM.dq W[mu] +
|
|---|
| 826 | Sqrt[2] dqbar.Ga[mu].ProjM.HC[CKM].uq Wbar[mu]
|
|---|
| 827 | );
|
|---|
| 828 |
|
|---|
| 829 | Lkin + LQCD + LBright + LBleft + LWleft];
|
|---|
| 830 |
|
|---|
| 831 | (******************** Higgs Lagrangian terms****************************)
|
|---|
| 832 | Phi := If[FeynmanGauge, {-I phi2, (v + H + I phi)/Sqrt[2]}, {0, (v + H)/Sqrt[2]}];
|
|---|
| 833 | Phibar := If[FeynmanGauge, {I phi2bar, (v + H - I phi)/Sqrt[2]} ,{0, (v + H)/Sqrt[2]}];
|
|---|
| 834 |
|
|---|
| 835 |
|
|---|
| 836 |
|
|---|
| 837 | LHiggs := Block[{PMVec, WVec, Dc, Dcbar, Vphi},
|
|---|
| 838 |
|
|---|
| 839 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 840 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 841 |
|
|---|
| 842 | (*Y_phi=1*)
|
|---|
| 843 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 844 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 845 |
|
|---|
| 846 | Vphi[Phi_, Phibar_] := -muH^2 Phibar.Phi + \[Lambda] (Phibar.Phi)^2;
|
|---|
| 847 |
|
|---|
| 848 | (Dcbar[Phibar, mu]).Dc[Phi, mu] - Vphi[Phi, Phibar]];
|
|---|
| 849 |
|
|---|
| 850 |
|
|---|
| 851 |
|
|---|
| 852 |
|
|---|
| 853 |
|
|---|
| 854 | (*************** Yukawa Lagrangian***********************)
|
|---|
| 855 | LYuk := If[FeynmanGauge,
|
|---|
| 856 |
|
|---|
| 857 | Module[{s,r,n,m,i}, -
|
|---|
| 858 | yd[m] CKM[n,m] uqbar[s,n,i].ProjP[s,r].dq[r,m,i] (-I phi2) -
|
|---|
| 859 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H +I phi)/Sqrt[2] -
|
|---|
| 860 |
|
|---|
| 861 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H -I phi)/Sqrt[2] + (*This sign from eps matrix*)
|
|---|
| 862 | yu[m] Conjugate[CKM[m,n]] dqbar[s,n,i].ProjP[s,r].uq[r,m,i] ( I phi2bar) -
|
|---|
| 863 |
|
|---|
| 864 | yl[n] vlbar[s,n].ProjP[s,r].l[r,n] (-I phi2) -
|
|---|
| 865 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H +I phi)/Sqrt[2]
|
|---|
| 866 | ],
|
|---|
| 867 |
|
|---|
| 868 | Module[{s,r,n,m,i}, -
|
|---|
| 869 | yd[n] dqbar[s,n,i].ProjP[s,r].dq[r,n,i] (v+H)/Sqrt[2] -
|
|---|
| 870 | yu[n] uqbar[s,n,i].ProjP[s,r].uq[r,n,i] (v+H)/Sqrt[2] -
|
|---|
| 871 | yl[n] lbar[s,n].ProjP[s,r].l[r,n] (v+H)/Sqrt[2]
|
|---|
| 872 | ]
|
|---|
| 873 | ];
|
|---|
| 874 |
|
|---|
| 875 | LYukawa := LYuk + HC[LYuk];
|
|---|
| 876 |
|
|---|
| 877 |
|
|---|
| 878 |
|
|---|
| 879 | (**************Ghost terms**************************)
|
|---|
| 880 | (* Now we need the ghost terms which are of the form: *)
|
|---|
| 881 | (* - g * antighost * d_BRST G *)
|
|---|
| 882 | (* where d_BRST G is BRST transform of the gauge fixing function. *)
|
|---|
| 883 |
|
|---|
| 884 | LGhost := If[FeynmanGauge,
|
|---|
| 885 | Block[{dBRSTG,LGhostG,dBRSTWi,LGhostWi,dBRSTB,LGhostB},
|
|---|
| 886 |
|
|---|
| 887 | (***********First the pure gauge piece.**********************)
|
|---|
| 888 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
|---|
| 889 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
|---|
| 890 |
|
|---|
| 891 | dBRSTWi[mu_,i_] := sw/ee Module[{i2, i3}, del[ghWi[i], mu] + ee/sw Eps[i,i2,i3] Wi[mu,i2] ghWi[i3] ];
|
|---|
| 892 |
|
|---|
| 893 | LGhostWi := - ee/sw ghWibar[a].del[dBRSTWi[mu,a],mu];
|
|---|
| 894 |
|
|---|
| 895 | dBRSTB[mu_] := cw/ee del[ghB, mu];
|
|---|
| 896 | LGhostB := - ee/cw ghBbar.del[dBRSTB[mu],mu];
|
|---|
| 897 |
|
|---|
| 898 | (***********Next the piece from the scalar field.************)
|
|---|
| 899 | LGhostphi := - ee/(2*sw*cw) MW ( - I phi2 ( (cw^2-sw^2)ghWpbar.ghZ + 2sw*cw ghWpbar.ghA ) +
|
|---|
| 900 | I phi2bar ( (cw^2-sw^2)ghWmbar.ghZ + 2sw*cw ghWmbar.ghA ) ) -
|
|---|
| 901 | ee/(2*sw) MW ( ( (v+H) + I phi) ghWpbar.ghWp + ( (v+H) - I phi) ghWmbar.ghWm ) -
|
|---|
| 902 | I ee/(2*sw) MZ ( - phi2bar ghZbar.ghWp + phi2 ghZbar.ghWm ) -
|
|---|
| 903 | ee/(2*sw*cw) MZ (v+H) ghZbar.ghZ ;
|
|---|
| 904 |
|
|---|
| 905 |
|
|---|
| 906 | (***********Now add the pieces together.********************)
|
|---|
| 907 | LGhostG + LGhostWi + LGhostB + LGhostphi]
|
|---|
| 908 |
|
|---|
| 909 | ,
|
|---|
| 910 |
|
|---|
| 911 | (*If unitary gauge, only include the gluonic ghost.*)
|
|---|
| 912 | Block[{dBRSTG,LGhostG},
|
|---|
| 913 |
|
|---|
| 914 | (***********First the pure gauge piece.**********************)
|
|---|
| 915 | dBRSTG[mu_,a_] := 1/gs Module[{a2, a3}, del[ghG[a], mu] + gs f[a,a2,a3] G[mu,a2] ghG[a3]];
|
|---|
| 916 | LGhostG := - gs ghGbar[a].del[dBRSTG[mu,a],mu];
|
|---|
| 917 |
|
|---|
| 918 | (***********Now add the pieces together.********************)
|
|---|
| 919 | LGhostG]
|
|---|
| 920 |
|
|---|
| 921 | ];
|
|---|
| 922 |
|
|---|
| 923 |
|
|---|
| 924 | (* anomalous quartic couplings as defined in PRD74, 073005 *)
|
|---|
| 925 |
|
|---|
| 926 |
|
|---|
| 927 | (* S,0 *)
|
|---|
| 928 |
|
|---|
| 929 | LS0 := Block[{PMVec, WVec, Dc, Dcbar},
|
|---|
| 930 |
|
|---|
| 931 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 932 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 933 |
|
|---|
| 934 | (*Y_phi=1*)
|
|---|
| 935 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 936 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 937 |
|
|---|
| 938 | FS0 (Dcbar[Phibar, mu]). Dc[Phi, nu] (Dcbar[Phibar, mu]).Dc[Phi, nu]
|
|---|
| 939 |
|
|---|
| 940 | ];
|
|---|
| 941 |
|
|---|
| 942 | (* S,1 *)
|
|---|
| 943 |
|
|---|
| 944 | LS1 := Block[{PMVec, WVec, Dc, Dcbar},
|
|---|
| 945 |
|
|---|
| 946 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 947 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 948 |
|
|---|
| 949 | (*Y_phi=1*)
|
|---|
| 950 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 951 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 952 |
|
|---|
| 953 | FS1 (Dcbar[Phibar, mu]). Dc[Phi, mu] (Dcbar[Phibar, nu]).Dc[Phi, nu]
|
|---|
| 954 |
|
|---|
| 955 | ];
|
|---|
| 956 |
|
|---|
| 957 |
|
|---|
| 958 | (* M,0 *)
|
|---|
| 959 |
|
|---|
| 960 | LM0 := Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
|---|
| 961 |
|
|---|
| 962 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 963 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 964 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 965 |
|
|---|
| 966 | (*Y_phi=1*)
|
|---|
| 967 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 968 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 969 |
|
|---|
| 970 |
|
|---|
| 971 | FM0/4 (Dcbar[Phibar, alpha]).Dc[Phi, alpha] Tr[(FSvec[mu,nu].PMVec).(FSvec[mu,nu].PMVec)]
|
|---|
| 972 |
|
|---|
| 973 | ];
|
|---|
| 974 |
|
|---|
| 975 |
|
|---|
| 976 | (* M,1 *)
|
|---|
| 977 |
|
|---|
| 978 | LM1 := Block[{PMVec, WVec, FSvec, Dc, Dcbar},
|
|---|
| 979 |
|
|---|
| 980 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 981 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 982 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 983 |
|
|---|
| 984 | (*Y_phi=1*)
|
|---|
| 985 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 986 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 987 |
|
|---|
| 988 |
|
|---|
| 989 | FM1/4 (Dcbar[Phibar, beta]).Dc[Phi, mu] Tr[(FSvec[mu,nu].PMVec).(FSvec[nu,beta].PMVec)]
|
|---|
| 990 |
|
|---|
| 991 | ];
|
|---|
| 992 |
|
|---|
| 993 |
|
|---|
| 994 |
|
|---|
| 995 | (* M,2 *)
|
|---|
| 996 |
|
|---|
| 997 | LM2 := Block[{PMVec, WVec, Dc, Dcbar},
|
|---|
| 998 |
|
|---|
| 999 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1000 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1001 |
|
|---|
| 1002 | (*Y_phi=1*)
|
|---|
| 1003 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 1004 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 1005 |
|
|---|
| 1006 |
|
|---|
| 1007 | (* FM2 (Dcbar[Phibar, mu]).Dc[Phi, mu] FS[B,mu,nu] FS[B,mu,nu] *)
|
|---|
| 1008 |
|
|---|
| 1009 | FM2 (Dcbar[Phibar, beta]).Dc[Phi, beta] FS[B,mu,nu] FS[B,mu,nu]
|
|---|
| 1010 |
|
|---|
| 1011 | ];
|
|---|
| 1012 |
|
|---|
| 1013 | (* M,3 *)
|
|---|
| 1014 |
|
|---|
| 1015 | LM3 := Block[{PMVec, WVec, Dc, Dcbar},
|
|---|
| 1016 |
|
|---|
| 1017 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1018 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1019 |
|
|---|
| 1020 | (*Y_phi=1*)
|
|---|
| 1021 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 1022 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 1023 |
|
|---|
| 1024 |
|
|---|
| 1025 |
|
|---|
| 1026 | FM3 (Dcbar[Phibar, mu]).Dc[Phi, beta] FS[B,mu,nu] FS[B,nu,beta]
|
|---|
| 1027 | ];
|
|---|
| 1028 |
|
|---|
| 1029 |
|
|---|
| 1030 | (* M,4 *)
|
|---|
| 1031 |
|
|---|
| 1032 | LM4 := Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
|---|
| 1033 |
|
|---|
| 1034 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1035 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1036 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1037 |
|
|---|
| 1038 | (*Y_phi=1*)
|
|---|
| 1039 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 1040 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 1041 |
|
|---|
| 1042 |
|
|---|
| 1043 |
|
|---|
| 1044 | FM4/2 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).Dc[Phi, mu] FS[B,beta,nu]
|
|---|
| 1045 |
|
|---|
| 1046 |
|
|---|
| 1047 | ];
|
|---|
| 1048 |
|
|---|
| 1049 | (* M,5 *)
|
|---|
| 1050 |
|
|---|
| 1051 | LM5 := Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
|---|
| 1052 |
|
|---|
| 1053 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1054 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1055 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1056 |
|
|---|
| 1057 | (*Y_phi=1*)
|
|---|
| 1058 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 1059 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 1060 |
|
|---|
| 1061 |
|
|---|
| 1062 | FM5/2 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).Dc[Phi, nu] FS[B,beta,mu]
|
|---|
| 1063 |
|
|---|
| 1064 | ];
|
|---|
| 1065 |
|
|---|
| 1066 |
|
|---|
| 1067 | (* M,6 *)
|
|---|
| 1068 |
|
|---|
| 1069 | LM6 :=Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
|---|
| 1070 |
|
|---|
| 1071 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1072 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1073 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1074 |
|
|---|
| 1075 | (*Y_phi=1*)
|
|---|
| 1076 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 1077 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 1078 |
|
|---|
| 1079 |
|
|---|
| 1080 | FM6/4 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).(FSvec[beta,nu].PMVec).Dc[Phi, mu]
|
|---|
| 1081 |
|
|---|
| 1082 | ];
|
|---|
| 1083 |
|
|---|
| 1084 | (* M,7 *)
|
|---|
| 1085 |
|
|---|
| 1086 | LM7 :=Block[{PMVec, WVec, FSVec, Dc, Dcbar},
|
|---|
| 1087 |
|
|---|
| 1088 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1089 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1090 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1091 |
|
|---|
| 1092 | (*Y_phi=1*)
|
|---|
| 1093 | Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;
|
|---|
| 1094 | Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec);
|
|---|
| 1095 |
|
|---|
| 1096 |
|
|---|
| 1097 | FM7/4 (Dcbar[Phibar, mu]).(FSvec[beta,nu].PMVec).(FSvec[beta,mu].PMVec).Dc[Phi, nu]
|
|---|
| 1098 |
|
|---|
| 1099 | ];
|
|---|
| 1100 |
|
|---|
| 1101 |
|
|---|
| 1102 | (* T,0 *)
|
|---|
| 1103 |
|
|---|
| 1104 | LT0 := Block[{PMVec, FSVec },
|
|---|
| 1105 |
|
|---|
| 1106 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1107 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1108 |
|
|---|
| 1109 | FT0/16 Tr[(FSvec[alpha,beta].PMVec).(FSvec[alpha,beta].PMVec)] Tr[(FSvec[mu,nu].PMVec).(FSvec[mu,nu].PMVec)]
|
|---|
| 1110 |
|
|---|
| 1111 | ];
|
|---|
| 1112 |
|
|---|
| 1113 | (* T,1 *)
|
|---|
| 1114 |
|
|---|
| 1115 | LT1 := Block[{PMVec, FSVec},
|
|---|
| 1116 |
|
|---|
| 1117 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1118 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1119 |
|
|---|
| 1120 | FT1/16 Tr[(FSvec[alpha,nu].PMVec).(FSvec[mu,beta].PMVec)] Tr[(FSvec[mu,beta].PMVec).(FSvec[alpha,nu].PMVec)]
|
|---|
| 1121 |
|
|---|
| 1122 | ];
|
|---|
| 1123 |
|
|---|
| 1124 |
|
|---|
| 1125 | (* T,2 *)
|
|---|
| 1126 |
|
|---|
| 1127 | LT2 := Block[{PMVec, FSVec},
|
|---|
| 1128 |
|
|---|
| 1129 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1130 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1131 |
|
|---|
| 1132 | FT2/16 Tr[(FSvec[alpha,mu].PMVec).(FSvec[mu,beta].PMVec)] Tr[(FSvec[beta,nu].PMVec).(FSvec[nu,alpha].PMVec)]
|
|---|
| 1133 |
|
|---|
| 1134 | ];
|
|---|
| 1135 |
|
|---|
| 1136 | (* T,3 identicaly zero!*)
|
|---|
| 1137 |
|
|---|
| 1138 | LT3 := Block[{PMVec, FSVec},
|
|---|
| 1139 |
|
|---|
| 1140 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1141 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1142 |
|
|---|
| 1143 | FT3/8 Tr[(FSvec[alpha,mu].PMVec).(FSvec[mu,beta].PMVec).(FSvec[nu,alpha].PMVec)] FS[B, beta, nu]
|
|---|
| 1144 |
|
|---|
| 1145 | ];
|
|---|
| 1146 |
|
|---|
| 1147 |
|
|---|
| 1148 | (* T,4: identicaly zero *)
|
|---|
| 1149 |
|
|---|
| 1150 | LT4 := Block[{PMVec, FSVec},
|
|---|
| 1151 |
|
|---|
| 1152 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1153 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1154 |
|
|---|
| 1155 |
|
|---|
| 1156 | FT4/8 Tr[(FSvec[alpha,mu].PMVec).(FSvec[alpha, mu].PMVec).(FSvec[beta, nu].PMVec)] FS[B, beta, nu]
|
|---|
| 1157 |
|
|---|
| 1158 | ];
|
|---|
| 1159 |
|
|---|
| 1160 |
|
|---|
| 1161 | (* T,5 *)
|
|---|
| 1162 |
|
|---|
| 1163 | LT5 := Block[{PMVec, FSVec},
|
|---|
| 1164 |
|
|---|
| 1165 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1166 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1167 |
|
|---|
| 1168 |
|
|---|
| 1169 | FT5/4 Tr[(FSvec[mu,nu].PMVec).(FSvec[mu, nu].PMVec)] FS[B, beta, alpha] FS[B, beta, alpha]
|
|---|
| 1170 |
|
|---|
| 1171 | ];
|
|---|
| 1172 |
|
|---|
| 1173 |
|
|---|
| 1174 | (* T,6 *)
|
|---|
| 1175 |
|
|---|
| 1176 | LT6 := Block[{PMVec, FSVec},
|
|---|
| 1177 |
|
|---|
| 1178 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1179 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1180 |
|
|---|
| 1181 | FT6/4 Tr[(FSvec[alpha,nu].PMVec).(FSvec[mu, beta].PMVec)] FS[B, mu, beta] FS[B, alpha, nu]
|
|---|
| 1182 |
|
|---|
| 1183 | ];
|
|---|
| 1184 |
|
|---|
| 1185 |
|
|---|
| 1186 | (* T,7 *)
|
|---|
| 1187 |
|
|---|
| 1188 | LT7 := Block[{PMVec, FSVec},
|
|---|
| 1189 |
|
|---|
| 1190 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1191 | FSvec[mu_,nu_] := {FS[Wi, mu, nu, 1], FS[Wi, mu, nu, 2], FS[Wi, mu, nu, 3]};
|
|---|
| 1192 |
|
|---|
| 1193 | FT7/4 Tr[(FSvec[alpha, mu].PMVec).(FSvec[mu, beta].PMVec)] FS[B, beta, nu] FS[B, nu, alpha]
|
|---|
| 1194 |
|
|---|
| 1195 | ];
|
|---|
| 1196 |
|
|---|
| 1197 |
|
|---|
| 1198 | (* T,8: *)
|
|---|
| 1199 |
|
|---|
| 1200 | LT8 := Block[{PMVec, WVec},
|
|---|
| 1201 |
|
|---|
| 1202 | PMVec = Table[PauliSigma[i], {i, 3}];
|
|---|
| 1203 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1204 |
|
|---|
| 1205 |
|
|---|
| 1206 | FT8 (del[B[nu], mu] - del[B[mu], nu] )*
|
|---|
| 1207 | (del[B[nu], mu] - del[B[mu], nu] )*
|
|---|
| 1208 | (del[B[beta], alpha] - del[B[alpha], beta] )*
|
|---|
| 1209 | (del[B[beta], alpha] - del[B[alpha], beta] )
|
|---|
| 1210 |
|
|---|
| 1211 | ];
|
|---|
| 1212 |
|
|---|
| 1213 | (* T,9: *)
|
|---|
| 1214 |
|
|---|
| 1215 | LT9 := Block[{PMVec, WVec},
|
|---|
| 1216 |
|
|---|
| 1217 | PMVec = Table[PauliSigma[i], {I, 3}];
|
|---|
| 1218 | Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};
|
|---|
| 1219 |
|
|---|
| 1220 | FT9 FS[B, mu, nu] FS[B, nu, alpha] FS[B, alpha, beta] FS[B, beta, mu]
|
|---|
| 1221 |
|
|---|
| 1222 | ];
|
|---|
| 1223 |
|
|---|
| 1224 |
|
|---|
| 1225 | (* ------------------------------------------------------- *)
|
|---|
| 1226 |
|
|---|
| 1227 |
|
|---|
| 1228 | (*********Total SM Lagrangian in the unitary gauge*******)
|
|---|
| 1229 |
|
|---|
| 1230 | LSM := LGauge + LHiggs + LFermions + LYukawa ;
|
|---|
| 1231 |
|
|---|
| 1232 | LQS = LS0 + LS1;
|
|---|
| 1233 |
|
|---|
| 1234 | LQM = LM0 + LM1 + LM2 + LM3 + LM4 + LM5 + LM6 + LM7;
|
|---|
| 1235 |
|
|---|
| 1236 | LQT = LT0 + LT1 + LT2 + LT3 + LT4 + LT5 + LT6 + LT7 + LT8 + LT9;
|
|---|
| 1237 |
|
|---|
| 1238 | LQuartic := LSM + LQS + LQM + LQT;
|
|---|
| 1239 |
|
|---|
| 1240 |
|
|---|
| 1241 |
|
|---|
| 1242 |
|
|---|
| 1243 |
|
|---|