1 | (* Content-type: application/mathematica *)
|
---|
2 |
|
---|
3 | (*** Wolfram Notebook File ***)
|
---|
4 | (* http://www.wolfram.com/nb *)
|
---|
5 |
|
---|
6 | (* CreatedBy='Mathematica 6.0' *)
|
---|
7 |
|
---|
8 | (*CacheID: 234*)
|
---|
9 | (* Internal cache information:
|
---|
10 | NotebookFileLineBreakTest
|
---|
11 | NotebookFileLineBreakTest
|
---|
12 | NotebookDataPosition[ 145, 7]
|
---|
13 | NotebookDataLength[ 197498, 4819]
|
---|
14 | NotebookOptionsPosition[ 192367, 4660]
|
---|
15 | NotebookOutlinePosition[ 192810, 4677]
|
---|
16 | CellTagsIndexPosition[ 192767, 4674]
|
---|
17 | WindowFrame->Normal*)
|
---|
18 |
|
---|
19 | (* Beginning of Notebook Content *)
|
---|
20 | Notebook[{
|
---|
21 |
|
---|
22 | Cell[CellGroupData[{
|
---|
23 | Cell["Demo notebook for the ALPs EFT models", "Chapter",
|
---|
24 | CellChangeTimes->{{3.714472665588029*^9, 3.714472689729048*^9}, {
|
---|
25 | 3.714899887219674*^9, 3.7148998914966784`*^9}}],
|
---|
26 |
|
---|
27 | Cell["\<\
|
---|
28 | Effective field theories for a light ALP particle adopted in 1701.05379.
|
---|
29 |
|
---|
30 | Contains two models:
|
---|
31 |
|
---|
32 | ALP_linear - linear EFT (section 2)
|
---|
33 | ALP_chiral - chiral EFT (section 3)
|
---|
34 |
|
---|
35 | The models only contain the ALP field and Lagrangian, so they must be loaded \
|
---|
36 | besides the SM.
|
---|
37 | \
|
---|
38 | \>", "Text",
|
---|
39 | CellChangeTimes->{{3.7149005914889593`*^9, 3.714900592898365*^9}, {
|
---|
40 | 3.714900686180849*^9, 3.714900749569977*^9}, {3.7149010364554167`*^9,
|
---|
41 | 3.714901156363299*^9}, {3.7149012109755774`*^9, 3.714901221896302*^9}}],
|
---|
42 |
|
---|
43 | Cell[TextData[{
|
---|
44 | StyleBox["Lagrangians defined ",
|
---|
45 | FontVariations->{"Underline"->True}],
|
---|
46 | "\n\nLSM - SM Lagrangian\nLAlp0 - Leading ALP Lagrangian. Contains ALP mass \
|
---|
47 | and kinetic term.\nLAlp1 - Higher order terms in the ALP Lagrangian. Contains \
|
---|
48 | all the effective operators\nLALP - LAlp0 + LAlp1"
|
---|
49 | }], "Text",
|
---|
50 | CellChangeTimes->{{3.696239302643662*^9, 3.6962395961998587`*^9}, {
|
---|
51 | 3.6962426279211273`*^9, 3.6962426382382174`*^9}, {3.69624269955401*^9,
|
---|
52 | 3.696242713138926*^9}, {3.697464963087976*^9, 3.697464974471815*^9}, {
|
---|
53 | 3.697781321319046*^9, 3.697781411435602*^9}, {3.697781761740079*^9,
|
---|
54 | 3.697781762068541*^9}, 3.7074035932516823`*^9, {3.714027372165451*^9,
|
---|
55 | 3.714027386105159*^9}, {3.714037377699317*^9, 3.7140373790930023`*^9}, {
|
---|
56 | 3.714472728601252*^9, 3.7144729472637987`*^9}, {3.714474312375147*^9,
|
---|
57 | 3.7144743155330887`*^9}, {3.714474392406591*^9, 3.714474503350297*^9}, {
|
---|
58 | 3.714901264631907*^9, 3.714901383884622*^9}},
|
---|
59 | Background->RGBColor[0.94, 0.91, 0.88]],
|
---|
60 |
|
---|
61 | Cell[CellGroupData[{
|
---|
62 |
|
---|
63 | Cell["FeynRules initialization", "Section",
|
---|
64 | CellChangeTimes->{{3.696241144773179*^9, 3.696241150440773*^9}, {
|
---|
65 | 3.6965809461276217`*^9, 3.6965809488385057`*^9}, {3.7144743309076147`*^9,
|
---|
66 | 3.71447433315618*^9}}],
|
---|
67 |
|
---|
68 | Cell[BoxData[{
|
---|
69 | RowBox[{"$FeynRulesPath", "=",
|
---|
70 | RowBox[{
|
---|
71 | "SetDirectory", "[", "\"\<-----/feynrules-current/\>\"",
|
---|
72 | "]"}]}], "\[IndentingNewLine]",
|
---|
73 | RowBox[{"<<", "FeynRules`"}], "\[IndentingNewLine]",
|
---|
74 | RowBox[{
|
---|
75 | RowBox[{"SetDirectory", "[",
|
---|
76 | RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]}], "Input",
|
---|
77 | CellChangeTimes->{{3.41265862251538*^9, 3.412658649947229*^9}, {
|
---|
78 | 3.423415585782702*^9, 3.423415597189939*^9}, {3.4234163173467493`*^9,
|
---|
79 | 3.4234163227881193`*^9}, {3.569593920256028*^9, 3.5695939561647587`*^9}, {
|
---|
80 | 3.633429030562295*^9, 3.6334290416321917`*^9}, 3.633429072465761*^9, {
|
---|
81 | 3.635234890077219*^9, 3.6352349006796503`*^9}, {3.638618091550831*^9,
|
---|
82 | 3.638618091841796*^9}, {3.6386187643019457`*^9, 3.638618764970313*^9}, {
|
---|
83 | 3.638620435812201*^9, 3.6386204366894207`*^9}, {3.638623211106428*^9,
|
---|
84 | 3.638623212908428*^9}, {3.638712295761613*^9, 3.6387122976840363`*^9}, {
|
---|
85 | 3.638877760050136*^9, 3.6388777607355757`*^9}, 3.675576332946599*^9, {
|
---|
86 | 3.6761099093380632`*^9, 3.676109922535201*^9}, 3.68648945229902*^9,
|
---|
87 | 3.694262296773966*^9, {3.71490017175248*^9, 3.7149001719624357`*^9}, {
|
---|
88 | 3.7149013954837923`*^9, 3.714901396082449*^9}}]
|
---|
89 | }, Open ]],
|
---|
90 |
|
---|
91 | Cell[CellGroupData[{
|
---|
92 |
|
---|
93 | Cell["ALP linear EFT", "Section",
|
---|
94 | CellChangeTimes->{{3.696241144773179*^9, 3.696241150440773*^9}, {
|
---|
95 | 3.6965809461276217`*^9, 3.6965809488385057`*^9}, {3.7144743309076147`*^9,
|
---|
96 | 3.71447433315618*^9}, {3.7148999134555597`*^9, 3.714899915627069*^9}, {
|
---|
97 | 3.714900792676422*^9, 3.7149007933801117`*^9}}],
|
---|
98 |
|
---|
99 | Cell[CellGroupData[{
|
---|
100 |
|
---|
101 | Cell[BoxData[{
|
---|
102 | RowBox[{
|
---|
103 | RowBox[{"LoadModel", "[",
|
---|
104 | RowBox[{"\"\<SM.fr\>\"", ",", "\"\<alp_linear.fr\>\""}], "]"}],
|
---|
105 | ";"}], "\[IndentingNewLine]",
|
---|
106 | RowBox[{
|
---|
107 | RowBox[{"$Assumptions", "=",
|
---|
108 | RowBox[{
|
---|
109 | RowBox[{
|
---|
110 | SuperscriptBox["cw", "2"], "+",
|
---|
111 | SuperscriptBox["sw", "2"]}], "\[Equal]", "1"}]}], ";"}]}], "Input",
|
---|
112 | CellChangeTimes->{{3.419073170860696*^9, 3.419073182827229*^9}, {
|
---|
113 | 3.5695939666521587`*^9, 3.569593975189637*^9}, {3.571998624557815*^9,
|
---|
114 | 3.571998628157531*^9}, {3.5722426658955507`*^9, 3.5722426665661163`*^9}, {
|
---|
115 | 3.57373494999842*^9, 3.573734950506782*^9}, {3.573738411070033*^9,
|
---|
116 | 3.573738411475131*^9}, {3.581766296877213*^9, 3.5817662993035793`*^9}, {
|
---|
117 | 3.582711295612512*^9, 3.582711304079101*^9}, {3.58271455619954*^9,
|
---|
118 | 3.582714556539135*^9}, {3.5837271421921186`*^9, 3.5837271424321213`*^9}, {
|
---|
119 | 3.624620697450859*^9, 3.6246207033691893`*^9}, {3.6334178673816833`*^9,
|
---|
120 | 3.633417870423235*^9}, {3.635168745836775*^9, 3.635168746552165*^9}, {
|
---|
121 | 3.635234921249031*^9, 3.6352349280391006`*^9}, {3.638611693959074*^9,
|
---|
122 | 3.638611733478942*^9}, {3.638618101259109*^9, 3.638618101467348*^9},
|
---|
123 | 3.63861936248402*^9, 3.638619484234972*^9, {3.638620679982355*^9,
|
---|
124 | 3.638620680842409*^9}, {3.6386861262510643`*^9, 3.638686136772785*^9}, {
|
---|
125 | 3.6415550100096617`*^9, 3.641555015231119*^9}, {3.676109930720601*^9,
|
---|
126 | 3.6761099312888002`*^9}, {3.6761959551581984`*^9, 3.67619595753176*^9}, {
|
---|
127 | 3.676196049763735*^9, 3.6761960518031893`*^9}, {3.71489982794697*^9,
|
---|
128 | 3.714899828966436*^9}, {3.71490004046701*^9, 3.714900043136207*^9}, {
|
---|
129 | 3.7149001684519243`*^9, 3.714900176622246*^9}, {3.714900801997252*^9,
|
---|
130 | 3.7149008039924498`*^9}}],
|
---|
131 |
|
---|
132 | Cell[CellGroupData[{
|
---|
133 |
|
---|
134 | Cell[BoxData["\<\"Merging model-files...\"\>"], "Print",
|
---|
135 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
136 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
137 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
138 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969187937*^9}],
|
---|
139 |
|
---|
140 | Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
|
---|
141 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
142 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
143 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
144 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969211878*^9}],
|
---|
145 |
|
---|
146 | Cell[BoxData["\<\"I. Brivio, M.B. Gavela, L. Merlo, K. Mimasu, J.M. No, R. \
|
---|
147 | del Rey, V. Sanz\"\>"], "Print",
|
---|
148 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
149 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
150 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
151 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969213647*^9}],
|
---|
152 |
|
---|
153 | Cell[BoxData[
|
---|
154 | InterpretationBox[
|
---|
155 | RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"1\"\>"}],
|
---|
156 | SequenceForm["Model Version: ", "1"],
|
---|
157 | Editable->False]], "Print",
|
---|
158 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
159 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
160 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
161 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969214779*^9}],
|
---|
162 |
|
---|
163 | Cell[BoxData["\<\"Please cite\"\>"], "Print",
|
---|
164 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
165 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
166 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
167 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.7149009692156963`*^9}],
|
---|
168 |
|
---|
169 | Cell[BoxData["\<\"arXiv:1701.05379\"\>"], "Print",
|
---|
170 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
171 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
172 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
173 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969216604*^9}],
|
---|
174 |
|
---|
175 | Cell[BoxData["\<\"https://feynrules.irmp.ucl.ac.be/wiki/ALPsEFT\"\>"], "Print",
|
---|
176 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
177 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
178 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
179 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969217536*^9}],
|
---|
180 |
|
---|
181 | Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
|
---|
182 | "Print",
|
---|
183 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
184 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
185 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
186 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.71490096921843*^9}],
|
---|
187 |
|
---|
188 | Cell[BoxData["\<\"\"\>"], "Print",
|
---|
189 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
190 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
191 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
192 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969219322*^9}],
|
---|
193 |
|
---|
194 | Cell[BoxData["\<\" - Loading particle classes.\"\>"], "Print",
|
---|
195 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
196 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
197 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
198 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.71490096922018*^9}],
|
---|
199 |
|
---|
200 | Cell[BoxData["\<\" - Loading gauge group classes.\"\>"], "Print",
|
---|
201 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
202 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
203 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
204 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969309099*^9}],
|
---|
205 |
|
---|
206 | Cell[BoxData["\<\" - Loading parameter classes.\"\>"], "Print",
|
---|
207 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
208 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
209 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
210 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969311594*^9}],
|
---|
211 |
|
---|
212 | Cell[BoxData[
|
---|
213 | InterpretationBox[
|
---|
214 | RowBox[{"\<\"\\nModel \"\>", "\[InvisibleSpace]", "\<\"ALP_linear\"\>",
|
---|
215 | "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
|
---|
216 | SequenceForm["\nModel ", "ALP_linear", " loaded."],
|
---|
217 | Editable->False]], "Print",
|
---|
218 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
219 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
220 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
221 | 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969359498*^9}]
|
---|
222 | }, Open ]]
|
---|
223 | }, Open ]],
|
---|
224 |
|
---|
225 | Cell[CellGroupData[{
|
---|
226 |
|
---|
227 | Cell["Feynman rules", "Subsection",
|
---|
228 | CellChangeTimes->{{3.638612958456888*^9, 3.638612964903018*^9}, {
|
---|
229 | 3.641555437690887*^9, 3.6415554385930634`*^9}, {3.714900458407517*^9,
|
---|
230 | 3.7149004631939707`*^9}}],
|
---|
231 |
|
---|
232 | Cell[CellGroupData[{
|
---|
233 |
|
---|
234 | Cell[BoxData[
|
---|
235 | RowBox[{
|
---|
236 | RowBox[{"AlpFR", "=",
|
---|
237 | RowBox[{
|
---|
238 | RowBox[{"FeynmanRules", "[",
|
---|
239 | RowBox[{"LALP", ",",
|
---|
240 | RowBox[{"MaxParticles", "\[Rule]", "4"}]}], "]"}], "//", "Simplify"}]}],
|
---|
241 | ";"}]], "Input",
|
---|
242 | CellChangeTimes->{{3.638612399979039*^9, 3.638612438377034*^9}, {
|
---|
243 | 3.6386128833730392`*^9, 3.638612887379834*^9}, {3.638613614059422*^9,
|
---|
244 | 3.638613674285076*^9}, {3.638613735408643*^9, 3.6386137469743147`*^9}, {
|
---|
245 | 3.638703969309166*^9, 3.63870398233029*^9}, {3.676198845702183*^9,
|
---|
246 | 3.676198850854022*^9}, {3.6762862015383883`*^9, 3.676286202884295*^9}, {
|
---|
247 | 3.714900437388975*^9, 3.714900439208026*^9}}],
|
---|
248 |
|
---|
249 | Cell[CellGroupData[{
|
---|
250 |
|
---|
251 | Cell[BoxData[
|
---|
252 | StyleBox["\<\"Starting Feynman rule calculation.\"\>",
|
---|
253 | StripOnInput->False,
|
---|
254 | LineColor->RGBColor[1, 0.5, 0],
|
---|
255 | FrontFaceColor->RGBColor[1, 0.5, 0],
|
---|
256 | BackFaceColor->RGBColor[1, 0.5, 0],
|
---|
257 | GraphicsColor->RGBColor[1, 0.5, 0],
|
---|
258 | FontWeight->Bold,
|
---|
259 | FontColor->RGBColor[1, 0.5, 0]]], "Print",
|
---|
260 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
261 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
262 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
263 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
264 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
265 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
266 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
267 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
268 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
269 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
270 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
271 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
272 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900976603509*^9}],
|
---|
273 |
|
---|
274 | Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
|
---|
275 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
276 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
277 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
278 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
279 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
280 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
281 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
282 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
283 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
284 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
285 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
286 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
287 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.7149009766042957`*^9}],
|
---|
288 |
|
---|
289 | Cell[BoxData[
|
---|
290 | InterpretationBox[
|
---|
291 | RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
|
---|
292 | "\[InvisibleSpace]", "\<\" cores\"\>"}],
|
---|
293 | SequenceForm["Expanding the indices over ", 2, " cores"],
|
---|
294 | Editable->False]], "Print",
|
---|
295 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
296 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
297 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
298 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
299 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
300 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
301 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
302 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
303 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
304 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
305 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
306 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
307 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.71490097660509*^9}],
|
---|
308 |
|
---|
309 | Cell[BoxData[
|
---|
310 | InterpretationBox[
|
---|
311 | RowBox[{"\<\"Neglecting all terms with more than \"\>",
|
---|
312 | "\[InvisibleSpace]", "\<\"4\"\>",
|
---|
313 | "\[InvisibleSpace]", "\<\" particles.\"\>"}],
|
---|
314 | SequenceForm["Neglecting all terms with more than ", "4", " particles."],
|
---|
315 | Editable->False]], "Print",
|
---|
316 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
317 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
318 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
319 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
320 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
321 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
322 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
323 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
324 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
325 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
326 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
327 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
328 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900976638345*^9}],
|
---|
329 |
|
---|
330 | Cell[BoxData["\<\"Collecting the different structures that enter the \
|
---|
331 | vertex.\"\>"], "Print",
|
---|
332 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
333 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
334 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
335 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
336 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
337 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
338 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
339 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
340 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
341 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
342 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
343 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
344 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900980955859*^9}],
|
---|
345 |
|
---|
346 | Cell[BoxData[
|
---|
347 | InterpretationBox[
|
---|
348 | RowBox[{
|
---|
349 | "14", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
|
---|
350 | -> starting the computation: \"\>", "\[InvisibleSpace]",
|
---|
351 | DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
|
---|
352 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
353 | "\[InvisibleSpace]", "14", "\[InvisibleSpace]", "\<\".\"\>"}],
|
---|
354 | SequenceForm[
|
---|
355 | 14, " possible non-zero vertices have been found -> starting the \
|
---|
356 | computation: ",
|
---|
357 | Dynamic[FeynRules`FR$FeynmanRules], " / ", 14, "."],
|
---|
358 | Editable->False]], "Print",
|
---|
359 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
360 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
361 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
362 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
363 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
364 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
365 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
366 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
367 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
368 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
369 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
370 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
371 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900980995866*^9}],
|
---|
372 |
|
---|
373 | Cell[BoxData[
|
---|
374 | InterpretationBox[
|
---|
375 | RowBox[{"14", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
|
---|
376 | SequenceForm[14, " vertices obtained."],
|
---|
377 | Editable->False]], "Print",
|
---|
378 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
379 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
380 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
381 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
382 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
383 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
384 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
385 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
386 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
387 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
388 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
389 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
390 | 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900983120726*^9}]
|
---|
391 | }, Open ]]
|
---|
392 | }, Open ]],
|
---|
393 |
|
---|
394 | Cell[CellGroupData[{
|
---|
395 |
|
---|
396 | Cell[BoxData[
|
---|
397 | RowBox[{
|
---|
398 | RowBox[{"AlpFRSimp", "=",
|
---|
399 | RowBox[{
|
---|
400 | RowBox[{"AlpFR", "//", "Simplify"}], "//",
|
---|
401 | RowBox[{
|
---|
402 | RowBox[{"Collect", "[",
|
---|
403 | RowBox[{"#", ",",
|
---|
404 | RowBox[{"{",
|
---|
405 | SubscriptBox["\[Epsilon]", "_"], "}"}], ",", "FullSimplify"}], "]"}],
|
---|
406 | "&"}]}]}], ";",
|
---|
407 | RowBox[{"AlpFRSimp", "//", "TableForm"}]}]], "Input",
|
---|
408 | CellChangeTimes->{{3.638613750408924*^9, 3.638613917314427*^9}, {
|
---|
409 | 3.6386139618919573`*^9, 3.6386140242555027`*^9}, {3.638614110850162*^9,
|
---|
410 | 3.63861411992393*^9}, {3.6386142738449593`*^9, 3.638614464079233*^9}, {
|
---|
411 | 3.638622495805666*^9, 3.6386224999713*^9}, {3.638622681020277*^9,
|
---|
412 | 3.6386226879638844`*^9}, {3.638622722309443*^9, 3.6386227454282093`*^9}, {
|
---|
413 | 3.638623669647767*^9, 3.638623670261174*^9}, 3.638682708207778*^9, {
|
---|
414 | 3.638700133618009*^9, 3.638700136676296*^9}, {3.638702929466498*^9,
|
---|
415 | 3.638702931898744*^9}, {3.6387030695743713`*^9, 3.6387031130558977`*^9}, {
|
---|
416 | 3.638703151342684*^9, 3.638703247383995*^9}, {3.638703282975972*^9,
|
---|
417 | 3.638703379857666*^9}, {3.6387160628081417`*^9, 3.638716079998055*^9}, {
|
---|
418 | 3.638716121793007*^9, 3.638716206718704*^9}, {3.676115591639645*^9,
|
---|
419 | 3.6761155983649282`*^9}, {3.676199742374304*^9, 3.676199767888208*^9},
|
---|
420 | 3.676286209033051*^9}],
|
---|
421 |
|
---|
422 | Cell[BoxData[
|
---|
423 | InterpretationBox[GridBox[{
|
---|
424 | {GridBox[{
|
---|
425 | {"A", "1"},
|
---|
426 | {"A", "2"},
|
---|
427 | {"ALP", "3"}
|
---|
428 | },
|
---|
429 | GridBoxAlignment->{
|
---|
430 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
431 | "RowsIndexed" -> {}},
|
---|
432 | GridBoxSpacings->{"Columns" -> {
|
---|
433 | Offset[0.27999999999999997`], {
|
---|
434 | Offset[0.7]},
|
---|
435 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
436 | Offset[0.2], {
|
---|
437 | Offset[0.1]},
|
---|
438 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
439 | RowBox[{"-",
|
---|
440 | FractionBox[
|
---|
441 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
442 | RowBox[{"(",
|
---|
443 | RowBox[{
|
---|
444 | RowBox[{"-",
|
---|
445 | SubscriptBox["c",
|
---|
446 | OverscriptBox["B", "~"]]}], "+",
|
---|
447 | RowBox[{
|
---|
448 | RowBox[{"(",
|
---|
449 | RowBox[{
|
---|
450 | SubscriptBox["c",
|
---|
451 | OverscriptBox["B", "~"]], "-",
|
---|
452 | SubscriptBox["c",
|
---|
453 | OverscriptBox["W", "~"]]}], ")"}], " ",
|
---|
454 | SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
|
---|
455 | SubscriptBox["\[Epsilon]",
|
---|
456 | RowBox[{
|
---|
457 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
458 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "mu$1", ",", "mu$2"}]],
|
---|
459 | " ",
|
---|
460 | RowBox[{"(",
|
---|
461 | RowBox[{
|
---|
462 | RowBox[{
|
---|
463 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
|
---|
464 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "-",
|
---|
465 | RowBox[{
|
---|
466 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
467 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"]}]}], ")"}]}],
|
---|
468 | SubscriptBox["f", "a"]]}]},
|
---|
469 | {GridBox[{
|
---|
470 | {"ALP", "1"},
|
---|
471 | {"G", "2"},
|
---|
472 | {"G", "3"}
|
---|
473 | },
|
---|
474 | GridBoxAlignment->{
|
---|
475 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
476 | "RowsIndexed" -> {}},
|
---|
477 | GridBoxSpacings->{"Columns" -> {
|
---|
478 | Offset[0.27999999999999997`], {
|
---|
479 | Offset[0.7]},
|
---|
480 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
481 | Offset[0.2], {
|
---|
482 | Offset[0.1]},
|
---|
483 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
484 | FractionBox[
|
---|
485 | RowBox[{"\[ImaginaryI]", " ",
|
---|
486 | SubscriptBox["c",
|
---|
487 | OverscriptBox["G", "~"]], " ",
|
---|
488 | RowBox[{"(",
|
---|
489 | RowBox[{
|
---|
490 | RowBox[{
|
---|
491 | SubscriptBox["\[Epsilon]",
|
---|
492 | RowBox[{
|
---|
493 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
494 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
|
---|
495 | "\[Beta]1"}]], " ",
|
---|
496 | RowBox[{"(",
|
---|
497 | RowBox[{
|
---|
498 | RowBox[{
|
---|
499 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
|
---|
500 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
|
---|
501 | RowBox[{
|
---|
502 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
|
---|
503 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}]}], ")"}]}],
|
---|
504 | "+",
|
---|
505 | RowBox[{
|
---|
506 | SubscriptBox["\[Epsilon]",
|
---|
507 | RowBox[{
|
---|
508 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
509 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
|
---|
510 | "\[Beta]1"}]], " ",
|
---|
511 | RowBox[{"(",
|
---|
512 | RowBox[{
|
---|
513 | RowBox[{
|
---|
514 | RowBox[{"-",
|
---|
515 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"]}], " ",
|
---|
516 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}], "+",
|
---|
517 | RowBox[{
|
---|
518 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
|
---|
519 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}]}], ")"}]}],
|
---|
520 | "+",
|
---|
521 | RowBox[{
|
---|
522 | SubscriptBox["\[Epsilon]",
|
---|
523 | RowBox[{
|
---|
524 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
525 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
|
---|
526 | "\[Delta]1"}]], " ",
|
---|
527 | RowBox[{"(",
|
---|
528 | RowBox[{
|
---|
529 | RowBox[{
|
---|
530 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
|
---|
531 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
|
---|
532 | RowBox[{
|
---|
533 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
|
---|
534 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}],
|
---|
535 | "+",
|
---|
536 | RowBox[{
|
---|
537 | SubscriptBox["\[Epsilon]",
|
---|
538 | RowBox[{
|
---|
539 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
540 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
|
---|
541 | "\[Delta]1"}]], " ",
|
---|
542 | RowBox[{"(",
|
---|
543 | RowBox[{
|
---|
544 | RowBox[{
|
---|
545 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
|
---|
546 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}], "-",
|
---|
547 | RowBox[{
|
---|
548 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
|
---|
549 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}]}],
|
---|
550 | ")"}], " ",
|
---|
551 | SubscriptBox["\[Delta]",
|
---|
552 | RowBox[{
|
---|
553 | SubscriptBox["\<\"a\"\>", "2"], ",",
|
---|
554 | SubscriptBox["\<\"a\"\>", "3"]}]]}],
|
---|
555 | RowBox[{"2", " ",
|
---|
556 | SubscriptBox["f", "a"]}]]},
|
---|
557 | {GridBox[{
|
---|
558 | {"ALP", "1"},
|
---|
559 | {"W", "2"},
|
---|
560 | {
|
---|
561 | SuperscriptBox["W", "\[Dagger]"], "3"}
|
---|
562 | },
|
---|
563 | GridBoxAlignment->{
|
---|
564 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
565 | "RowsIndexed" -> {}},
|
---|
566 | GridBoxSpacings->{"Columns" -> {
|
---|
567 | Offset[0.27999999999999997`], {
|
---|
568 | Offset[0.7]},
|
---|
569 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
570 | Offset[0.2], {
|
---|
571 | Offset[0.1]},
|
---|
572 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
573 | FractionBox[
|
---|
574 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
575 | SubscriptBox["c",
|
---|
576 | OverscriptBox["W", "~"]], " ",
|
---|
577 | SubscriptBox["\[Epsilon]",
|
---|
578 | RowBox[{
|
---|
579 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
580 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]], " ",
|
---|
581 | RowBox[{"(",
|
---|
582 | RowBox[{
|
---|
583 | RowBox[{
|
---|
584 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
|
---|
585 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
|
---|
586 | RowBox[{
|
---|
587 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
|
---|
588 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
|
---|
589 | SubscriptBox["f", "a"]]},
|
---|
590 | {GridBox[{
|
---|
591 | {"A", "1"},
|
---|
592 | {"ALP", "2"},
|
---|
593 | {"Z", "3"}
|
---|
594 | },
|
---|
595 | GridBoxAlignment->{
|
---|
596 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
597 | "RowsIndexed" -> {}},
|
---|
598 | GridBoxSpacings->{"Columns" -> {
|
---|
599 | Offset[0.27999999999999997`], {
|
---|
600 | Offset[0.7]},
|
---|
601 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
602 | Offset[0.2], {
|
---|
603 | Offset[0.1]},
|
---|
604 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
605 | FractionBox[
|
---|
606 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
607 | SubscriptBox["c", "w"], " ",
|
---|
608 | RowBox[{"(",
|
---|
609 | RowBox[{
|
---|
610 | SubscriptBox["c",
|
---|
611 | OverscriptBox["B", "~"]], "-",
|
---|
612 | SubscriptBox["c",
|
---|
613 | OverscriptBox["W", "~"]]}], ")"}], " ",
|
---|
614 | SubscriptBox["s", "w"], " ",
|
---|
615 | SubscriptBox["\[Epsilon]",
|
---|
616 | RowBox[{
|
---|
617 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
618 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]], " ",
|
---|
619 | RowBox[{"(",
|
---|
620 | RowBox[{
|
---|
621 | RowBox[{
|
---|
622 | RowBox[{"-",
|
---|
623 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"]}], " ",
|
---|
624 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "+",
|
---|
625 | RowBox[{
|
---|
626 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
627 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
|
---|
628 | SubscriptBox["f", "a"]]},
|
---|
629 | {GridBox[{
|
---|
630 | {"ALP", "1"},
|
---|
631 | {"Z", "2"},
|
---|
632 | {"Z", "3"}
|
---|
633 | },
|
---|
634 | GridBoxAlignment->{
|
---|
635 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
636 | "RowsIndexed" -> {}},
|
---|
637 | GridBoxSpacings->{"Columns" -> {
|
---|
638 | Offset[0.27999999999999997`], {
|
---|
639 | Offset[0.7]},
|
---|
640 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
641 | Offset[0.2], {
|
---|
642 | Offset[0.1]},
|
---|
643 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
644 | RowBox[{"-",
|
---|
645 | FractionBox[
|
---|
646 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
647 | RowBox[{"(",
|
---|
648 | RowBox[{
|
---|
649 | RowBox[{"-",
|
---|
650 | SubscriptBox["c",
|
---|
651 | OverscriptBox["W", "~"]]}], "+",
|
---|
652 | RowBox[{
|
---|
653 | RowBox[{"(",
|
---|
654 | RowBox[{
|
---|
655 | RowBox[{"-",
|
---|
656 | SubscriptBox["c",
|
---|
657 | OverscriptBox["B", "~"]]}], "+",
|
---|
658 | SubscriptBox["c",
|
---|
659 | OverscriptBox["W", "~"]]}], ")"}], " ",
|
---|
660 | SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
|
---|
661 | SubscriptBox["\[Epsilon]",
|
---|
662 | RowBox[{
|
---|
663 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
664 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
|
---|
665 | " ",
|
---|
666 | RowBox[{"(",
|
---|
667 | RowBox[{
|
---|
668 | RowBox[{
|
---|
669 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
|
---|
670 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
|
---|
671 | RowBox[{
|
---|
672 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
|
---|
673 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
|
---|
674 | SubscriptBox["f", "a"]]}]},
|
---|
675 | {GridBox[{
|
---|
676 | {"ALP", "1"},
|
---|
677 | {"G", "2"},
|
---|
678 | {"G", "3"},
|
---|
679 | {"G", "4"}
|
---|
680 | },
|
---|
681 | GridBoxAlignment->{
|
---|
682 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
683 | "RowsIndexed" -> {}},
|
---|
684 | GridBoxSpacings->{"Columns" -> {
|
---|
685 | Offset[0.27999999999999997`], {
|
---|
686 | Offset[0.7]},
|
---|
687 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
688 | Offset[0.2], {
|
---|
689 | Offset[0.1]},
|
---|
690 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
691 | RowBox[{"-",
|
---|
692 | FractionBox[
|
---|
693 | RowBox[{
|
---|
694 | SubscriptBox["c",
|
---|
695 | OverscriptBox["G", "~"]], " ",
|
---|
696 | SubscriptBox["g", "s"], " ",
|
---|
697 | SubscriptBox["f",
|
---|
698 | RowBox[{
|
---|
699 | SubscriptBox["\<\"a\"\>", "2"], ",",
|
---|
700 | SubscriptBox["\<\"a\"\>", "3"], ",",
|
---|
701 | SubscriptBox["\<\"a\"\>", "4"]}]], " ",
|
---|
702 | RowBox[{"(",
|
---|
703 | RowBox[{
|
---|
704 | RowBox[{
|
---|
705 | SubscriptBox["\[Epsilon]",
|
---|
706 | RowBox[{
|
---|
707 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
708 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
709 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Alpha]1"}]], " ",
|
---|
710 | RowBox[{"(",
|
---|
711 | RowBox[{
|
---|
712 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], "+",
|
---|
713 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"], "+",
|
---|
714 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Alpha]1"]}], ")"}]}], "+",
|
---|
715 | RowBox[{
|
---|
716 | SubscriptBox["\[Epsilon]",
|
---|
717 | RowBox[{
|
---|
718 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
719 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
720 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Beta]1"}]], " ",
|
---|
721 | RowBox[{"(",
|
---|
722 | RowBox[{
|
---|
723 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], "+",
|
---|
724 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"], "+",
|
---|
725 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Beta]1"]}], ")"}]}], "+",
|
---|
726 |
|
---|
727 | RowBox[{
|
---|
728 | SubscriptBox["\[Epsilon]",
|
---|
729 | RowBox[{
|
---|
730 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
731 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
732 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Gamma]1"}]], " ",
|
---|
733 | RowBox[{"(",
|
---|
734 | RowBox[{
|
---|
735 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], "+",
|
---|
736 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"], "+",
|
---|
737 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Gamma]1"]}], ")"}]}], "+",
|
---|
738 | RowBox[{
|
---|
739 | SubscriptBox["\[Epsilon]",
|
---|
740 | RowBox[{
|
---|
741 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
742 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
743 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Delta]1"}]], " ",
|
---|
744 | RowBox[{"(",
|
---|
745 | RowBox[{
|
---|
746 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], "+",
|
---|
747 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"], "+",
|
---|
748 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Delta]1"]}], ")"}]}]}],
|
---|
749 | ")"}]}],
|
---|
750 | SubscriptBox["f", "a"]]}]},
|
---|
751 | {GridBox[{
|
---|
752 | {
|
---|
753 | OverscriptBox["dq", "\<\"-\"\>"], "1"},
|
---|
754 | {"dq", "2"},
|
---|
755 | {"ALP", "3"},
|
---|
756 | {"H", "4"}
|
---|
757 | },
|
---|
758 | GridBoxAlignment->{
|
---|
759 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
760 | "RowsIndexed" -> {}},
|
---|
761 | GridBoxSpacings->{"Columns" -> {
|
---|
762 | Offset[0.27999999999999997`], {
|
---|
763 | Offset[0.7]},
|
---|
764 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
765 | Offset[0.2], {
|
---|
766 | Offset[0.1]},
|
---|
767 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
768 | FractionBox[
|
---|
769 | RowBox[{
|
---|
770 | SubscriptBox["c", "a\[Phi]"], " ",
|
---|
771 | SubscriptBox["\[Delta]",
|
---|
772 | RowBox[{
|
---|
773 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
774 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
775 | RowBox[{"(",
|
---|
776 | RowBox[{
|
---|
777 | RowBox[{
|
---|
778 | RowBox[{"-",
|
---|
779 | SubsuperscriptBox[
|
---|
780 | RowBox[{"(",
|
---|
781 | TemplateBox[{"y","d"},
|
---|
782 | "Superscript"], ")"}],
|
---|
783 | RowBox[{
|
---|
784 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
785 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
|
---|
786 | SubscriptBox[
|
---|
787 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
788 | RowBox[{
|
---|
789 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
790 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
|
---|
791 | RowBox[{
|
---|
792 | SubscriptBox[
|
---|
793 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
794 | RowBox[{
|
---|
795 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
796 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
797 | SubscriptBox[
|
---|
798 | TemplateBox[{"y","d"},
|
---|
799 | "Superscript"],
|
---|
800 | RowBox[{
|
---|
801 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
802 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
803 | RowBox[{
|
---|
804 | SqrtBox["2"], " ",
|
---|
805 | SubscriptBox["f", "a"]}]]},
|
---|
806 | {GridBox[{
|
---|
807 | {
|
---|
808 | OverscriptBox["dq", "\<\"-\"\>"], "1"},
|
---|
809 | {"dq", "2"},
|
---|
810 | {"ALP", "3"}
|
---|
811 | },
|
---|
812 | GridBoxAlignment->{
|
---|
813 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
814 | "RowsIndexed" -> {}},
|
---|
815 | GridBoxSpacings->{"Columns" -> {
|
---|
816 | Offset[0.27999999999999997`], {
|
---|
817 | Offset[0.7]},
|
---|
818 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
819 | Offset[0.2], {
|
---|
820 | Offset[0.1]},
|
---|
821 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
822 | FractionBox[
|
---|
823 | RowBox[{
|
---|
824 | SubscriptBox["c", "a\[Phi]"], " ", "vev", " ",
|
---|
825 | SubscriptBox["\[Delta]",
|
---|
826 | RowBox[{
|
---|
827 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
828 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
829 | RowBox[{"(",
|
---|
830 | RowBox[{
|
---|
831 | RowBox[{
|
---|
832 | RowBox[{"-",
|
---|
833 | SubsuperscriptBox[
|
---|
834 | RowBox[{"(",
|
---|
835 | TemplateBox[{"y","d"},
|
---|
836 | "Superscript"], ")"}],
|
---|
837 | RowBox[{
|
---|
838 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
839 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
|
---|
840 | SubscriptBox[
|
---|
841 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
842 | RowBox[{
|
---|
843 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
844 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
|
---|
845 | RowBox[{
|
---|
846 | SubscriptBox[
|
---|
847 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
848 | RowBox[{
|
---|
849 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
850 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
851 | SubscriptBox[
|
---|
852 | TemplateBox[{"y","d"},
|
---|
853 | "Superscript"],
|
---|
854 | RowBox[{
|
---|
855 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
856 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
857 | RowBox[{
|
---|
858 | SqrtBox["2"], " ",
|
---|
859 | SubscriptBox["f", "a"]}]]},
|
---|
860 | {GridBox[{
|
---|
861 | {
|
---|
862 | OverscriptBox["l", "\<\"-\"\>"], "1"},
|
---|
863 | {"l", "2"},
|
---|
864 | {"ALP", "3"},
|
---|
865 | {"H", "4"}
|
---|
866 | },
|
---|
867 | GridBoxAlignment->{
|
---|
868 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
869 | "RowsIndexed" -> {}},
|
---|
870 | GridBoxSpacings->{"Columns" -> {
|
---|
871 | Offset[0.27999999999999997`], {
|
---|
872 | Offset[0.7]},
|
---|
873 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
874 | Offset[0.2], {
|
---|
875 | Offset[0.1]},
|
---|
876 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
877 | FractionBox[
|
---|
878 | RowBox[{
|
---|
879 | SubscriptBox["c", "a\[Phi]"], " ",
|
---|
880 | RowBox[{"(",
|
---|
881 | RowBox[{
|
---|
882 | RowBox[{
|
---|
883 | RowBox[{"-",
|
---|
884 | SubsuperscriptBox[
|
---|
885 | RowBox[{"(",
|
---|
886 | TemplateBox[{"y","l"},
|
---|
887 | "Superscript"], ")"}],
|
---|
888 | RowBox[{
|
---|
889 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
890 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
|
---|
891 | SubscriptBox[
|
---|
892 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
893 | RowBox[{
|
---|
894 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
895 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
|
---|
896 | RowBox[{
|
---|
897 | SubscriptBox[
|
---|
898 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
899 | RowBox[{
|
---|
900 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
901 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
902 | SubscriptBox[
|
---|
903 | TemplateBox[{"y","l"},
|
---|
904 | "Superscript"],
|
---|
905 | RowBox[{
|
---|
906 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
907 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
908 | RowBox[{
|
---|
909 | SqrtBox["2"], " ",
|
---|
910 | SubscriptBox["f", "a"]}]]},
|
---|
911 | {GridBox[{
|
---|
912 | {
|
---|
913 | OverscriptBox["l", "\<\"-\"\>"], "1"},
|
---|
914 | {"l", "2"},
|
---|
915 | {"ALP", "3"}
|
---|
916 | },
|
---|
917 | GridBoxAlignment->{
|
---|
918 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
919 | "RowsIndexed" -> {}},
|
---|
920 | GridBoxSpacings->{"Columns" -> {
|
---|
921 | Offset[0.27999999999999997`], {
|
---|
922 | Offset[0.7]},
|
---|
923 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
924 | Offset[0.2], {
|
---|
925 | Offset[0.1]},
|
---|
926 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
927 | FractionBox[
|
---|
928 | RowBox[{
|
---|
929 | SubscriptBox["c", "a\[Phi]"], " ", "vev", " ",
|
---|
930 | RowBox[{"(",
|
---|
931 | RowBox[{
|
---|
932 | RowBox[{
|
---|
933 | RowBox[{"-",
|
---|
934 | SubsuperscriptBox[
|
---|
935 | RowBox[{"(",
|
---|
936 | TemplateBox[{"y","l"},
|
---|
937 | "Superscript"], ")"}],
|
---|
938 | RowBox[{
|
---|
939 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
940 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
|
---|
941 | SubscriptBox[
|
---|
942 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
943 | RowBox[{
|
---|
944 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
945 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
|
---|
946 | RowBox[{
|
---|
947 | SubscriptBox[
|
---|
948 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
949 | RowBox[{
|
---|
950 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
951 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
952 | SubscriptBox[
|
---|
953 | TemplateBox[{"y","l"},
|
---|
954 | "Superscript"],
|
---|
955 | RowBox[{
|
---|
956 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
957 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
958 | RowBox[{
|
---|
959 | SqrtBox["2"], " ",
|
---|
960 | SubscriptBox["f", "a"]}]]},
|
---|
961 | {GridBox[{
|
---|
962 | {
|
---|
963 | OverscriptBox["uq", "\<\"-\"\>"], "1"},
|
---|
964 | {"uq", "2"},
|
---|
965 | {"ALP", "3"},
|
---|
966 | {"H", "4"}
|
---|
967 | },
|
---|
968 | GridBoxAlignment->{
|
---|
969 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
970 | "RowsIndexed" -> {}},
|
---|
971 | GridBoxSpacings->{"Columns" -> {
|
---|
972 | Offset[0.27999999999999997`], {
|
---|
973 | Offset[0.7]},
|
---|
974 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
975 | Offset[0.2], {
|
---|
976 | Offset[0.1]},
|
---|
977 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
978 | FractionBox[
|
---|
979 | RowBox[{
|
---|
980 | SubscriptBox["c", "a\[Phi]"], " ",
|
---|
981 | SubscriptBox["\[Delta]",
|
---|
982 | RowBox[{
|
---|
983 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
984 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
985 | RowBox[{"(",
|
---|
986 | RowBox[{
|
---|
987 | RowBox[{
|
---|
988 | SubsuperscriptBox[
|
---|
989 | RowBox[{"(",
|
---|
990 | TemplateBox[{"y","u"},
|
---|
991 | "Superscript"], ")"}],
|
---|
992 | RowBox[{
|
---|
993 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
994 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
995 | SubscriptBox[
|
---|
996 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
997 | RowBox[{
|
---|
998 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
999 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
1000 | RowBox[{
|
---|
1001 | SubscriptBox[
|
---|
1002 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
1003 | RowBox[{
|
---|
1004 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
1005 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
1006 | SubscriptBox[
|
---|
1007 | TemplateBox[{"y","u"},
|
---|
1008 | "Superscript"],
|
---|
1009 | RowBox[{
|
---|
1010 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
1011 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
1012 | RowBox[{
|
---|
1013 | SqrtBox["2"], " ",
|
---|
1014 | SubscriptBox["f", "a"]}]]},
|
---|
1015 | {GridBox[{
|
---|
1016 | {
|
---|
1017 | OverscriptBox["uq", "\<\"-\"\>"], "1"},
|
---|
1018 | {"uq", "2"},
|
---|
1019 | {"ALP", "3"}
|
---|
1020 | },
|
---|
1021 | GridBoxAlignment->{
|
---|
1022 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
1023 | "RowsIndexed" -> {}},
|
---|
1024 | GridBoxSpacings->{"Columns" -> {
|
---|
1025 | Offset[0.27999999999999997`], {
|
---|
1026 | Offset[0.7]},
|
---|
1027 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
1028 | Offset[0.2], {
|
---|
1029 | Offset[0.1]},
|
---|
1030 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
1031 | FractionBox[
|
---|
1032 | RowBox[{
|
---|
1033 | SubscriptBox["c", "a\[Phi]"], " ", "vev", " ",
|
---|
1034 | SubscriptBox["\[Delta]",
|
---|
1035 | RowBox[{
|
---|
1036 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
1037 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
1038 | RowBox[{"(",
|
---|
1039 | RowBox[{
|
---|
1040 | RowBox[{
|
---|
1041 | SubsuperscriptBox[
|
---|
1042 | RowBox[{"(",
|
---|
1043 | TemplateBox[{"y","u"},
|
---|
1044 | "Superscript"], ")"}],
|
---|
1045 | RowBox[{
|
---|
1046 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
1047 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
1048 | SubscriptBox[
|
---|
1049 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
1050 | RowBox[{
|
---|
1051 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
1052 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
1053 | RowBox[{
|
---|
1054 | SubscriptBox[
|
---|
1055 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
1056 | RowBox[{
|
---|
1057 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
1058 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
1059 | SubscriptBox[
|
---|
1060 | TemplateBox[{"y","u"},
|
---|
1061 | "Superscript"],
|
---|
1062 | RowBox[{
|
---|
1063 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
1064 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
1065 | RowBox[{
|
---|
1066 | SqrtBox["2"], " ",
|
---|
1067 | SubscriptBox["f", "a"]}]]},
|
---|
1068 | {GridBox[{
|
---|
1069 | {"A", "1"},
|
---|
1070 | {"ALP", "2"},
|
---|
1071 | {"W", "3"},
|
---|
1072 | {
|
---|
1073 | SuperscriptBox["W", "\[Dagger]"], "4"}
|
---|
1074 | },
|
---|
1075 | GridBoxAlignment->{
|
---|
1076 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
1077 | "RowsIndexed" -> {}},
|
---|
1078 | GridBoxSpacings->{"Columns" -> {
|
---|
1079 | Offset[0.27999999999999997`], {
|
---|
1080 | Offset[0.7]},
|
---|
1081 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
1082 | Offset[0.2], {
|
---|
1083 | Offset[0.1]},
|
---|
1084 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
1085 | RowBox[{"-",
|
---|
1086 | FractionBox[
|
---|
1087 | RowBox[{"4", " ", "\[ImaginaryI]", " ",
|
---|
1088 | SubscriptBox["c",
|
---|
1089 | OverscriptBox["W", "~"]], " ", "e", " ",
|
---|
1090 | SubscriptBox["\[Epsilon]",
|
---|
1091 | RowBox[{
|
---|
1092 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
1093 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
|
---|
1094 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
|
---|
1095 | RowBox[{"(",
|
---|
1096 | RowBox[{
|
---|
1097 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], "+",
|
---|
1098 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
|
---|
1099 | SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}],
|
---|
1100 | SubscriptBox["f", "a"]]}]},
|
---|
1101 | {GridBox[{
|
---|
1102 | {"ALP", "1"},
|
---|
1103 | {"W", "2"},
|
---|
1104 | {
|
---|
1105 | SuperscriptBox["W", "\[Dagger]"], "3"},
|
---|
1106 | {"Z", "4"}
|
---|
1107 | },
|
---|
1108 | GridBoxAlignment->{
|
---|
1109 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
1110 | "RowsIndexed" -> {}},
|
---|
1111 | GridBoxSpacings->{"Columns" -> {
|
---|
1112 | Offset[0.27999999999999997`], {
|
---|
1113 | Offset[0.7]},
|
---|
1114 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
1115 | Offset[0.2], {
|
---|
1116 | Offset[0.1]},
|
---|
1117 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
1118 | FractionBox[
|
---|
1119 | RowBox[{"4", " ", "\[ImaginaryI]", " ",
|
---|
1120 | SubscriptBox["c", "w"], " ",
|
---|
1121 | SubscriptBox["c",
|
---|
1122 | OverscriptBox["W", "~"]], " ", "e", " ",
|
---|
1123 | SubscriptBox["\[Epsilon]",
|
---|
1124 | RowBox[{
|
---|
1125 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
|
---|
1126 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
1127 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
|
---|
1128 | RowBox[{"(",
|
---|
1129 | RowBox[{
|
---|
1130 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], "+",
|
---|
1131 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
|
---|
1132 | SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}],
|
---|
1133 | RowBox[{
|
---|
1134 | SubscriptBox["f", "a"], " ",
|
---|
1135 | SubscriptBox["s", "w"]}]]}
|
---|
1136 | },
|
---|
1137 | GridBoxAlignment->{
|
---|
1138 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
1139 | "RowsIndexed" -> {}},
|
---|
1140 | GridBoxSpacings->{"Columns" -> {
|
---|
1141 | Offset[0.27999999999999997`], {
|
---|
1142 | Offset[2.0999999999999996`]},
|
---|
1143 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
1144 | Offset[0.2], {
|
---|
1145 | Offset[0.4]},
|
---|
1146 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
1147 | TableForm[{{{{$CellContext`A, 1}, {$CellContext`A, 2}, {$CellContext`ALP,
|
---|
1148 | 3}}, Complex[
|
---|
1149 | 0, -2] $CellContext`fa^(-1) (-$CellContext`CBtil + ($CellContext`CBtil - \
|
---|
1150 | $CellContext`CWtil) $CellContext`sw^2) FeynRules`Eps[
|
---|
1151 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1152 | FeynRules`Ext[1]],
|
---|
1153 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1154 | FeynRules`Ext[2]],
|
---|
1155 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
1156 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[1,
|
---|
1157 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
1158 | FeynRules`FV[2,
|
---|
1159 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
1160 | FeynRules`FV[1,
|
---|
1161 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[2,
|
---|
1162 | FeynRules`Index[
|
---|
1163 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP, 1}, {
|
---|
1164 | FeynRules`G, 2}, {FeynRules`G, 3}}, Complex[0,
|
---|
1165 | Rational[1, 2]] $CellContext`CGtil $CellContext`fa^(-1) (
|
---|
1166 | FeynRules`Eps[
|
---|
1167 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1168 | FeynRules`Ext[2]],
|
---|
1169 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1170 | FeynRules`Ext[3]],
|
---|
1171 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
|
---|
1172 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
|
---|
1173 | FeynRules`FV[2,
|
---|
1174 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
|
---|
1175 | FeynRules`FV[3,
|
---|
1176 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
|
---|
1177 | FeynRules`FV[2,
|
---|
1178 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
|
---|
1179 | FeynRules`FV[3,
|
---|
1180 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
|
---|
1181 | FeynRules`Eps[
|
---|
1182 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1183 | FeynRules`Ext[2]],
|
---|
1184 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1185 | FeynRules`Ext[3]],
|
---|
1186 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
|
---|
1187 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (-
|
---|
1188 | FeynRules`FV[2,
|
---|
1189 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
|
---|
1190 | FeynRules`FV[3,
|
---|
1191 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
|
---|
1192 | FeynRules`FV[2,
|
---|
1193 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
|
---|
1194 | FeynRules`FV[3,
|
---|
1195 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
|
---|
1196 | FeynRules`Eps[
|
---|
1197 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1198 | FeynRules`Ext[2]],
|
---|
1199 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1200 | FeynRules`Ext[3]],
|
---|
1201 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
|
---|
1202 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
|
---|
1203 | FeynRules`FV[2,
|
---|
1204 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
|
---|
1205 | FeynRules`FV[3,
|
---|
1206 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
|
---|
1207 | FeynRules`FV[2,
|
---|
1208 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
|
---|
1209 | FeynRules`FV[3,
|
---|
1210 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]) +
|
---|
1211 | FeynRules`Eps[
|
---|
1212 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1213 | FeynRules`Ext[2]],
|
---|
1214 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1215 | FeynRules`Ext[3]],
|
---|
1216 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
|
---|
1217 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
|
---|
1218 | FeynRules`FV[2,
|
---|
1219 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
|
---|
1220 | FeynRules`FV[3,
|
---|
1221 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] -
|
---|
1222 | FeynRules`FV[2,
|
---|
1223 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
|
---|
1224 | FeynRules`FV[3,
|
---|
1225 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]))
|
---|
1226 | FeynRules`IndexDelta[
|
---|
1227 | FeynRules`Index[FeynRules`Gluon,
|
---|
1228 | FeynRules`Ext[2]],
|
---|
1229 | FeynRules`Index[FeynRules`Gluon,
|
---|
1230 | FeynRules`Ext[3]]]}, {{{$CellContext`ALP, 1}, {
|
---|
1231 | FeynRules`W, 2}, {$CellContext`Wbar, 3}},
|
---|
1232 | Complex[0, 2] $CellContext`CWtil $CellContext`fa^(-1) FeynRules`Eps[
|
---|
1233 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1234 | FeynRules`Ext[2]],
|
---|
1235 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1236 | FeynRules`Ext[3]],
|
---|
1237 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
1238 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[2,
|
---|
1239 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
1240 | FeynRules`FV[3,
|
---|
1241 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
1242 | FeynRules`FV[2,
|
---|
1243 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[3,
|
---|
1244 | FeynRules`Index[
|
---|
1245 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`A,
|
---|
1246 | 1}, {$CellContext`ALP, 2}, {$CellContext`Z, 3}},
|
---|
1247 | Complex[0,
|
---|
1248 | 2] $CellContext`cw ($CellContext`CBtil - $CellContext`CWtil) \
|
---|
1249 | $CellContext`fa^(-1) $CellContext`sw FeynRules`Eps[
|
---|
1250 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1251 | FeynRules`Ext[1]],
|
---|
1252 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1253 | FeynRules`Ext[3]],
|
---|
1254 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
1255 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (-
|
---|
1256 | FeynRules`FV[1,
|
---|
1257 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
1258 | FeynRules`FV[3,
|
---|
1259 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
1260 | FeynRules`FV[1,
|
---|
1261 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
|
---|
1262 | FeynRules`FV[3,
|
---|
1263 | FeynRules`Index[
|
---|
1264 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP,
|
---|
1265 | 1}, {$CellContext`Z, 2}, {$CellContext`Z, 3}},
|
---|
1266 | Complex[0, -2] $CellContext`fa^(-1) (-$CellContext`CWtil + \
|
---|
1267 | (-$CellContext`CBtil + $CellContext`CWtil) $CellContext`sw^2) FeynRules`Eps[
|
---|
1268 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1269 | FeynRules`Ext[2]],
|
---|
1270 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1271 | FeynRules`Ext[3]],
|
---|
1272 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
1273 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[2,
|
---|
1274 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
1275 | FeynRules`FV[3,
|
---|
1276 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
1277 | FeynRules`FV[2,
|
---|
1278 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[3,
|
---|
1279 | FeynRules`Index[
|
---|
1280 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP, 1}, {
|
---|
1281 | FeynRules`G, 2}, {FeynRules`G, 3}, {
|
---|
1282 | FeynRules`G, 4}}, -$CellContext`CGtil $CellContext`fa^(-1) FeynRules`gs
|
---|
1283 | FeynRules`f[
|
---|
1284 | FeynRules`Index[FeynRules`Gluon,
|
---|
1285 | FeynRules`Ext[2]],
|
---|
1286 | FeynRules`Index[FeynRules`Gluon,
|
---|
1287 | FeynRules`Ext[3]],
|
---|
1288 | FeynRules`Index[FeynRules`Gluon,
|
---|
1289 | FeynRules`Ext[4]]] (FeynRules`Eps[
|
---|
1290 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1291 | FeynRules`Ext[2]],
|
---|
1292 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1293 | FeynRules`Ext[3]],
|
---|
1294 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1295 | FeynRules`Ext[4]],
|
---|
1296 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] (
|
---|
1297 | FeynRules`FV[2,
|
---|
1298 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
|
---|
1299 | FeynRules`FV[3,
|
---|
1300 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
|
---|
1301 | FeynRules`FV[4,
|
---|
1302 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]) +
|
---|
1303 | FeynRules`Eps[
|
---|
1304 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1305 | FeynRules`Ext[2]],
|
---|
1306 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1307 | FeynRules`Ext[3]],
|
---|
1308 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1309 | FeynRules`Ext[4]],
|
---|
1310 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
|
---|
1311 | FeynRules`FV[2,
|
---|
1312 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
|
---|
1313 | FeynRules`FV[3,
|
---|
1314 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
|
---|
1315 | FeynRules`FV[4,
|
---|
1316 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
|
---|
1317 | FeynRules`Eps[
|
---|
1318 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1319 | FeynRules`Ext[2]],
|
---|
1320 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1321 | FeynRules`Ext[3]],
|
---|
1322 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1323 | FeynRules`Ext[4]],
|
---|
1324 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] (
|
---|
1325 | FeynRules`FV[2,
|
---|
1326 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
|
---|
1327 | FeynRules`FV[3,
|
---|
1328 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
|
---|
1329 | FeynRules`FV[4,
|
---|
1330 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
|
---|
1331 | FeynRules`Eps[
|
---|
1332 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1333 | FeynRules`Ext[2]],
|
---|
1334 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1335 | FeynRules`Ext[3]],
|
---|
1336 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1337 | FeynRules`Ext[4]],
|
---|
1338 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
|
---|
1339 | FeynRules`FV[2,
|
---|
1340 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
|
---|
1341 | FeynRules`FV[3,
|
---|
1342 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
|
---|
1343 | FeynRules`FV[4,
|
---|
1344 | FeynRules`Index[
|
---|
1345 | FeynRules`Lorentz, $CellContext`\[Delta]1]]))}, \
|
---|
1346 | {{{$CellContext`dqbar, 1}, {$CellContext`dq, 2}, {$CellContext`ALP, 3}, {
|
---|
1347 | FeynRules`H, 4}},
|
---|
1348 | 2^Rational[-1, 2] $CellContext`CaPhi $CellContext`fa^(-1)
|
---|
1349 | FeynRules`IndexDelta[
|
---|
1350 | FeynRules`Index[FeynRules`Colour,
|
---|
1351 | FeynRules`Ext[1]],
|
---|
1352 | FeynRules`Index[FeynRules`Colour,
|
---|
1353 | FeynRules`Ext[2]]] (-Conjugate[
|
---|
1354 | $CellContext`yd[
|
---|
1355 | FeynRules`Index[$CellContext`Generation,
|
---|
1356 | FeynRules`Ext[2]],
|
---|
1357 | FeynRules`Index[$CellContext`Generation,
|
---|
1358 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
1359 | FeynRules`Index[FeynRules`Spin,
|
---|
1360 | FeynRules`Ext[1]],
|
---|
1361 | FeynRules`Index[FeynRules`Spin,
|
---|
1362 | FeynRules`Ext[2]]] + FeynRules`ProjP[
|
---|
1363 | FeynRules`Index[FeynRules`Spin,
|
---|
1364 | FeynRules`Ext[1]],
|
---|
1365 | FeynRules`Index[FeynRules`Spin,
|
---|
1366 | FeynRules`Ext[2]]] $CellContext`yd[
|
---|
1367 | FeynRules`Index[$CellContext`Generation,
|
---|
1368 | FeynRules`Ext[1]],
|
---|
1369 | FeynRules`Index[$CellContext`Generation,
|
---|
1370 | FeynRules`Ext[2]]])}, {{{$CellContext`dqbar, 1}, {$CellContext`dq,
|
---|
1371 | 2}, {$CellContext`ALP, 3}},
|
---|
1372 | 2^Rational[-1,
|
---|
1373 | 2] $CellContext`CaPhi $CellContext`fa^(-1) $CellContext`vev
|
---|
1374 | FeynRules`IndexDelta[
|
---|
1375 | FeynRules`Index[FeynRules`Colour,
|
---|
1376 | FeynRules`Ext[1]],
|
---|
1377 | FeynRules`Index[FeynRules`Colour,
|
---|
1378 | FeynRules`Ext[2]]] (-Conjugate[
|
---|
1379 | $CellContext`yd[
|
---|
1380 | FeynRules`Index[$CellContext`Generation,
|
---|
1381 | FeynRules`Ext[2]],
|
---|
1382 | FeynRules`Index[$CellContext`Generation,
|
---|
1383 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
1384 | FeynRules`Index[FeynRules`Spin,
|
---|
1385 | FeynRules`Ext[1]],
|
---|
1386 | FeynRules`Index[FeynRules`Spin,
|
---|
1387 | FeynRules`Ext[2]]] + FeynRules`ProjP[
|
---|
1388 | FeynRules`Index[FeynRules`Spin,
|
---|
1389 | FeynRules`Ext[1]],
|
---|
1390 | FeynRules`Index[FeynRules`Spin,
|
---|
1391 | FeynRules`Ext[2]]] $CellContext`yd[
|
---|
1392 | FeynRules`Index[$CellContext`Generation,
|
---|
1393 | FeynRules`Ext[1]],
|
---|
1394 | FeynRules`Index[$CellContext`Generation,
|
---|
1395 | FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
|
---|
1396 | FeynRules`l, 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}},
|
---|
1397 | 2^Rational[-1, 2] $CellContext`CaPhi $CellContext`fa^(-1) (-Conjugate[
|
---|
1398 | $CellContext`yl[
|
---|
1399 | FeynRules`Index[$CellContext`Generation,
|
---|
1400 | FeynRules`Ext[2]],
|
---|
1401 | FeynRules`Index[$CellContext`Generation,
|
---|
1402 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
1403 | FeynRules`Index[FeynRules`Spin,
|
---|
1404 | FeynRules`Ext[1]],
|
---|
1405 | FeynRules`Index[FeynRules`Spin,
|
---|
1406 | FeynRules`Ext[2]]] + FeynRules`ProjP[
|
---|
1407 | FeynRules`Index[FeynRules`Spin,
|
---|
1408 | FeynRules`Ext[1]],
|
---|
1409 | FeynRules`Index[FeynRules`Spin,
|
---|
1410 | FeynRules`Ext[2]]] $CellContext`yl[
|
---|
1411 | FeynRules`Index[$CellContext`Generation,
|
---|
1412 | FeynRules`Ext[1]],
|
---|
1413 | FeynRules`Index[$CellContext`Generation,
|
---|
1414 | FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
|
---|
1415 | FeynRules`l, 2}, {$CellContext`ALP, 3}},
|
---|
1416 | 2^Rational[-1,
|
---|
1417 | 2] $CellContext`CaPhi $CellContext`fa^(-1) $CellContext`vev (-
|
---|
1418 | Conjugate[
|
---|
1419 | $CellContext`yl[
|
---|
1420 | FeynRules`Index[$CellContext`Generation,
|
---|
1421 | FeynRules`Ext[2]],
|
---|
1422 | FeynRules`Index[$CellContext`Generation,
|
---|
1423 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
1424 | FeynRules`Index[FeynRules`Spin,
|
---|
1425 | FeynRules`Ext[1]],
|
---|
1426 | FeynRules`Index[FeynRules`Spin,
|
---|
1427 | FeynRules`Ext[2]]] + FeynRules`ProjP[
|
---|
1428 | FeynRules`Index[FeynRules`Spin,
|
---|
1429 | FeynRules`Ext[1]],
|
---|
1430 | FeynRules`Index[FeynRules`Spin,
|
---|
1431 | FeynRules`Ext[2]]] $CellContext`yl[
|
---|
1432 | FeynRules`Index[$CellContext`Generation,
|
---|
1433 | FeynRules`Ext[1]],
|
---|
1434 | FeynRules`Index[$CellContext`Generation,
|
---|
1435 | FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
|
---|
1436 | 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}},
|
---|
1437 | 2^Rational[-1, 2] $CellContext`CaPhi $CellContext`fa^(-1)
|
---|
1438 | FeynRules`IndexDelta[
|
---|
1439 | FeynRules`Index[FeynRules`Colour,
|
---|
1440 | FeynRules`Ext[1]],
|
---|
1441 | FeynRules`Index[FeynRules`Colour,
|
---|
1442 | FeynRules`Ext[2]]] (Conjugate[
|
---|
1443 | $CellContext`yu[
|
---|
1444 | FeynRules`Index[$CellContext`Generation,
|
---|
1445 | FeynRules`Ext[2]],
|
---|
1446 | FeynRules`Index[$CellContext`Generation,
|
---|
1447 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
1448 | FeynRules`Index[FeynRules`Spin,
|
---|
1449 | FeynRules`Ext[1]],
|
---|
1450 | FeynRules`Index[FeynRules`Spin,
|
---|
1451 | FeynRules`Ext[2]]] - FeynRules`ProjP[
|
---|
1452 | FeynRules`Index[FeynRules`Spin,
|
---|
1453 | FeynRules`Ext[1]],
|
---|
1454 | FeynRules`Index[FeynRules`Spin,
|
---|
1455 | FeynRules`Ext[2]]] $CellContext`yu[
|
---|
1456 | FeynRules`Index[$CellContext`Generation,
|
---|
1457 | FeynRules`Ext[1]],
|
---|
1458 | FeynRules`Index[$CellContext`Generation,
|
---|
1459 | FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
|
---|
1460 | 2}, {$CellContext`ALP, 3}},
|
---|
1461 | 2^Rational[-1,
|
---|
1462 | 2] $CellContext`CaPhi $CellContext`fa^(-1) $CellContext`vev
|
---|
1463 | FeynRules`IndexDelta[
|
---|
1464 | FeynRules`Index[FeynRules`Colour,
|
---|
1465 | FeynRules`Ext[1]],
|
---|
1466 | FeynRules`Index[FeynRules`Colour,
|
---|
1467 | FeynRules`Ext[2]]] (Conjugate[
|
---|
1468 | $CellContext`yu[
|
---|
1469 | FeynRules`Index[$CellContext`Generation,
|
---|
1470 | FeynRules`Ext[2]],
|
---|
1471 | FeynRules`Index[$CellContext`Generation,
|
---|
1472 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
1473 | FeynRules`Index[FeynRules`Spin,
|
---|
1474 | FeynRules`Ext[1]],
|
---|
1475 | FeynRules`Index[FeynRules`Spin,
|
---|
1476 | FeynRules`Ext[2]]] - FeynRules`ProjP[
|
---|
1477 | FeynRules`Index[FeynRules`Spin,
|
---|
1478 | FeynRules`Ext[1]],
|
---|
1479 | FeynRules`Index[FeynRules`Spin,
|
---|
1480 | FeynRules`Ext[2]]] $CellContext`yu[
|
---|
1481 | FeynRules`Index[$CellContext`Generation,
|
---|
1482 | FeynRules`Ext[1]],
|
---|
1483 | FeynRules`Index[$CellContext`Generation,
|
---|
1484 | FeynRules`Ext[2]]])}, {{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {
|
---|
1485 | FeynRules`W, 3}, {$CellContext`Wbar, 4}},
|
---|
1486 | Complex[0, -4] $CellContext`CWtil FeynRules`ee $CellContext`fa^(-1)
|
---|
1487 | FeynRules`Eps[
|
---|
1488 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1489 | FeynRules`Ext[1]],
|
---|
1490 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1491 | FeynRules`Ext[4]],
|
---|
1492 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1493 | FeynRules`Ext[3]],
|
---|
1494 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (FeynRules`FV[1,
|
---|
1495 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
1496 | FeynRules`FV[3,
|
---|
1497 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
1498 | FeynRules`FV[4,
|
---|
1499 | FeynRules`Index[
|
---|
1500 | FeynRules`Lorentz, $CellContext`mu$1]])}, {{{$CellContext`ALP, 1}, {
|
---|
1501 | FeynRules`W, 2}, {$CellContext`Wbar, 3}, {$CellContext`Z, 4}},
|
---|
1502 | Complex[0, 4] $CellContext`cw $CellContext`CWtil
|
---|
1503 | FeynRules`ee $CellContext`fa^(-1) $CellContext`sw^(-1) FeynRules`Eps[
|
---|
1504 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1505 | FeynRules`Ext[4]],
|
---|
1506 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1507 | FeynRules`Ext[2]],
|
---|
1508 | FeynRules`Index[FeynRules`Lorentz,
|
---|
1509 | FeynRules`Ext[3]],
|
---|
1510 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (FeynRules`FV[2,
|
---|
1511 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
1512 | FeynRules`FV[3,
|
---|
1513 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
1514 | FeynRules`FV[4,
|
---|
1515 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]])}}]]], "Output",\
|
---|
1516 |
|
---|
1517 | CellChangeTimes->{{3.638614114774802*^9, 3.638614120544181*^9}, {
|
---|
1518 | 3.638614318695908*^9, 3.638614365439787*^9}, {3.638614433232692*^9,
|
---|
1519 | 3.638614464705694*^9}, 3.6386224388916407`*^9, 3.6386225007679977`*^9,
|
---|
1520 | 3.6386226973043947`*^9, 3.6386227333544188`*^9, 3.638623278409637*^9,
|
---|
1521 | 3.6386236952225227`*^9, 3.63862388459741*^9, 3.638681852154767*^9,
|
---|
1522 | 3.63868270965028*^9, 3.6386851562356977`*^9, 3.638686844261732*^9,
|
---|
1523 | 3.638700137162476*^9, 3.638702832337493*^9, 3.6387029349627132`*^9, {
|
---|
1524 | 3.638703100427805*^9, 3.6387031136888237`*^9}, {3.63870321256925*^9,
|
---|
1525 | 3.638703230424244*^9}, {3.638703278436899*^9, 3.638703292187565*^9},
|
---|
1526 | 3.6387033347871733`*^9, 3.638703390597958*^9, 3.638704548504233*^9,
|
---|
1527 | 3.638707599815777*^9, 3.638708193011647*^9, 3.638708294314163*^9,
|
---|
1528 | 3.638712328104225*^9, 3.638714899545281*^9, 3.6387158861274137`*^9, {
|
---|
1529 | 3.638716073530249*^9, 3.6387160868743467`*^9}, {3.63871612959566*^9,
|
---|
1530 | 3.638716213883053*^9}, 3.638768861462468*^9, 3.639820343194125*^9,
|
---|
1531 | 3.6415554721097116`*^9, 3.641556006389512*^9, 3.641556218296584*^9,
|
---|
1532 | 3.6415568954663677`*^9, 3.675577255235321*^9, 3.6755773956759577`*^9,
|
---|
1533 | 3.6761156287361507`*^9, 3.676199644982154*^9, {3.6761997657926407`*^9,
|
---|
1534 | 3.676199788244617*^9}, 3.676202161727428*^9, 3.676286259801929*^9,
|
---|
1535 | 3.676286831252707*^9, 3.676286963494295*^9, 3.7149005669550333`*^9,
|
---|
1536 | 3.714900986609859*^9}]
|
---|
1537 | }, Open ]]
|
---|
1538 | }, Open ]],
|
---|
1539 |
|
---|
1540 | Cell[CellGroupData[{
|
---|
1541 |
|
---|
1542 | Cell["Export to UFO", "Subsection",
|
---|
1543 | CellChangeTimes->{{3.638798084002553*^9, 3.6387980887087*^9}, {
|
---|
1544 | 3.7149007705746527`*^9, 3.7149007713720427`*^9}}],
|
---|
1545 |
|
---|
1546 | Cell[CellGroupData[{
|
---|
1547 |
|
---|
1548 | Cell[BoxData[
|
---|
1549 | RowBox[{"WriteUFO", "[",
|
---|
1550 | RowBox[{
|
---|
1551 | RowBox[{"LSM", "+", "LALP"}], ",",
|
---|
1552 | RowBox[{"MaxParticles", "\[Rule]", "4"}], ",", " ",
|
---|
1553 | RowBox[{"Output", "\[Rule]", "\"\<ALP_linear_UFO\>\""}]}], "]"}]], "Input",\
|
---|
1554 |
|
---|
1555 | CellChangeTimes->{{3.638796268087139*^9, 3.638796293694366*^9}, {
|
---|
1556 | 3.676286245623457*^9, 3.676286247246126*^9}, {3.6943356972519197`*^9,
|
---|
1557 | 3.6943356990015907`*^9}, {3.714900494999193*^9, 3.714900536696802*^9}, {
|
---|
1558 | 3.7149009924193783`*^9, 3.7149009954383917`*^9}}],
|
---|
1559 |
|
---|
1560 | Cell[CellGroupData[{
|
---|
1561 |
|
---|
1562 | Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
|
---|
1563 | "Print",
|
---|
1564 | CellChangeTimes->{3.714900591927953*^9, 3.714901015063738*^9}],
|
---|
1565 |
|
---|
1566 | Cell[BoxData[
|
---|
1567 | StyleBox["\<\"Starting Feynman rule calculation.\"\>",
|
---|
1568 | StripOnInput->False,
|
---|
1569 | LineColor->RGBColor[1, 0.5, 0],
|
---|
1570 | FrontFaceColor->RGBColor[1, 0.5, 0],
|
---|
1571 | BackFaceColor->RGBColor[1, 0.5, 0],
|
---|
1572 | GraphicsColor->RGBColor[1, 0.5, 0],
|
---|
1573 | FontWeight->Bold,
|
---|
1574 | FontColor->RGBColor[1, 0.5, 0]]], "Print",
|
---|
1575 | CellChangeTimes->{3.714900591927953*^9, 3.7149010153269167`*^9}],
|
---|
1576 |
|
---|
1577 | Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
|
---|
1578 | CellChangeTimes->{3.714900591927953*^9, 3.714901015328267*^9}],
|
---|
1579 |
|
---|
1580 | Cell[BoxData[
|
---|
1581 | InterpretationBox[
|
---|
1582 | RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
|
---|
1583 | "\[InvisibleSpace]", "\<\" cores\"\>"}],
|
---|
1584 | SequenceForm["Expanding the indices over ", 2, " cores"],
|
---|
1585 | Editable->False]], "Print",
|
---|
1586 | CellChangeTimes->{3.714900591927953*^9, 3.7149010153294573`*^9}],
|
---|
1587 |
|
---|
1588 | Cell[BoxData["\<\"Collecting the different structures that enter the \
|
---|
1589 | vertex.\"\>"], "Print",
|
---|
1590 | CellChangeTimes->{3.714900591927953*^9, 3.714901023561137*^9}],
|
---|
1591 |
|
---|
1592 | Cell[BoxData[
|
---|
1593 | InterpretationBox[
|
---|
1594 | RowBox[{
|
---|
1595 | "50", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
|
---|
1596 | -> starting the computation: \"\>", "\[InvisibleSpace]",
|
---|
1597 | DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
|
---|
1598 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
1599 | "\[InvisibleSpace]", "50", "\[InvisibleSpace]", "\<\".\"\>"}],
|
---|
1600 | SequenceForm[
|
---|
1601 | 50, " possible non-zero vertices have been found -> starting the \
|
---|
1602 | computation: ",
|
---|
1603 | Dynamic[FeynRules`FR$FeynmanRules], " / ", 50, "."],
|
---|
1604 | Editable->False]], "Print",
|
---|
1605 | CellChangeTimes->{3.714900591927953*^9, 3.714901023644479*^9}],
|
---|
1606 |
|
---|
1607 | Cell[BoxData[
|
---|
1608 | InterpretationBox[
|
---|
1609 | RowBox[{"45", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
|
---|
1610 | SequenceForm[45, " vertices obtained."],
|
---|
1611 | Editable->False]], "Print",
|
---|
1612 | CellChangeTimes->{3.714900591927953*^9, 3.7149010282581987`*^9}],
|
---|
1613 |
|
---|
1614 | Cell[BoxData[
|
---|
1615 | InterpretationBox[
|
---|
1616 | RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
|
---|
1617 | "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" cores: \"\>",
|
---|
1618 | "\[InvisibleSpace]",
|
---|
1619 | DynamicBox[ToBoxes[FeynRules`FR$Count1, StandardForm],
|
---|
1620 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
1621 | "\[InvisibleSpace]", "45"}],
|
---|
1622 | SequenceForm[
|
---|
1623 | "Flavor expansion of the vertices distributed over ", 2, " cores: ",
|
---|
1624 | Dynamic[FeynRules`FR$Count1], " / ", 45],
|
---|
1625 | Editable->False]], "Print",
|
---|
1626 | CellChangeTimes->{3.714900591927953*^9, 3.714901029087723*^9}],
|
---|
1627 |
|
---|
1628 | Cell[BoxData["\<\" - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
|
---|
1629 | CellChangeTimes->{3.714900591927953*^9, 3.7149010340111856`*^9}],
|
---|
1630 |
|
---|
1631 | Cell[BoxData[
|
---|
1632 | StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
|
---|
1633 | decays: \"\>",
|
---|
1634 | StripOnInput->False,
|
---|
1635 | LineColor->RGBColor[1, 0.5, 0],
|
---|
1636 | FrontFaceColor->RGBColor[1, 0.5, 0],
|
---|
1637 | BackFaceColor->RGBColor[1, 0.5, 0],
|
---|
1638 | GraphicsColor->RGBColor[1, 0.5, 0],
|
---|
1639 | FontWeight->Bold,
|
---|
1640 | FontColor->RGBColor[1, 0.5, 0]]], "Print",
|
---|
1641 | CellChangeTimes->{3.714900591927953*^9, 3.714901034050983*^9}],
|
---|
1642 |
|
---|
1643 | Cell[BoxData[
|
---|
1644 | InterpretationBox[
|
---|
1645 | RowBox[{
|
---|
1646 | DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
|
---|
1647 | ImageSizeCache->{9., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
1648 | "\[InvisibleSpace]", "62"}],
|
---|
1649 | SequenceForm[
|
---|
1650 | Dynamic[PRIVATE`mycounter], " / ", 62],
|
---|
1651 | Editable->False]], "Print",
|
---|
1652 | CellChangeTimes->{3.714900591927953*^9, 3.714901034052537*^9}],
|
---|
1653 |
|
---|
1654 | Cell[BoxData[
|
---|
1655 | InterpretationBox[
|
---|
1656 | RowBox[{"\<\"Squared matrix elent compute in \"\>", "\[InvisibleSpace]",
|
---|
1657 | "4.644`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
|
---|
1658 | SequenceForm["Squared matrix elent compute in ", 4.644, " seconds."],
|
---|
1659 | Editable->False]], "Print",
|
---|
1660 | CellChangeTimes->{3.714900591927953*^9, 3.714901049084815*^9}],
|
---|
1661 |
|
---|
1662 | Cell[BoxData[
|
---|
1663 | InterpretationBox[
|
---|
1664 | RowBox[{
|
---|
1665 | DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
|
---|
1666 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
1667 | "\[InvisibleSpace]", "72"}],
|
---|
1668 | SequenceForm[
|
---|
1669 | Dynamic[PRIVATE`mycounter], " / ", 72],
|
---|
1670 | Editable->False]], "Print",
|
---|
1671 | CellChangeTimes->{3.714900591927953*^9, 3.714901049098535*^9}],
|
---|
1672 |
|
---|
1673 | Cell[BoxData[
|
---|
1674 | InterpretationBox[
|
---|
1675 | RowBox[{"\<\"Decay widths computed in \"\>", "\[InvisibleSpace]", "0.596`",
|
---|
1676 | "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
|
---|
1677 | SequenceForm["Decay widths computed in ", 0.596, " seconds."],
|
---|
1678 | Editable->False]], "Print",
|
---|
1679 | CellChangeTimes->{3.714900591927953*^9, 3.71490105045955*^9}],
|
---|
1680 |
|
---|
1681 | Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
|
---|
1682 | CellChangeTimes->{3.714900591927953*^9, 3.714901050462216*^9}],
|
---|
1683 |
|
---|
1684 | Cell[BoxData["\<\" - Splitting vertices into building blocks.\"\>"], \
|
---|
1685 | "Print",
|
---|
1686 | CellChangeTimes->{3.714900591927953*^9, 3.714901050621313*^9}],
|
---|
1687 |
|
---|
1688 | Cell[BoxData[
|
---|
1689 | InterpretationBox[
|
---|
1690 | RowBox[{"\<\"Splitting of vertices distributed over \"\>",
|
---|
1691 | "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
|
---|
1692 | SequenceForm["Splitting of vertices distributed over ", 2, " kernels."],
|
---|
1693 | Editable->False]], "Print",
|
---|
1694 | CellChangeTimes->{3.714900591927953*^9, 3.71490105069834*^9}],
|
---|
1695 |
|
---|
1696 | Cell[BoxData[
|
---|
1697 | InterpretationBox[
|
---|
1698 | RowBox[{"\<\" - Optimizing: \"\>", "\[InvisibleSpace]",
|
---|
1699 | DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
|
---|
1700 | ImageSizeCache->{24., {0., 9.}}], "\[InvisibleSpace]", "\<\"/\"\>",
|
---|
1701 | "\[InvisibleSpace]", "101", "\[InvisibleSpace]", "\<\" .\"\>"}],
|
---|
1702 | SequenceForm[" - Optimizing: ",
|
---|
1703 | Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 101, " ."],
|
---|
1704 | Editable->False]], "Print",
|
---|
1705 | CellChangeTimes->{3.714900591927953*^9, 3.714901052384447*^9}],
|
---|
1706 |
|
---|
1707 | Cell[BoxData["\<\" - Writing files.\"\>"], "Print",
|
---|
1708 | CellChangeTimes->{3.714900591927953*^9, 3.714901052437394*^9}],
|
---|
1709 |
|
---|
1710 | Cell[BoxData["\<\"Done!\"\>"], "Print",
|
---|
1711 | CellChangeTimes->{3.714900591927953*^9, 3.714901052663561*^9}]
|
---|
1712 | }, Open ]]
|
---|
1713 | }, Open ]]
|
---|
1714 | }, Open ]]
|
---|
1715 | }, Closed]],
|
---|
1716 |
|
---|
1717 | Cell[CellGroupData[{
|
---|
1718 |
|
---|
1719 | Cell["ALP chiral EFT", "Section",
|
---|
1720 | CellChangeTimes->{{3.696241144773179*^9, 3.696241150440773*^9}, {
|
---|
1721 | 3.6965809461276217`*^9, 3.6965809488385057`*^9}, {3.7144743309076147`*^9,
|
---|
1722 | 3.71447433315618*^9}, {3.7148999134555597`*^9, 3.714899915627069*^9}}],
|
---|
1723 |
|
---|
1724 | Cell[CellGroupData[{
|
---|
1725 |
|
---|
1726 | Cell[BoxData[{
|
---|
1727 | RowBox[{
|
---|
1728 | RowBox[{"LoadModel", "[",
|
---|
1729 | RowBox[{"\"\<SM.fr\>\"", ",", "\"\<alp_chiral.fr\>\""}], "]"}],
|
---|
1730 | ";"}], "\[IndentingNewLine]",
|
---|
1731 | RowBox[{
|
---|
1732 | RowBox[{"$Assumptions", "=",
|
---|
1733 | RowBox[{
|
---|
1734 | RowBox[{
|
---|
1735 | SuperscriptBox["cw", "2"], "+",
|
---|
1736 | SuperscriptBox["sw", "2"]}], "\[Equal]", "1"}]}], ";"}]}], "Input",
|
---|
1737 | CellChangeTimes->{{3.419073170860696*^9, 3.419073182827229*^9}, {
|
---|
1738 | 3.5695939666521587`*^9, 3.569593975189637*^9}, {3.571998624557815*^9,
|
---|
1739 | 3.571998628157531*^9}, {3.5722426658955507`*^9, 3.5722426665661163`*^9}, {
|
---|
1740 | 3.57373494999842*^9, 3.573734950506782*^9}, {3.573738411070033*^9,
|
---|
1741 | 3.573738411475131*^9}, {3.581766296877213*^9, 3.5817662993035793`*^9}, {
|
---|
1742 | 3.582711295612512*^9, 3.582711304079101*^9}, {3.58271455619954*^9,
|
---|
1743 | 3.582714556539135*^9}, {3.5837271421921186`*^9, 3.5837271424321213`*^9}, {
|
---|
1744 | 3.624620697450859*^9, 3.6246207033691893`*^9}, {3.6334178673816833`*^9,
|
---|
1745 | 3.633417870423235*^9}, {3.635168745836775*^9, 3.635168746552165*^9}, {
|
---|
1746 | 3.635234921249031*^9, 3.6352349280391006`*^9}, {3.638611693959074*^9,
|
---|
1747 | 3.638611733478942*^9}, {3.638618101259109*^9, 3.638618101467348*^9},
|
---|
1748 | 3.63861936248402*^9, 3.638619484234972*^9, {3.638620679982355*^9,
|
---|
1749 | 3.638620680842409*^9}, {3.6386861262510643`*^9, 3.638686136772785*^9}, {
|
---|
1750 | 3.6415550100096617`*^9, 3.641555015231119*^9}, {3.676109930720601*^9,
|
---|
1751 | 3.6761099312888002`*^9}, {3.6761959551581984`*^9, 3.67619595753176*^9}, {
|
---|
1752 | 3.676196049763735*^9, 3.6761960518031893`*^9}, {3.71489982794697*^9,
|
---|
1753 | 3.714899828966436*^9}, {3.71490004046701*^9, 3.714900043136207*^9}, {
|
---|
1754 | 3.7149001684519243`*^9, 3.714900176622246*^9}}],
|
---|
1755 |
|
---|
1756 | Cell[CellGroupData[{
|
---|
1757 |
|
---|
1758 | Cell[BoxData["\<\"Merging model-files...\"\>"], "Print",
|
---|
1759 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1760 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1761 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1762 | 3.7149001775995293`*^9}],
|
---|
1763 |
|
---|
1764 | Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
|
---|
1765 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1766 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1767 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1768 | 3.714900177625907*^9}],
|
---|
1769 |
|
---|
1770 | Cell[BoxData["\<\"I. Brivio, M.B. Gavela, L. Merlo, K. Mimasu, J.M. No, R. \
|
---|
1771 | del Rey, V. Sanz\"\>"], "Print",
|
---|
1772 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1773 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1774 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1775 | 3.714900177627756*^9}],
|
---|
1776 |
|
---|
1777 | Cell[BoxData[
|
---|
1778 | InterpretationBox[
|
---|
1779 | RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"1\"\>"}],
|
---|
1780 | SequenceForm["Model Version: ", "1"],
|
---|
1781 | Editable->False]], "Print",
|
---|
1782 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1783 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1784 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1785 | 3.714900177628923*^9}],
|
---|
1786 |
|
---|
1787 | Cell[BoxData["\<\"Please cite\"\>"], "Print",
|
---|
1788 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1789 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1790 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1791 | 3.714900177629978*^9}],
|
---|
1792 |
|
---|
1793 | Cell[BoxData["\<\"arXiv:1701.05379\"\>"], "Print",
|
---|
1794 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1795 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1796 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1797 | 3.714900177631019*^9}],
|
---|
1798 |
|
---|
1799 | Cell[BoxData["\<\"https://feynrules.irmp.ucl.ac.be/wiki/ALPsEFT\"\>"], "Print",
|
---|
1800 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1801 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1802 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1803 | 3.714900177632065*^9}],
|
---|
1804 |
|
---|
1805 | Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
|
---|
1806 | "Print",
|
---|
1807 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1808 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1809 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1810 | 3.714900177633066*^9}],
|
---|
1811 |
|
---|
1812 | Cell[BoxData["\<\"\"\>"], "Print",
|
---|
1813 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1814 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1815 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1816 | 3.714900177634055*^9}],
|
---|
1817 |
|
---|
1818 | Cell[BoxData["\<\" - Loading particle classes.\"\>"], "Print",
|
---|
1819 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1820 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1821 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1822 | 3.714900177635138*^9}],
|
---|
1823 |
|
---|
1824 | Cell[BoxData["\<\" - Loading gauge group classes.\"\>"], "Print",
|
---|
1825 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1826 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1827 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1828 | 3.714900177728979*^9}],
|
---|
1829 |
|
---|
1830 | Cell[BoxData["\<\" - Loading parameter classes.\"\>"], "Print",
|
---|
1831 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1832 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1833 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1834 | 3.7149001777671137`*^9}],
|
---|
1835 |
|
---|
1836 | Cell[BoxData[
|
---|
1837 | InterpretationBox[
|
---|
1838 | RowBox[{"\<\"\\nModel \"\>", "\[InvisibleSpace]", "\<\"ALP_chiral\"\>",
|
---|
1839 | "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
|
---|
1840 | SequenceForm["\nModel ", "ALP_chiral", " loaded."],
|
---|
1841 | Editable->False]], "Print",
|
---|
1842 | CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
|
---|
1843 | 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
|
---|
1844 | 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
|
---|
1845 | 3.714900177808638*^9}]
|
---|
1846 | }, Open ]]
|
---|
1847 | }, Open ]],
|
---|
1848 |
|
---|
1849 | Cell[CellGroupData[{
|
---|
1850 |
|
---|
1851 | Cell["Feynman rules", "Subsection",
|
---|
1852 | CellChangeTimes->{{3.638612958456888*^9, 3.638612964903018*^9}, {
|
---|
1853 | 3.641555437690887*^9, 3.6415554385930634`*^9}, {3.714900458407517*^9,
|
---|
1854 | 3.7149004631939707`*^9}}],
|
---|
1855 |
|
---|
1856 | Cell[CellGroupData[{
|
---|
1857 |
|
---|
1858 | Cell[BoxData[
|
---|
1859 | RowBox[{
|
---|
1860 | RowBox[{"AlpFR", "=",
|
---|
1861 | RowBox[{
|
---|
1862 | RowBox[{"FeynmanRules", "[",
|
---|
1863 | RowBox[{"LALP", ",",
|
---|
1864 | RowBox[{"MaxParticles", "\[Rule]", "4"}]}], "]"}], "//", "Simplify"}]}],
|
---|
1865 | ";"}]], "Input",
|
---|
1866 | CellChangeTimes->{{3.638612399979039*^9, 3.638612438377034*^9}, {
|
---|
1867 | 3.6386128833730392`*^9, 3.638612887379834*^9}, {3.638613614059422*^9,
|
---|
1868 | 3.638613674285076*^9}, {3.638613735408643*^9, 3.6386137469743147`*^9}, {
|
---|
1869 | 3.638703969309166*^9, 3.63870398233029*^9}, {3.676198845702183*^9,
|
---|
1870 | 3.676198850854022*^9}, {3.6762862015383883`*^9, 3.676286202884295*^9}, {
|
---|
1871 | 3.714900437388975*^9, 3.714900439208026*^9}}],
|
---|
1872 |
|
---|
1873 | Cell[CellGroupData[{
|
---|
1874 |
|
---|
1875 | Cell[BoxData[
|
---|
1876 | StyleBox["\<\"Starting Feynman rule calculation.\"\>",
|
---|
1877 | StripOnInput->False,
|
---|
1878 | LineColor->RGBColor[1, 0.5, 0],
|
---|
1879 | FrontFaceColor->RGBColor[1, 0.5, 0],
|
---|
1880 | BackFaceColor->RGBColor[1, 0.5, 0],
|
---|
1881 | GraphicsColor->RGBColor[1, 0.5, 0],
|
---|
1882 | FontWeight->Bold,
|
---|
1883 | FontColor->RGBColor[1, 0.5, 0]]], "Print",
|
---|
1884 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
1885 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
1886 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
1887 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
1888 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
1889 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
1890 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
1891 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
1892 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
1893 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
1894 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
1895 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
1896 | 3.6762869143369417`*^9, 3.714900449903*^9}],
|
---|
1897 |
|
---|
1898 | Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
|
---|
1899 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
1900 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
1901 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
1902 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
1903 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
1904 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
1905 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
1906 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
1907 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
1908 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
1909 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
1910 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
1911 | 3.6762869143369417`*^9, 3.714900449904093*^9}],
|
---|
1912 |
|
---|
1913 | Cell[BoxData[
|
---|
1914 | InterpretationBox[
|
---|
1915 | RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
|
---|
1916 | "\[InvisibleSpace]", "\<\" cores\"\>"}],
|
---|
1917 | SequenceForm["Expanding the indices over ", 2, " cores"],
|
---|
1918 | Editable->False]], "Print",
|
---|
1919 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
1920 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
1921 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
1922 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
1923 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
1924 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
1925 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
1926 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
1927 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
1928 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
1929 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
1930 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
1931 | 3.6762869143369417`*^9, 3.714900449905498*^9}],
|
---|
1932 |
|
---|
1933 | Cell[BoxData[
|
---|
1934 | InterpretationBox[
|
---|
1935 | RowBox[{"\<\"Neglecting all terms with more than \"\>",
|
---|
1936 | "\[InvisibleSpace]", "\<\"4\"\>",
|
---|
1937 | "\[InvisibleSpace]", "\<\" particles.\"\>"}],
|
---|
1938 | SequenceForm["Neglecting all terms with more than ", "4", " particles."],
|
---|
1939 | Editable->False]], "Print",
|
---|
1940 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
1941 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
1942 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
1943 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
1944 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
1945 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
1946 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
1947 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
1948 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
1949 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
1950 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
1951 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
1952 | 3.6762869143369417`*^9, 3.714900449958639*^9}],
|
---|
1953 |
|
---|
1954 | Cell[BoxData["\<\"Collecting the different structures that enter the \
|
---|
1955 | vertex.\"\>"], "Print",
|
---|
1956 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
1957 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
1958 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
1959 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
1960 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
1961 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
1962 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
1963 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
1964 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
1965 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
1966 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
1967 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
1968 | 3.6762869143369417`*^9, 3.714900462610385*^9}],
|
---|
1969 |
|
---|
1970 | Cell[BoxData[
|
---|
1971 | InterpretationBox[
|
---|
1972 | RowBox[{
|
---|
1973 | "22", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
|
---|
1974 | -> starting the computation: \"\>", "\[InvisibleSpace]",
|
---|
1975 | DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
|
---|
1976 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
1977 | "\[InvisibleSpace]", "22", "\[InvisibleSpace]", "\<\".\"\>"}],
|
---|
1978 | SequenceForm[
|
---|
1979 | 22, " possible non-zero vertices have been found -> starting the \
|
---|
1980 | computation: ",
|
---|
1981 | Dynamic[FeynRules`FR$FeynmanRules], " / ", 22, "."],
|
---|
1982 | Editable->False]], "Print",
|
---|
1983 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
1984 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
1985 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
1986 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
1987 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
1988 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
1989 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
1990 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
1991 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
1992 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
1993 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
1994 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
1995 | 3.6762869143369417`*^9, 3.71490046268232*^9}],
|
---|
1996 |
|
---|
1997 | Cell[BoxData[
|
---|
1998 | InterpretationBox[
|
---|
1999 | RowBox[{"22", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
|
---|
2000 | SequenceForm[22, " vertices obtained."],
|
---|
2001 | Editable->False]], "Print",
|
---|
2002 | CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
|
---|
2003 | 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
|
---|
2004 | 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
|
---|
2005 | 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
|
---|
2006 | 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
|
---|
2007 | 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
|
---|
2008 | 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
|
---|
2009 | 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
|
---|
2010 | 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
|
---|
2011 | 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
|
---|
2012 | 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
|
---|
2013 | 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
|
---|
2014 | 3.6762869143369417`*^9, 3.714900469803011*^9}]
|
---|
2015 | }, Open ]]
|
---|
2016 | }, Open ]],
|
---|
2017 |
|
---|
2018 | Cell[CellGroupData[{
|
---|
2019 |
|
---|
2020 | Cell[BoxData[
|
---|
2021 | RowBox[{
|
---|
2022 | RowBox[{"AlpFRSimp", "=",
|
---|
2023 | RowBox[{
|
---|
2024 | RowBox[{"AlpFR", "//", "Simplify"}], "//",
|
---|
2025 | RowBox[{
|
---|
2026 | RowBox[{"Collect", "[",
|
---|
2027 | RowBox[{"#", ",",
|
---|
2028 | RowBox[{"{",
|
---|
2029 | SubscriptBox["\[Epsilon]", "_"], "}"}], ",", "FullSimplify"}], "]"}],
|
---|
2030 | "&"}]}]}], ";",
|
---|
2031 | RowBox[{"AlpFRSimp", "//", "TableForm"}]}]], "Input",
|
---|
2032 | CellChangeTimes->{{3.638613750408924*^9, 3.638613917314427*^9}, {
|
---|
2033 | 3.6386139618919573`*^9, 3.6386140242555027`*^9}, {3.638614110850162*^9,
|
---|
2034 | 3.63861411992393*^9}, {3.6386142738449593`*^9, 3.638614464079233*^9}, {
|
---|
2035 | 3.638622495805666*^9, 3.6386224999713*^9}, {3.638622681020277*^9,
|
---|
2036 | 3.6386226879638844`*^9}, {3.638622722309443*^9, 3.6386227454282093`*^9}, {
|
---|
2037 | 3.638623669647767*^9, 3.638623670261174*^9}, 3.638682708207778*^9, {
|
---|
2038 | 3.638700133618009*^9, 3.638700136676296*^9}, {3.638702929466498*^9,
|
---|
2039 | 3.638702931898744*^9}, {3.6387030695743713`*^9, 3.6387031130558977`*^9}, {
|
---|
2040 | 3.638703151342684*^9, 3.638703247383995*^9}, {3.638703282975972*^9,
|
---|
2041 | 3.638703379857666*^9}, {3.6387160628081417`*^9, 3.638716079998055*^9}, {
|
---|
2042 | 3.638716121793007*^9, 3.638716206718704*^9}, {3.676115591639645*^9,
|
---|
2043 | 3.6761155983649282`*^9}, {3.676199742374304*^9, 3.676199767888208*^9},
|
---|
2044 | 3.676286209033051*^9}],
|
---|
2045 |
|
---|
2046 | Cell[BoxData[
|
---|
2047 | InterpretationBox[GridBox[{
|
---|
2048 | {GridBox[{
|
---|
2049 | {"A", "1"},
|
---|
2050 | {"ALP", "2"},
|
---|
2051 | {"H", "3"},
|
---|
2052 | {"H", "4"}
|
---|
2053 | },
|
---|
2054 | GridBoxAlignment->{
|
---|
2055 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2056 | "RowsIndexed" -> {}},
|
---|
2057 | GridBoxSpacings->{"Columns" -> {
|
---|
2058 | Offset[0.27999999999999997`], {
|
---|
2059 | Offset[0.7]},
|
---|
2060 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2061 | Offset[0.2], {
|
---|
2062 | Offset[0.1]},
|
---|
2063 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2064 | RowBox[{"-",
|
---|
2065 | FractionBox[
|
---|
2066 | RowBox[{
|
---|
2067 | RowBox[{"(",
|
---|
2068 | RowBox[{
|
---|
2069 | RowBox[{
|
---|
2070 | SubscriptBox["b", "3"], " ",
|
---|
2071 | SubscriptBox["c", "3"], " ",
|
---|
2072 | SubscriptBox["c", "w"]}], "+",
|
---|
2073 | RowBox[{
|
---|
2074 | SubscriptBox["b", "10"], " ",
|
---|
2075 | SubscriptBox["c", "10"], " ",
|
---|
2076 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
2077 | RowBox[{"(",
|
---|
2078 | RowBox[{
|
---|
2079 | RowBox[{
|
---|
2080 | RowBox[{"(",
|
---|
2081 | RowBox[{
|
---|
2082 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
2083 | SubscriptBox["\<\"\[Mu]\"\>", "1"]], "+",
|
---|
2084 | SubsuperscriptBox["\<\"p\"\>", "4",
|
---|
2085 | SubscriptBox["\<\"\[Mu]\"\>", "1"]]}], ")"}], " ",
|
---|
2086 | RowBox[{
|
---|
2087 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2088 | SubscriptBox["p", "2"]}]}], "-",
|
---|
2089 | RowBox[{
|
---|
2090 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2091 | SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
|
---|
2092 | RowBox[{"(",
|
---|
2093 | RowBox[{
|
---|
2094 | RowBox[{
|
---|
2095 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2096 | SubscriptBox["p", "3"]}], "+",
|
---|
2097 | RowBox[{
|
---|
2098 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2099 | SubscriptBox["p", "4"]}]}], ")"}]}]}], ")"}]}],
|
---|
2100 | RowBox[{"2", " ",
|
---|
2101 | SubscriptBox["f", "a"], " ", "\[Pi]", " ",
|
---|
2102 | SuperscriptBox["vev", "2"]}]]}]},
|
---|
2103 | {GridBox[{
|
---|
2104 | {"A", "1"},
|
---|
2105 | {"ALP", "2"},
|
---|
2106 | {"H", "3"}
|
---|
2107 | },
|
---|
2108 | GridBoxAlignment->{
|
---|
2109 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2110 | "RowsIndexed" -> {}},
|
---|
2111 | GridBoxSpacings->{"Columns" -> {
|
---|
2112 | Offset[0.27999999999999997`], {
|
---|
2113 | Offset[0.7]},
|
---|
2114 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2115 | Offset[0.2], {
|
---|
2116 | Offset[0.1]},
|
---|
2117 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2118 | FractionBox[
|
---|
2119 | RowBox[{
|
---|
2120 | RowBox[{"(",
|
---|
2121 | RowBox[{
|
---|
2122 | RowBox[{
|
---|
2123 | SubscriptBox["a", "3"], " ",
|
---|
2124 | SubscriptBox["c", "3"], " ",
|
---|
2125 | SubscriptBox["c", "w"]}], "+",
|
---|
2126 | RowBox[{
|
---|
2127 | SubscriptBox["a", "10"], " ",
|
---|
2128 | SubscriptBox["c", "10"], " ",
|
---|
2129 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
2130 | RowBox[{"(",
|
---|
2131 | RowBox[{
|
---|
2132 | RowBox[{
|
---|
2133 | RowBox[{"-",
|
---|
2134 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
2135 | SubscriptBox["\<\"\[Mu]\"\>", "1"]]}], " ",
|
---|
2136 | RowBox[{
|
---|
2137 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2138 | SubscriptBox["p", "2"]}]}], "+",
|
---|
2139 | RowBox[{
|
---|
2140 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2141 | SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
|
---|
2142 | RowBox[{
|
---|
2143 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2144 | SubscriptBox["p", "3"]}]}]}], ")"}]}],
|
---|
2145 | RowBox[{"2", " ",
|
---|
2146 | SubscriptBox["f", "a"], " ", "\[Pi]", " ", "vev"}]]},
|
---|
2147 | {GridBox[{
|
---|
2148 | {"ALP", "1"},
|
---|
2149 | {"H", "2"},
|
---|
2150 | {"H", "3"},
|
---|
2151 | {"Z", "4"}
|
---|
2152 | },
|
---|
2153 | GridBoxAlignment->{
|
---|
2154 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2155 | "RowsIndexed" -> {}},
|
---|
2156 | GridBoxSpacings->{"Columns" -> {
|
---|
2157 | Offset[0.27999999999999997`], {
|
---|
2158 | Offset[0.7]},
|
---|
2159 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2160 | Offset[0.2], {
|
---|
2161 | Offset[0.1]},
|
---|
2162 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2163 | FractionBox[
|
---|
2164 | RowBox[{
|
---|
2165 | RowBox[{"e", " ",
|
---|
2166 | RowBox[{"(",
|
---|
2167 | RowBox[{
|
---|
2168 | RowBox[{
|
---|
2169 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
2170 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
2171 | RowBox[{"(",
|
---|
2172 | RowBox[{
|
---|
2173 | RowBox[{
|
---|
2174 | SubscriptBox["b", "11"], " ",
|
---|
2175 | SubscriptBox["c", "11"], " ",
|
---|
2176 | RowBox[{
|
---|
2177 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2178 | SubscriptBox["p", "1"]}]}], "+",
|
---|
2179 | RowBox[{"2", " ",
|
---|
2180 | SubscriptBox["a", "16"], " ",
|
---|
2181 | TemplateBox[{"a","16","\[Prime]"},
|
---|
2182 | "Subsuperscript"], " ",
|
---|
2183 | SubscriptBox["c", "16"], " ",
|
---|
2184 | RowBox[{
|
---|
2185 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2186 | SubscriptBox["p", "2"]}]}], "+",
|
---|
2187 | RowBox[{
|
---|
2188 | SubscriptBox["b", "14"], " ",
|
---|
2189 | SubscriptBox["c", "14"], " ",
|
---|
2190 | RowBox[{"(",
|
---|
2191 | RowBox[{
|
---|
2192 | RowBox[{
|
---|
2193 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2194 | SubscriptBox["p", "2"]}], "+",
|
---|
2195 | RowBox[{
|
---|
2196 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2197 | SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}], "+",
|
---|
2198 | RowBox[{
|
---|
2199 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2200 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
2201 | RowBox[{"(",
|
---|
2202 | RowBox[{
|
---|
2203 | RowBox[{
|
---|
2204 | SubscriptBox["b", "11"], " ",
|
---|
2205 | SubscriptBox["c", "11"], " ",
|
---|
2206 | RowBox[{
|
---|
2207 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2208 | SubscriptBox["p", "1"]}]}], "+",
|
---|
2209 | RowBox[{"2", " ",
|
---|
2210 | SubscriptBox["a", "16"], " ",
|
---|
2211 | TemplateBox[{"a","16","\[Prime]"},
|
---|
2212 | "Subsuperscript"], " ",
|
---|
2213 | SubscriptBox["c", "16"], " ",
|
---|
2214 | RowBox[{
|
---|
2215 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2216 | SubscriptBox["p", "3"]}]}], "+",
|
---|
2217 | RowBox[{
|
---|
2218 | SubscriptBox["b", "14"], " ",
|
---|
2219 | SubscriptBox["c", "14"], " ",
|
---|
2220 | RowBox[{"(",
|
---|
2221 | RowBox[{
|
---|
2222 | RowBox[{
|
---|
2223 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2224 | SubscriptBox["p", "2"]}], "+",
|
---|
2225 | RowBox[{
|
---|
2226 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2227 | SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}],
|
---|
2228 | "+",
|
---|
2229 | RowBox[{"4", " ", "\[Pi]", " ",
|
---|
2230 | SubscriptBox["s", "w"], " ",
|
---|
2231 | RowBox[{"(",
|
---|
2232 | RowBox[{
|
---|
2233 | RowBox[{
|
---|
2234 | SubscriptBox["b", "3"], " ",
|
---|
2235 | SubscriptBox["c", "3"], " ",
|
---|
2236 | SubscriptBox["c", "w"], " ",
|
---|
2237 | SubscriptBox["s", "w"]}], "+",
|
---|
2238 | RowBox[{
|
---|
2239 | SubscriptBox["b", "10"], " ",
|
---|
2240 | SubscriptBox["c", "10"], " ",
|
---|
2241 | RowBox[{"(",
|
---|
2242 | RowBox[{
|
---|
2243 | RowBox[{"-", "1"}], "+",
|
---|
2244 | SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
|
---|
2245 | RowBox[{"(",
|
---|
2246 | RowBox[{
|
---|
2247 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2248 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], "+",
|
---|
2249 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
2250 | SubscriptBox["\<\"\[Mu]\"\>", "4"]]}], ")"}], " ",
|
---|
2251 | RowBox[{
|
---|
2252 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2253 | SubscriptBox["p", "4"]}]}], "-",
|
---|
2254 | RowBox[{
|
---|
2255 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
2256 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
2257 | RowBox[{"(",
|
---|
2258 | RowBox[{
|
---|
2259 | RowBox[{"16", " ",
|
---|
2260 | SubscriptBox["b",
|
---|
2261 | RowBox[{"2", " ", "D"}]], " ",
|
---|
2262 | SubscriptBox["c",
|
---|
2263 | RowBox[{"2", " ", "D"}]], " ", "e", " ",
|
---|
2264 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2265 | SuperscriptBox["vev", "2"]}], "-",
|
---|
2266 | RowBox[{"e", " ",
|
---|
2267 | RowBox[{"(",
|
---|
2268 | RowBox[{
|
---|
2269 | RowBox[{
|
---|
2270 | SubscriptBox["b", "17"], " ",
|
---|
2271 | SubscriptBox["c", "17"], " ",
|
---|
2272 | RowBox[{
|
---|
2273 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2274 | SubscriptBox["p", "1"]}]}], "+",
|
---|
2275 | RowBox[{
|
---|
2276 | SubscriptBox["b", "12"], " ",
|
---|
2277 | SubscriptBox["c", "12"], " ",
|
---|
2278 | RowBox[{"(",
|
---|
2279 | RowBox[{
|
---|
2280 | RowBox[{
|
---|
2281 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2282 | SubscriptBox["p", "2"]}], "+",
|
---|
2283 | RowBox[{
|
---|
2284 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2285 | SubscriptBox["p", "3"]}]}], ")"}]}], "+",
|
---|
2286 | RowBox[{"4", " ",
|
---|
2287 | SubscriptBox["a", "15"], " ",
|
---|
2288 | TemplateBox[{"a","15","\[Prime]"},
|
---|
2289 | "Subsuperscript"], " ",
|
---|
2290 | SubscriptBox["c", "15"], " ",
|
---|
2291 | RowBox[{
|
---|
2292 | SubscriptBox["\<\"p\"\>", "2"], ".",
|
---|
2293 | SubscriptBox["p", "3"]}]}], "+",
|
---|
2294 | RowBox[{
|
---|
2295 | SubscriptBox["b", "13"], " ",
|
---|
2296 | SubscriptBox["c", "13"], " ",
|
---|
2297 | RowBox[{"(",
|
---|
2298 | RowBox[{
|
---|
2299 | RowBox[{
|
---|
2300 | SubscriptBox["\<\"p\"\>", "2"], ".",
|
---|
2301 | SubscriptBox["p", "2"]}], "+",
|
---|
2302 | RowBox[{"2", " ",
|
---|
2303 | RowBox[{
|
---|
2304 | SubscriptBox["\<\"p\"\>", "2"], ".",
|
---|
2305 | SubscriptBox["p", "3"]}]}], "+",
|
---|
2306 | RowBox[{
|
---|
2307 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
2308 | SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}], "+",
|
---|
2309 | RowBox[{"4", " ", "\[Pi]", " ",
|
---|
2310 | SubscriptBox["s", "w"], " ",
|
---|
2311 | RowBox[{"(",
|
---|
2312 | RowBox[{
|
---|
2313 | RowBox[{
|
---|
2314 | SubscriptBox["b", "3"], " ",
|
---|
2315 | SubscriptBox["c", "3"], " ",
|
---|
2316 | SubscriptBox["c", "w"], " ",
|
---|
2317 | SubscriptBox["s", "w"]}], "+",
|
---|
2318 | RowBox[{
|
---|
2319 | SubscriptBox["b", "10"], " ",
|
---|
2320 | SubscriptBox["c", "10"], " ",
|
---|
2321 | RowBox[{"(",
|
---|
2322 | RowBox[{
|
---|
2323 | RowBox[{"-", "1"}], "+",
|
---|
2324 | SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
|
---|
2325 | RowBox[{"(",
|
---|
2326 | RowBox[{
|
---|
2327 | RowBox[{
|
---|
2328 | SubscriptBox["\<\"p\"\>", "2"], ".",
|
---|
2329 | SubscriptBox["p", "4"]}], "+",
|
---|
2330 | RowBox[{
|
---|
2331 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
2332 | SubscriptBox["p", "4"]}]}], ")"}]}]}], ")"}]}]}],
|
---|
2333 | RowBox[{"8", " ",
|
---|
2334 | SubscriptBox["c", "w"], " ",
|
---|
2335 | SubscriptBox["f", "a"], " ",
|
---|
2336 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2337 | SubscriptBox["s", "w"], " ",
|
---|
2338 | SuperscriptBox["vev", "2"]}]]},
|
---|
2339 | {GridBox[{
|
---|
2340 | {"ALP", "1"},
|
---|
2341 | {"H", "2"},
|
---|
2342 | {"Z", "3"}
|
---|
2343 | },
|
---|
2344 | GridBoxAlignment->{
|
---|
2345 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2346 | "RowsIndexed" -> {}},
|
---|
2347 | GridBoxSpacings->{"Columns" -> {
|
---|
2348 | Offset[0.27999999999999997`], {
|
---|
2349 | Offset[0.7]},
|
---|
2350 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2351 | Offset[0.2], {
|
---|
2352 | Offset[0.1]},
|
---|
2353 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2354 | FractionBox[
|
---|
2355 | RowBox[{
|
---|
2356 | RowBox[{
|
---|
2357 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2358 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
2359 | RowBox[{"(",
|
---|
2360 | RowBox[{
|
---|
2361 | RowBox[{
|
---|
2362 | SubscriptBox["a", "11"], " ",
|
---|
2363 | SubscriptBox["c", "11"], " ", "e", " ",
|
---|
2364 | RowBox[{
|
---|
2365 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2366 | SubscriptBox["p", "1"]}]}], "+",
|
---|
2367 | RowBox[{
|
---|
2368 | SubscriptBox["a", "14"], " ",
|
---|
2369 | SubscriptBox["c", "14"], " ", "e", " ",
|
---|
2370 | RowBox[{
|
---|
2371 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2372 | SubscriptBox["p", "2"]}]}], "+",
|
---|
2373 | RowBox[{"4", " ", "\[Pi]", " ",
|
---|
2374 | SubscriptBox["s", "w"], " ",
|
---|
2375 | RowBox[{"(",
|
---|
2376 | RowBox[{
|
---|
2377 | RowBox[{
|
---|
2378 | SubscriptBox["a", "3"], " ",
|
---|
2379 | SubscriptBox["c", "3"], " ",
|
---|
2380 | SubscriptBox["c", "w"], " ",
|
---|
2381 | SubscriptBox["s", "w"]}], "+",
|
---|
2382 | RowBox[{
|
---|
2383 | SubscriptBox["a", "10"], " ",
|
---|
2384 | SubscriptBox["c", "10"], " ",
|
---|
2385 | RowBox[{"(",
|
---|
2386 | RowBox[{
|
---|
2387 | RowBox[{"-", "1"}], "+",
|
---|
2388 | SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
|
---|
2389 | RowBox[{
|
---|
2390 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2391 | SubscriptBox["p", "3"]}]}]}], ")"}]}], "+",
|
---|
2392 | RowBox[{
|
---|
2393 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
2394 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
2395 | RowBox[{"(",
|
---|
2396 | RowBox[{
|
---|
2397 | RowBox[{"e", " ",
|
---|
2398 | RowBox[{"(",
|
---|
2399 | RowBox[{
|
---|
2400 | RowBox[{
|
---|
2401 | RowBox[{"-", "16"}], " ",
|
---|
2402 | SubscriptBox["a",
|
---|
2403 | RowBox[{"2", " ", "D"}]], " ",
|
---|
2404 | SubscriptBox["c",
|
---|
2405 | RowBox[{"2", " ", "D"}]], " ",
|
---|
2406 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2407 | SuperscriptBox["vev", "2"]}], "+",
|
---|
2408 | RowBox[{
|
---|
2409 | SubscriptBox["a", "17"], " ",
|
---|
2410 | SubscriptBox["c", "17"], " ",
|
---|
2411 | RowBox[{
|
---|
2412 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2413 | SubscriptBox["p", "1"]}]}], "+",
|
---|
2414 | RowBox[{
|
---|
2415 | SubscriptBox["a", "12"], " ",
|
---|
2416 | SubscriptBox["c", "12"], " ",
|
---|
2417 | RowBox[{
|
---|
2418 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2419 | SubscriptBox["p", "2"]}]}], "+",
|
---|
2420 | RowBox[{
|
---|
2421 | SubscriptBox["a", "13"], " ",
|
---|
2422 | SubscriptBox["c", "13"], " ",
|
---|
2423 | RowBox[{
|
---|
2424 | SubscriptBox["\<\"p\"\>", "2"], ".",
|
---|
2425 | SubscriptBox["p", "2"]}]}]}], ")"}]}], "-",
|
---|
2426 | RowBox[{"4", " ", "\[Pi]", " ",
|
---|
2427 | SubscriptBox["s", "w"], " ",
|
---|
2428 | RowBox[{"(",
|
---|
2429 | RowBox[{
|
---|
2430 | RowBox[{
|
---|
2431 | SubscriptBox["a", "3"], " ",
|
---|
2432 | SubscriptBox["c", "3"], " ",
|
---|
2433 | SubscriptBox["c", "w"], " ",
|
---|
2434 | SubscriptBox["s", "w"]}], "+",
|
---|
2435 | RowBox[{
|
---|
2436 | SubscriptBox["a", "10"], " ",
|
---|
2437 | SubscriptBox["c", "10"], " ",
|
---|
2438 | RowBox[{"(",
|
---|
2439 | RowBox[{
|
---|
2440 | RowBox[{"-", "1"}], "+",
|
---|
2441 | SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
|
---|
2442 | RowBox[{
|
---|
2443 | SubscriptBox["\<\"p\"\>", "2"], ".",
|
---|
2444 | SubscriptBox["p", "3"]}]}]}], ")"}]}]}],
|
---|
2445 | RowBox[{"8", " ",
|
---|
2446 | SubscriptBox["c", "w"], " ",
|
---|
2447 | SubscriptBox["f", "a"], " ",
|
---|
2448 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2449 | SubscriptBox["s", "w"], " ", "vev"}]]},
|
---|
2450 | {GridBox[{
|
---|
2451 | {"A", "1"},
|
---|
2452 | {"A", "2"},
|
---|
2453 | {"ALP", "3"}
|
---|
2454 | },
|
---|
2455 | GridBoxAlignment->{
|
---|
2456 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2457 | "RowsIndexed" -> {}},
|
---|
2458 | GridBoxSpacings->{"Columns" -> {
|
---|
2459 | Offset[0.27999999999999997`], {
|
---|
2460 | Offset[0.7]},
|
---|
2461 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2462 | Offset[0.2], {
|
---|
2463 | Offset[0.1]},
|
---|
2464 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2465 | RowBox[{"-",
|
---|
2466 | FractionBox[
|
---|
2467 | RowBox[{"2", " ", "\[ImaginaryI]", " ",
|
---|
2468 | RowBox[{"(",
|
---|
2469 | RowBox[{
|
---|
2470 | RowBox[{"-",
|
---|
2471 | SubscriptBox["c",
|
---|
2472 | OverscriptBox["B", "~"]]}], "+",
|
---|
2473 | RowBox[{
|
---|
2474 | RowBox[{"(",
|
---|
2475 | RowBox[{
|
---|
2476 | SubscriptBox["c",
|
---|
2477 | OverscriptBox["B", "~"]], "-",
|
---|
2478 | SubscriptBox["c",
|
---|
2479 | OverscriptBox["W", "~"]]}], ")"}], " ",
|
---|
2480 | SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
|
---|
2481 | SubscriptBox["\[Epsilon]",
|
---|
2482 | RowBox[{
|
---|
2483 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
2484 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "mu$1", ",", "mu$2"}]],
|
---|
2485 | " ",
|
---|
2486 | RowBox[{"(",
|
---|
2487 | RowBox[{
|
---|
2488 | RowBox[{
|
---|
2489 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
|
---|
2490 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "-",
|
---|
2491 | RowBox[{
|
---|
2492 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
2493 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"]}]}], ")"}]}],
|
---|
2494 | SubscriptBox["f", "a"]]}]},
|
---|
2495 | {GridBox[{
|
---|
2496 | {"ALP", "1"},
|
---|
2497 | {"G", "2"},
|
---|
2498 | {"G", "3"}
|
---|
2499 | },
|
---|
2500 | GridBoxAlignment->{
|
---|
2501 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2502 | "RowsIndexed" -> {}},
|
---|
2503 | GridBoxSpacings->{"Columns" -> {
|
---|
2504 | Offset[0.27999999999999997`], {
|
---|
2505 | Offset[0.7]},
|
---|
2506 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2507 | Offset[0.2], {
|
---|
2508 | Offset[0.1]},
|
---|
2509 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2510 | FractionBox[
|
---|
2511 | RowBox[{"\[ImaginaryI]", " ",
|
---|
2512 | SubscriptBox["c",
|
---|
2513 | OverscriptBox["G", "~"]], " ",
|
---|
2514 | RowBox[{"(",
|
---|
2515 | RowBox[{
|
---|
2516 | RowBox[{
|
---|
2517 | SubscriptBox["\[Epsilon]",
|
---|
2518 | RowBox[{
|
---|
2519 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2520 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
|
---|
2521 | "\[Beta]1"}]], " ",
|
---|
2522 | RowBox[{"(",
|
---|
2523 | RowBox[{
|
---|
2524 | RowBox[{
|
---|
2525 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
|
---|
2526 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
|
---|
2527 | RowBox[{
|
---|
2528 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
|
---|
2529 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}]}], ")"}]}],
|
---|
2530 | "+",
|
---|
2531 | RowBox[{
|
---|
2532 | SubscriptBox["\[Epsilon]",
|
---|
2533 | RowBox[{
|
---|
2534 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2535 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
|
---|
2536 | "\[Beta]1"}]], " ",
|
---|
2537 | RowBox[{"(",
|
---|
2538 | RowBox[{
|
---|
2539 | RowBox[{
|
---|
2540 | RowBox[{"-",
|
---|
2541 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"]}], " ",
|
---|
2542 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}], "+",
|
---|
2543 | RowBox[{
|
---|
2544 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
|
---|
2545 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}]}], ")"}]}],
|
---|
2546 | "+",
|
---|
2547 | RowBox[{
|
---|
2548 | SubscriptBox["\[Epsilon]",
|
---|
2549 | RowBox[{
|
---|
2550 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2551 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
|
---|
2552 | "\[Delta]1"}]], " ",
|
---|
2553 | RowBox[{"(",
|
---|
2554 | RowBox[{
|
---|
2555 | RowBox[{
|
---|
2556 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
|
---|
2557 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
|
---|
2558 | RowBox[{
|
---|
2559 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
|
---|
2560 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}],
|
---|
2561 | "+",
|
---|
2562 | RowBox[{
|
---|
2563 | SubscriptBox["\[Epsilon]",
|
---|
2564 | RowBox[{
|
---|
2565 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2566 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
|
---|
2567 | "\[Delta]1"}]], " ",
|
---|
2568 | RowBox[{"(",
|
---|
2569 | RowBox[{
|
---|
2570 | RowBox[{
|
---|
2571 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
|
---|
2572 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}], "-",
|
---|
2573 | RowBox[{
|
---|
2574 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
|
---|
2575 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}]}],
|
---|
2576 | ")"}], " ",
|
---|
2577 | SubscriptBox["\[Delta]",
|
---|
2578 | RowBox[{
|
---|
2579 | SubscriptBox["\<\"a\"\>", "2"], ",",
|
---|
2580 | SubscriptBox["\<\"a\"\>", "3"]}]]}],
|
---|
2581 | RowBox[{"2", " ",
|
---|
2582 | SubscriptBox["f", "a"]}]]},
|
---|
2583 | {GridBox[{
|
---|
2584 | {"ALP", "1"},
|
---|
2585 | {"W", "2"},
|
---|
2586 | {
|
---|
2587 | SuperscriptBox["W", "\[Dagger]"], "3"}
|
---|
2588 | },
|
---|
2589 | GridBoxAlignment->{
|
---|
2590 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2591 | "RowsIndexed" -> {}},
|
---|
2592 | GridBoxSpacings->{"Columns" -> {
|
---|
2593 | Offset[0.27999999999999997`], {
|
---|
2594 | Offset[0.7]},
|
---|
2595 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2596 | Offset[0.2], {
|
---|
2597 | Offset[0.1]},
|
---|
2598 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2599 | FractionBox[
|
---|
2600 | RowBox[{
|
---|
2601 | RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
|
---|
2602 | SubscriptBox["s", "w"], " ",
|
---|
2603 | SubscriptBox["\[Epsilon]",
|
---|
2604 | RowBox[{
|
---|
2605 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2606 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
|
---|
2607 | " ",
|
---|
2608 | RowBox[{"(",
|
---|
2609 | RowBox[{
|
---|
2610 | RowBox[{
|
---|
2611 | SubscriptBox["c", "2"], " ", "e", " ",
|
---|
2612 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
2613 | RowBox[{"(",
|
---|
2614 | RowBox[{
|
---|
2615 | RowBox[{"-",
|
---|
2616 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"]}], "+",
|
---|
2617 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}], ")"}]}], "+",
|
---|
2618 | RowBox[{"16", " ",
|
---|
2619 | SubscriptBox["c",
|
---|
2620 | OverscriptBox["W", "~"]], " ", "\[Pi]", " ",
|
---|
2621 | SubscriptBox["s", "w"], " ",
|
---|
2622 | RowBox[{"(",
|
---|
2623 | RowBox[{
|
---|
2624 | RowBox[{
|
---|
2625 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
|
---|
2626 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
|
---|
2627 | RowBox[{
|
---|
2628 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
|
---|
2629 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}]}],
|
---|
2630 | ")"}]}], "-",
|
---|
2631 | RowBox[{"e", " ",
|
---|
2632 | RowBox[{"(",
|
---|
2633 | RowBox[{
|
---|
2634 | RowBox[{
|
---|
2635 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
2636 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
2637 | RowBox[{"(",
|
---|
2638 | RowBox[{
|
---|
2639 | RowBox[{
|
---|
2640 | SubscriptBox["c", "8"], " ", "e", " ",
|
---|
2641 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2642 | SubscriptBox["\<\"\[Mu]\"\>", "2"]]}], "+",
|
---|
2643 | RowBox[{"4", " ",
|
---|
2644 | SubscriptBox["c", "6"], " ", "\[Pi]", " ",
|
---|
2645 | SubscriptBox["s", "w"], " ",
|
---|
2646 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
2647 | SubscriptBox["\<\"\[Mu]\"\>", "2"]]}]}], ")"}]}], "-",
|
---|
2648 | RowBox[{
|
---|
2649 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
2650 | SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
|
---|
2651 | RowBox[{"(",
|
---|
2652 | RowBox[{
|
---|
2653 | RowBox[{"4", " ",
|
---|
2654 | SubscriptBox["c", "6"], " ", "\[Pi]", " ",
|
---|
2655 | SubscriptBox["s", "w"], " ",
|
---|
2656 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
2657 | SubscriptBox["\<\"\[Mu]\"\>", "3"]]}], "+",
|
---|
2658 | RowBox[{
|
---|
2659 | SubscriptBox["c", "8"], " ", "e", " ",
|
---|
2660 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
2661 | SubscriptBox["\<\"\[Mu]\"\>", "3"]]}]}], ")"}]}], "+",
|
---|
2662 | RowBox[{"4", " ",
|
---|
2663 | SubscriptBox["c", "6"], " ", "\[Pi]", " ",
|
---|
2664 | SubscriptBox["s", "w"], " ",
|
---|
2665 | SubscriptBox["\[Eta]",
|
---|
2666 | RowBox[{
|
---|
2667 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2668 | SubscriptBox["\<\"\[Mu]\"\>", "3"]}]], " ",
|
---|
2669 | RowBox[{"(",
|
---|
2670 | RowBox[{
|
---|
2671 | RowBox[{
|
---|
2672 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2673 | SubscriptBox["p", "2"]}], "-",
|
---|
2674 | RowBox[{
|
---|
2675 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
2676 | SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}]}],
|
---|
2677 | RowBox[{"16", " ",
|
---|
2678 | SubscriptBox["f", "a"], " ",
|
---|
2679 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2680 | SubsuperscriptBox["s", "w", "2"]}]]},
|
---|
2681 | {GridBox[{
|
---|
2682 | {"A", "1"},
|
---|
2683 | {"ALP", "2"},
|
---|
2684 | {"Z", "3"}
|
---|
2685 | },
|
---|
2686 | GridBoxAlignment->{
|
---|
2687 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2688 | "RowsIndexed" -> {}},
|
---|
2689 | GridBoxSpacings->{"Columns" -> {
|
---|
2690 | Offset[0.27999999999999997`], {
|
---|
2691 | Offset[0.7]},
|
---|
2692 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2693 | Offset[0.2], {
|
---|
2694 | Offset[0.1]},
|
---|
2695 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2696 | RowBox[{"-",
|
---|
2697 | FractionBox[
|
---|
2698 | RowBox[{"\[ImaginaryI]", " ",
|
---|
2699 | SubscriptBox["\[Epsilon]",
|
---|
2700 | RowBox[{
|
---|
2701 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
2702 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
|
---|
2703 | " ",
|
---|
2704 | RowBox[{"(",
|
---|
2705 | RowBox[{
|
---|
2706 | RowBox[{
|
---|
2707 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
|
---|
2708 | RowBox[{"(",
|
---|
2709 | RowBox[{
|
---|
2710 | RowBox[{"e", " ",
|
---|
2711 | RowBox[{"(",
|
---|
2712 | RowBox[{
|
---|
2713 | RowBox[{"2", " ",
|
---|
2714 | SubscriptBox["c", "1"], " ",
|
---|
2715 | SubscriptBox["c", "w"]}], "+",
|
---|
2716 | RowBox[{
|
---|
2717 | RowBox[{"(",
|
---|
2718 | RowBox[{
|
---|
2719 | SubscriptBox["c", "2"], "+",
|
---|
2720 | RowBox[{"2", " ",
|
---|
2721 | SubscriptBox["c", "7"]}]}], ")"}], " ",
|
---|
2722 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
2723 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "-",
|
---|
2724 | RowBox[{"16", " ",
|
---|
2725 | RowBox[{"(",
|
---|
2726 | RowBox[{
|
---|
2727 | SubscriptBox["c",
|
---|
2728 | OverscriptBox["B", "~"]], "-",
|
---|
2729 | SubscriptBox["c",
|
---|
2730 | OverscriptBox["W", "~"]]}], ")"}], " ", "\[Pi]", " ",
|
---|
2731 | SubsuperscriptBox["s", "w", "2"], " ",
|
---|
2732 | RowBox[{"(",
|
---|
2733 | RowBox[{
|
---|
2734 | RowBox[{"-", "1"}], "+",
|
---|
2735 | SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
|
---|
2736 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}]}], ")"}]}], "+",
|
---|
2737 | RowBox[{"16", " ",
|
---|
2738 | RowBox[{"(",
|
---|
2739 | RowBox[{
|
---|
2740 | SubscriptBox["c",
|
---|
2741 | OverscriptBox["B", "~"]], "-",
|
---|
2742 | SubscriptBox["c",
|
---|
2743 | OverscriptBox["W", "~"]]}], ")"}], " ", "\[Pi]", " ",
|
---|
2744 | SubsuperscriptBox["s", "w", "2"], " ",
|
---|
2745 | RowBox[{"(",
|
---|
2746 | RowBox[{
|
---|
2747 | RowBox[{"-", "1"}], "+",
|
---|
2748 | SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
|
---|
2749 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
2750 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
|
---|
2751 | RowBox[{"8", " ",
|
---|
2752 | SubscriptBox["c", "w"], " ",
|
---|
2753 | SubscriptBox["f", "a"], " ", "\[Pi]", " ",
|
---|
2754 | SubscriptBox["s", "w"]}]]}]},
|
---|
2755 | {GridBox[{
|
---|
2756 | {"ALP", "1"},
|
---|
2757 | {"Z", "2"},
|
---|
2758 | {"Z", "3"}
|
---|
2759 | },
|
---|
2760 | GridBoxAlignment->{
|
---|
2761 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2762 | "RowsIndexed" -> {}},
|
---|
2763 | GridBoxSpacings->{"Columns" -> {
|
---|
2764 | Offset[0.27999999999999997`], {
|
---|
2765 | Offset[0.7]},
|
---|
2766 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2767 | Offset[0.2], {
|
---|
2768 | Offset[0.1]},
|
---|
2769 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2770 | RowBox[{"-",
|
---|
2771 | FractionBox[
|
---|
2772 | RowBox[{"\[ImaginaryI]", " ",
|
---|
2773 | SubscriptBox["\[Epsilon]",
|
---|
2774 | RowBox[{
|
---|
2775 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2776 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
|
---|
2777 | " ",
|
---|
2778 | RowBox[{"(",
|
---|
2779 | RowBox[{
|
---|
2780 | RowBox[{"e", " ",
|
---|
2781 | RowBox[{"(",
|
---|
2782 | RowBox[{
|
---|
2783 | RowBox[{
|
---|
2784 | SubscriptBox["c", "2"], " ",
|
---|
2785 | SubscriptBox["c", "w"]}], "+",
|
---|
2786 | RowBox[{"2", " ",
|
---|
2787 | SubscriptBox["c", "7"], " ",
|
---|
2788 | SubscriptBox["c", "w"]}], "-",
|
---|
2789 | RowBox[{"2", " ",
|
---|
2790 | SubscriptBox["c", "1"], " ",
|
---|
2791 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
2792 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
2793 | RowBox[{"(",
|
---|
2794 | RowBox[{
|
---|
2795 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], "-",
|
---|
2796 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}], ")"}]}], "+",
|
---|
2797 | RowBox[{"16", " ",
|
---|
2798 | SubscriptBox["c", "w"], " ", "\[Pi]", " ",
|
---|
2799 | SubscriptBox["s", "w"], " ",
|
---|
2800 | RowBox[{"(",
|
---|
2801 | RowBox[{
|
---|
2802 | RowBox[{"-",
|
---|
2803 | SubscriptBox["c",
|
---|
2804 | OverscriptBox["W", "~"]]}], "+",
|
---|
2805 | RowBox[{
|
---|
2806 | RowBox[{"(",
|
---|
2807 | RowBox[{
|
---|
2808 | RowBox[{"-",
|
---|
2809 | SubscriptBox["c",
|
---|
2810 | OverscriptBox["B", "~"]]}], "+",
|
---|
2811 | SubscriptBox["c",
|
---|
2812 | OverscriptBox["W", "~"]]}], ")"}], " ",
|
---|
2813 | SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
|
---|
2814 | RowBox[{"(",
|
---|
2815 | RowBox[{
|
---|
2816 | RowBox[{
|
---|
2817 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
|
---|
2818 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
|
---|
2819 | RowBox[{
|
---|
2820 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
|
---|
2821 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}]}],
|
---|
2822 | ")"}]}],
|
---|
2823 | RowBox[{"8", " ",
|
---|
2824 | SubscriptBox["c", "w"], " ",
|
---|
2825 | SubscriptBox["f", "a"], " ", "\[Pi]", " ",
|
---|
2826 | SubscriptBox["s", "w"]}]]}]},
|
---|
2827 | {GridBox[{
|
---|
2828 | {"ALP", "1"},
|
---|
2829 | {"G", "2"},
|
---|
2830 | {"G", "3"},
|
---|
2831 | {"G", "4"}
|
---|
2832 | },
|
---|
2833 | GridBoxAlignment->{
|
---|
2834 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2835 | "RowsIndexed" -> {}},
|
---|
2836 | GridBoxSpacings->{"Columns" -> {
|
---|
2837 | Offset[0.27999999999999997`], {
|
---|
2838 | Offset[0.7]},
|
---|
2839 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2840 | Offset[0.2], {
|
---|
2841 | Offset[0.1]},
|
---|
2842 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2843 | RowBox[{"-",
|
---|
2844 | FractionBox[
|
---|
2845 | RowBox[{
|
---|
2846 | SubscriptBox["c",
|
---|
2847 | OverscriptBox["G", "~"]], " ",
|
---|
2848 | SubscriptBox["g", "s"], " ",
|
---|
2849 | SubscriptBox["f",
|
---|
2850 | RowBox[{
|
---|
2851 | SubscriptBox["\<\"a\"\>", "2"], ",",
|
---|
2852 | SubscriptBox["\<\"a\"\>", "3"], ",",
|
---|
2853 | SubscriptBox["\<\"a\"\>", "4"]}]], " ",
|
---|
2854 | RowBox[{"(",
|
---|
2855 | RowBox[{
|
---|
2856 | RowBox[{
|
---|
2857 | SubscriptBox["\[Epsilon]",
|
---|
2858 | RowBox[{
|
---|
2859 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2860 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
2861 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Alpha]1"}]], " ",
|
---|
2862 | RowBox[{"(",
|
---|
2863 | RowBox[{
|
---|
2864 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], "+",
|
---|
2865 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"], "+",
|
---|
2866 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Alpha]1"]}], ")"}]}], "+",
|
---|
2867 | RowBox[{
|
---|
2868 | SubscriptBox["\[Epsilon]",
|
---|
2869 | RowBox[{
|
---|
2870 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2871 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
2872 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Beta]1"}]], " ",
|
---|
2873 | RowBox[{"(",
|
---|
2874 | RowBox[{
|
---|
2875 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], "+",
|
---|
2876 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"], "+",
|
---|
2877 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Beta]1"]}], ")"}]}], "+",
|
---|
2878 |
|
---|
2879 | RowBox[{
|
---|
2880 | SubscriptBox["\[Epsilon]",
|
---|
2881 | RowBox[{
|
---|
2882 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2883 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
2884 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Gamma]1"}]], " ",
|
---|
2885 | RowBox[{"(",
|
---|
2886 | RowBox[{
|
---|
2887 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], "+",
|
---|
2888 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"], "+",
|
---|
2889 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Gamma]1"]}], ")"}]}], "+",
|
---|
2890 | RowBox[{
|
---|
2891 | SubscriptBox["\[Epsilon]",
|
---|
2892 | RowBox[{
|
---|
2893 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
2894 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
2895 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Delta]1"}]], " ",
|
---|
2896 | RowBox[{"(",
|
---|
2897 | RowBox[{
|
---|
2898 | SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], "+",
|
---|
2899 | SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"], "+",
|
---|
2900 | SubsuperscriptBox["\<\"p\"\>", "4", "\[Delta]1"]}], ")"}]}]}],
|
---|
2901 | ")"}]}],
|
---|
2902 | SubscriptBox["f", "a"]]}]},
|
---|
2903 | {GridBox[{
|
---|
2904 | {
|
---|
2905 | OverscriptBox["dq", "\<\"-\"\>"], "1"},
|
---|
2906 | {"dq", "2"},
|
---|
2907 | {"ALP", "3"},
|
---|
2908 | {"H", "4"}
|
---|
2909 | },
|
---|
2910 | GridBoxAlignment->{
|
---|
2911 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2912 | "RowsIndexed" -> {}},
|
---|
2913 | GridBoxSpacings->{"Columns" -> {
|
---|
2914 | Offset[0.27999999999999997`], {
|
---|
2915 | Offset[0.7]},
|
---|
2916 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2917 | Offset[0.2], {
|
---|
2918 | Offset[0.1]},
|
---|
2919 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2920 | RowBox[{"-",
|
---|
2921 | FractionBox[
|
---|
2922 | RowBox[{
|
---|
2923 | SubscriptBox["a", "D"], " ",
|
---|
2924 | SubscriptBox["\[Delta]",
|
---|
2925 | RowBox[{
|
---|
2926 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
2927 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
2928 | RowBox[{"(",
|
---|
2929 | RowBox[{
|
---|
2930 | RowBox[{"16", " ",
|
---|
2931 | SubscriptBox["c",
|
---|
2932 | RowBox[{"2", " ", "D"}]], " ",
|
---|
2933 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2934 | SuperscriptBox["vev", "2"]}], "-",
|
---|
2935 | RowBox[{
|
---|
2936 | SubscriptBox["c", "17"], " ",
|
---|
2937 | RowBox[{
|
---|
2938 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
2939 | SubscriptBox["p", "3"]}]}]}], ")"}], " ",
|
---|
2940 | RowBox[{"(",
|
---|
2941 | RowBox[{
|
---|
2942 | RowBox[{
|
---|
2943 | SubsuperscriptBox[
|
---|
2944 | RowBox[{"(",
|
---|
2945 | TemplateBox[{"V","CKM"},
|
---|
2946 | "Superscript"], ")"}],
|
---|
2947 | RowBox[{
|
---|
2948 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
2949 | "Generation$1"}], "\<\"*\"\>"], " ",
|
---|
2950 | SubsuperscriptBox[
|
---|
2951 | RowBox[{"(",
|
---|
2952 | TemplateBox[{"y","d"},
|
---|
2953 | "Superscript"], ")"}],
|
---|
2954 | RowBox[{"Generation$1", ",",
|
---|
2955 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
2956 | SubscriptBox[
|
---|
2957 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
2958 | RowBox[{
|
---|
2959 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
2960 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
2961 | RowBox[{
|
---|
2962 | SubscriptBox[
|
---|
2963 | TemplateBox[{"V","CKM"},
|
---|
2964 | "Superscript"],
|
---|
2965 | RowBox[{
|
---|
2966 | SubscriptBox["\<\"f\"\>", "1"], ",", "Generation$1"}]], " ",
|
---|
2967 | SubscriptBox[
|
---|
2968 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
2969 | RowBox[{
|
---|
2970 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
2971 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
2972 | SubscriptBox[
|
---|
2973 | TemplateBox[{"y","d"},
|
---|
2974 | "Superscript"],
|
---|
2975 | RowBox[{"Generation$1", ",",
|
---|
2976 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
2977 | RowBox[{"4", " ",
|
---|
2978 | SqrtBox["2"], " ",
|
---|
2979 | SubscriptBox["f", "a"], " ",
|
---|
2980 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
2981 | SuperscriptBox["vev", "2"]}]]}]},
|
---|
2982 | {GridBox[{
|
---|
2983 | {
|
---|
2984 | OverscriptBox["dq", "\<\"-\"\>"], "1"},
|
---|
2985 | {"dq", "2"},
|
---|
2986 | {"ALP", "3"}
|
---|
2987 | },
|
---|
2988 | GridBoxAlignment->{
|
---|
2989 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
2990 | "RowsIndexed" -> {}},
|
---|
2991 | GridBoxSpacings->{"Columns" -> {
|
---|
2992 | Offset[0.27999999999999997`], {
|
---|
2993 | Offset[0.7]},
|
---|
2994 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
2995 | Offset[0.2], {
|
---|
2996 | Offset[0.1]},
|
---|
2997 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
2998 | RowBox[{"-",
|
---|
2999 | FractionBox[
|
---|
3000 | RowBox[{
|
---|
3001 | SubscriptBox["\[Delta]",
|
---|
3002 | RowBox[{
|
---|
3003 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
3004 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
3005 | RowBox[{"(",
|
---|
3006 | RowBox[{
|
---|
3007 | RowBox[{"16", " ",
|
---|
3008 | SubscriptBox["c",
|
---|
3009 | RowBox[{"2", " ", "D"}]], " ",
|
---|
3010 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3011 | SuperscriptBox["vev", "2"]}], "-",
|
---|
3012 | RowBox[{
|
---|
3013 | SubscriptBox["c", "17"], " ",
|
---|
3014 | RowBox[{
|
---|
3015 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
3016 | SubscriptBox["p", "3"]}]}]}], ")"}], " ",
|
---|
3017 | RowBox[{"(",
|
---|
3018 | RowBox[{
|
---|
3019 | RowBox[{
|
---|
3020 | SubsuperscriptBox[
|
---|
3021 | RowBox[{"(",
|
---|
3022 | TemplateBox[{"V","CKM"},
|
---|
3023 | "Superscript"], ")"}],
|
---|
3024 | RowBox[{
|
---|
3025 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
3026 | "Generation$1"}], "\<\"*\"\>"], " ",
|
---|
3027 | SubsuperscriptBox[
|
---|
3028 | RowBox[{"(",
|
---|
3029 | TemplateBox[{"y","d"},
|
---|
3030 | "Superscript"], ")"}],
|
---|
3031 | RowBox[{"Generation$1", ",",
|
---|
3032 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
3033 | SubscriptBox[
|
---|
3034 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
3035 | RowBox[{
|
---|
3036 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3037 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
3038 | RowBox[{
|
---|
3039 | SubscriptBox[
|
---|
3040 | TemplateBox[{"V","CKM"},
|
---|
3041 | "Superscript"],
|
---|
3042 | RowBox[{
|
---|
3043 | SubscriptBox["\<\"f\"\>", "1"], ",", "Generation$1"}]], " ",
|
---|
3044 | SubscriptBox[
|
---|
3045 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
3046 | RowBox[{
|
---|
3047 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3048 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
3049 | SubscriptBox[
|
---|
3050 | TemplateBox[{"y","d"},
|
---|
3051 | "Superscript"],
|
---|
3052 | RowBox[{"Generation$1", ",",
|
---|
3053 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
3054 | RowBox[{"8", " ",
|
---|
3055 | SqrtBox["2"], " ",
|
---|
3056 | SubscriptBox["f", "a"], " ",
|
---|
3057 | SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]},
|
---|
3058 | {GridBox[{
|
---|
3059 | {
|
---|
3060 | OverscriptBox["l", "\<\"-\"\>"], "1"},
|
---|
3061 | {"l", "2"},
|
---|
3062 | {"ALP", "3"},
|
---|
3063 | {"H", "4"}
|
---|
3064 | },
|
---|
3065 | GridBoxAlignment->{
|
---|
3066 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3067 | "RowsIndexed" -> {}},
|
---|
3068 | GridBoxSpacings->{"Columns" -> {
|
---|
3069 | Offset[0.27999999999999997`], {
|
---|
3070 | Offset[0.7]},
|
---|
3071 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3072 | Offset[0.2], {
|
---|
3073 | Offset[0.1]},
|
---|
3074 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3075 | RowBox[{"-",
|
---|
3076 | FractionBox[
|
---|
3077 | RowBox[{
|
---|
3078 | SubscriptBox["a", "L"], " ",
|
---|
3079 | RowBox[{"(",
|
---|
3080 | RowBox[{
|
---|
3081 | RowBox[{"16", " ",
|
---|
3082 | SubscriptBox["c",
|
---|
3083 | RowBox[{"2", " ", "D"}]], " ",
|
---|
3084 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3085 | SuperscriptBox["vev", "2"]}], "-",
|
---|
3086 | RowBox[{
|
---|
3087 | SubscriptBox["c", "17"], " ",
|
---|
3088 | RowBox[{
|
---|
3089 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
3090 | SubscriptBox["p", "3"]}]}]}], ")"}], " ",
|
---|
3091 | RowBox[{"(",
|
---|
3092 | RowBox[{
|
---|
3093 | RowBox[{
|
---|
3094 | SubsuperscriptBox[
|
---|
3095 | RowBox[{"(",
|
---|
3096 | TemplateBox[{"y","l"},
|
---|
3097 | "Superscript"], ")"}],
|
---|
3098 | RowBox[{
|
---|
3099 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
3100 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
3101 | SubscriptBox[
|
---|
3102 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
3103 | RowBox[{
|
---|
3104 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3105 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
3106 | RowBox[{
|
---|
3107 | SubscriptBox[
|
---|
3108 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
3109 | RowBox[{
|
---|
3110 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3111 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
3112 | SubscriptBox[
|
---|
3113 | TemplateBox[{"y","l"},
|
---|
3114 | "Superscript"],
|
---|
3115 | RowBox[{
|
---|
3116 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
3117 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
3118 | RowBox[{"4", " ",
|
---|
3119 | SqrtBox["2"], " ",
|
---|
3120 | SubscriptBox["f", "a"], " ",
|
---|
3121 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3122 | SuperscriptBox["vev", "2"]}]]}]},
|
---|
3123 | {GridBox[{
|
---|
3124 | {
|
---|
3125 | OverscriptBox["l", "\<\"-\"\>"], "1"},
|
---|
3126 | {"l", "2"},
|
---|
3127 | {"ALP", "3"}
|
---|
3128 | },
|
---|
3129 | GridBoxAlignment->{
|
---|
3130 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3131 | "RowsIndexed" -> {}},
|
---|
3132 | GridBoxSpacings->{"Columns" -> {
|
---|
3133 | Offset[0.27999999999999997`], {
|
---|
3134 | Offset[0.7]},
|
---|
3135 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3136 | Offset[0.2], {
|
---|
3137 | Offset[0.1]},
|
---|
3138 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3139 | RowBox[{"-",
|
---|
3140 | FractionBox[
|
---|
3141 | RowBox[{
|
---|
3142 | RowBox[{"(",
|
---|
3143 | RowBox[{
|
---|
3144 | RowBox[{"16", " ",
|
---|
3145 | SubscriptBox["c",
|
---|
3146 | RowBox[{"2", " ", "D"}]], " ",
|
---|
3147 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3148 | SuperscriptBox["vev", "2"]}], "-",
|
---|
3149 | RowBox[{
|
---|
3150 | SubscriptBox["c", "17"], " ",
|
---|
3151 | RowBox[{
|
---|
3152 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
3153 | SubscriptBox["p", "3"]}]}]}], ")"}], " ",
|
---|
3154 | RowBox[{"(",
|
---|
3155 | RowBox[{
|
---|
3156 | RowBox[{
|
---|
3157 | SubsuperscriptBox[
|
---|
3158 | RowBox[{"(",
|
---|
3159 | TemplateBox[{"y","l"},
|
---|
3160 | "Superscript"], ")"}],
|
---|
3161 | RowBox[{
|
---|
3162 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
3163 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
3164 | SubscriptBox[
|
---|
3165 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
3166 | RowBox[{
|
---|
3167 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3168 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
3169 | RowBox[{
|
---|
3170 | SubscriptBox[
|
---|
3171 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
3172 | RowBox[{
|
---|
3173 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3174 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
3175 | SubscriptBox[
|
---|
3176 | TemplateBox[{"y","l"},
|
---|
3177 | "Superscript"],
|
---|
3178 | RowBox[{
|
---|
3179 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
3180 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
3181 | RowBox[{"8", " ",
|
---|
3182 | SqrtBox["2"], " ",
|
---|
3183 | SubscriptBox["f", "a"], " ",
|
---|
3184 | SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]},
|
---|
3185 | {GridBox[{
|
---|
3186 | {
|
---|
3187 | OverscriptBox["uq", "\<\"-\"\>"], "1"},
|
---|
3188 | {"uq", "2"},
|
---|
3189 | {"ALP", "3"},
|
---|
3190 | {"H", "4"}
|
---|
3191 | },
|
---|
3192 | GridBoxAlignment->{
|
---|
3193 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3194 | "RowsIndexed" -> {}},
|
---|
3195 | GridBoxSpacings->{"Columns" -> {
|
---|
3196 | Offset[0.27999999999999997`], {
|
---|
3197 | Offset[0.7]},
|
---|
3198 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3199 | Offset[0.2], {
|
---|
3200 | Offset[0.1]},
|
---|
3201 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3202 | FractionBox[
|
---|
3203 | RowBox[{
|
---|
3204 | SubscriptBox["a", "U"], " ",
|
---|
3205 | SubscriptBox["\[Delta]",
|
---|
3206 | RowBox[{
|
---|
3207 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
3208 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
3209 | RowBox[{"(",
|
---|
3210 | RowBox[{
|
---|
3211 | RowBox[{"16", " ",
|
---|
3212 | SubscriptBox["c",
|
---|
3213 | RowBox[{"2", " ", "D"}]], " ",
|
---|
3214 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3215 | SuperscriptBox["vev", "2"]}], "-",
|
---|
3216 | RowBox[{
|
---|
3217 | SubscriptBox["c", "17"], " ",
|
---|
3218 | RowBox[{
|
---|
3219 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
3220 | SubscriptBox["p", "3"]}]}]}], ")"}], " ",
|
---|
3221 | RowBox[{"(",
|
---|
3222 | RowBox[{
|
---|
3223 | RowBox[{
|
---|
3224 | SubsuperscriptBox[
|
---|
3225 | RowBox[{"(",
|
---|
3226 | TemplateBox[{"y","u"},
|
---|
3227 | "Superscript"], ")"}],
|
---|
3228 | RowBox[{
|
---|
3229 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
3230 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
3231 | SubscriptBox[
|
---|
3232 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
3233 | RowBox[{
|
---|
3234 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3235 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
3236 | RowBox[{
|
---|
3237 | SubscriptBox[
|
---|
3238 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
3239 | RowBox[{
|
---|
3240 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3241 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
3242 | SubscriptBox[
|
---|
3243 | TemplateBox[{"y","u"},
|
---|
3244 | "Superscript"],
|
---|
3245 | RowBox[{
|
---|
3246 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
3247 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
3248 | RowBox[{"4", " ",
|
---|
3249 | SqrtBox["2"], " ",
|
---|
3250 | SubscriptBox["f", "a"], " ",
|
---|
3251 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3252 | SuperscriptBox["vev", "2"]}]]},
|
---|
3253 | {GridBox[{
|
---|
3254 | {
|
---|
3255 | OverscriptBox["uq", "\<\"-\"\>"], "1"},
|
---|
3256 | {"uq", "2"},
|
---|
3257 | {"ALP", "3"}
|
---|
3258 | },
|
---|
3259 | GridBoxAlignment->{
|
---|
3260 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3261 | "RowsIndexed" -> {}},
|
---|
3262 | GridBoxSpacings->{"Columns" -> {
|
---|
3263 | Offset[0.27999999999999997`], {
|
---|
3264 | Offset[0.7]},
|
---|
3265 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3266 | Offset[0.2], {
|
---|
3267 | Offset[0.1]},
|
---|
3268 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3269 | FractionBox[
|
---|
3270 | RowBox[{
|
---|
3271 | SubscriptBox["\[Delta]",
|
---|
3272 | RowBox[{
|
---|
3273 | SubscriptBox["\<\"m\"\>", "1"], ",",
|
---|
3274 | SubscriptBox["\<\"m\"\>", "2"]}]], " ",
|
---|
3275 | RowBox[{"(",
|
---|
3276 | RowBox[{
|
---|
3277 | RowBox[{"16", " ",
|
---|
3278 | SubscriptBox["c",
|
---|
3279 | RowBox[{"2", " ", "D"}]], " ",
|
---|
3280 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3281 | SuperscriptBox["vev", "2"]}], "-",
|
---|
3282 | RowBox[{
|
---|
3283 | SubscriptBox["c", "17"], " ",
|
---|
3284 | RowBox[{
|
---|
3285 | SubscriptBox["\<\"p\"\>", "3"], ".",
|
---|
3286 | SubscriptBox["p", "3"]}]}]}], ")"}], " ",
|
---|
3287 | RowBox[{"(",
|
---|
3288 | RowBox[{
|
---|
3289 | RowBox[{
|
---|
3290 | SubsuperscriptBox[
|
---|
3291 | RowBox[{"(",
|
---|
3292 | TemplateBox[{"y","u"},
|
---|
3293 | "Superscript"], ")"}],
|
---|
3294 | RowBox[{
|
---|
3295 | SubscriptBox["\<\"f\"\>", "2"], ",",
|
---|
3296 | SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
|
---|
3297 | SubscriptBox[
|
---|
3298 | SubscriptBox["P", "\<\"-\"\>"],
|
---|
3299 | RowBox[{
|
---|
3300 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3301 | SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
|
---|
3302 | RowBox[{
|
---|
3303 | SubscriptBox[
|
---|
3304 | SubscriptBox["P", "\<\"+\"\>"],
|
---|
3305 | RowBox[{
|
---|
3306 | SubscriptBox["\<\"s\"\>", "1"], ",",
|
---|
3307 | SubscriptBox["\<\"s\"\>", "2"]}]], " ",
|
---|
3308 | SubscriptBox[
|
---|
3309 | TemplateBox[{"y","u"},
|
---|
3310 | "Superscript"],
|
---|
3311 | RowBox[{
|
---|
3312 | SubscriptBox["\<\"f\"\>", "1"], ",",
|
---|
3313 | SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
|
---|
3314 | RowBox[{"8", " ",
|
---|
3315 | SqrtBox["2"], " ",
|
---|
3316 | SubscriptBox["f", "a"], " ",
|
---|
3317 | SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]},
|
---|
3318 | {GridBox[{
|
---|
3319 | {"ALP", "1"},
|
---|
3320 | {"H", "2"},
|
---|
3321 | {"W", "3"},
|
---|
3322 | {
|
---|
3323 | SuperscriptBox["W", "\[Dagger]"], "4"}
|
---|
3324 | },
|
---|
3325 | GridBoxAlignment->{
|
---|
3326 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3327 | "RowsIndexed" -> {}},
|
---|
3328 | GridBoxSpacings->{"Columns" -> {
|
---|
3329 | Offset[0.27999999999999997`], {
|
---|
3330 | Offset[0.7]},
|
---|
3331 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3332 | Offset[0.2], {
|
---|
3333 | Offset[0.1]},
|
---|
3334 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3335 | RowBox[{"-",
|
---|
3336 | FractionBox[
|
---|
3337 | RowBox[{"e", " ",
|
---|
3338 | RowBox[{"(",
|
---|
3339 | RowBox[{
|
---|
3340 | RowBox[{
|
---|
3341 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3342 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
3343 | RowBox[{"(",
|
---|
3344 | RowBox[{
|
---|
3345 | RowBox[{
|
---|
3346 | SubscriptBox["a", "8"], " ",
|
---|
3347 | SubscriptBox["c", "8"], " ", "e", " ",
|
---|
3348 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
3349 | SubscriptBox["\<\"\[Mu]\"\>", "3"]]}], "+",
|
---|
3350 | RowBox[{"4", " ", "\[Pi]", " ",
|
---|
3351 | SubscriptBox["s", "w"], " ",
|
---|
3352 | RowBox[{"(",
|
---|
3353 | RowBox[{
|
---|
3354 | RowBox[{
|
---|
3355 | SubscriptBox["a", "10"], " ",
|
---|
3356 | SubscriptBox["c", "10"], " ",
|
---|
3357 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
3358 | SubscriptBox["\<\"\[Mu]\"\>", "3"]]}], "+",
|
---|
3359 | RowBox[{
|
---|
3360 | SubscriptBox["a", "6"], " ",
|
---|
3361 | SubscriptBox["c", "6"], " ",
|
---|
3362 | SubsuperscriptBox["\<\"p\"\>", "4",
|
---|
3363 | SubscriptBox["\<\"\[Mu]\"\>", "3"]]}]}], ")"}]}]}], ")"}]}],
|
---|
3364 | "-",
|
---|
3365 | RowBox[{
|
---|
3366 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3367 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
3368 | RowBox[{"(",
|
---|
3369 | RowBox[{
|
---|
3370 | RowBox[{"4", " ", "\[Pi]", " ",
|
---|
3371 | SubscriptBox["s", "w"], " ",
|
---|
3372 | RowBox[{"(",
|
---|
3373 | RowBox[{
|
---|
3374 | RowBox[{
|
---|
3375 | SubscriptBox["a", "10"], " ",
|
---|
3376 | SubscriptBox["c", "10"], " ",
|
---|
3377 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
3378 | SubscriptBox["\<\"\[Mu]\"\>", "4"]]}], "+",
|
---|
3379 | RowBox[{
|
---|
3380 | SubscriptBox["a", "6"], " ",
|
---|
3381 | SubscriptBox["c", "6"], " ",
|
---|
3382 | SubsuperscriptBox["\<\"p\"\>", "3",
|
---|
3383 | SubscriptBox["\<\"\[Mu]\"\>", "4"]]}]}], ")"}]}], "+",
|
---|
3384 | RowBox[{
|
---|
3385 | SubscriptBox["a", "8"], " ",
|
---|
3386 | SubscriptBox["c", "8"], " ", "e", " ",
|
---|
3387 | SubsuperscriptBox["\<\"p\"\>", "4",
|
---|
3388 | SubscriptBox["\<\"\[Mu]\"\>", "4"]]}]}], ")"}]}], "+",
|
---|
3389 | RowBox[{"2", " ", "\[Pi]", " ",
|
---|
3390 | SubscriptBox["s", "w"], " ",
|
---|
3391 | RowBox[{"(",
|
---|
3392 | RowBox[{
|
---|
3393 | RowBox[{
|
---|
3394 | RowBox[{"-", "\[ImaginaryI]"}], " ",
|
---|
3395 | SubscriptBox["a", "2"], " ",
|
---|
3396 | SubscriptBox["c", "2"], " ",
|
---|
3397 | SubscriptBox["\[Epsilon]",
|
---|
3398 | RowBox[{
|
---|
3399 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
|
---|
3400 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",",
|
---|
3401 | "mu$2"}]], " ",
|
---|
3402 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
3403 | RowBox[{"(",
|
---|
3404 | RowBox[{
|
---|
3405 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"], "-",
|
---|
3406 | SubsuperscriptBox["\<\"p\"\>", "4", "mu$2"]}], ")"}]}], "+",
|
---|
3407 | RowBox[{"2", " ",
|
---|
3408 | SubscriptBox["a", "6"], " ",
|
---|
3409 | SubscriptBox["c", "6"], " ",
|
---|
3410 | SubscriptBox["\[Eta]",
|
---|
3411 | RowBox[{
|
---|
3412 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
3413 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]], " ",
|
---|
3414 | RowBox[{"(",
|
---|
3415 | RowBox[{
|
---|
3416 | RowBox[{
|
---|
3417 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
3418 | SubscriptBox["p", "3"]}], "-",
|
---|
3419 | RowBox[{
|
---|
3420 | SubscriptBox["\<\"p\"\>", "1"], ".",
|
---|
3421 | SubscriptBox["p", "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}],
|
---|
3422 | RowBox[{"8", " ",
|
---|
3423 | SubscriptBox["f", "a"], " ",
|
---|
3424 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3425 | SubsuperscriptBox["s", "w", "2"], " ", "vev"}]]}]},
|
---|
3426 | {GridBox[{
|
---|
3427 | {"A", "1"},
|
---|
3428 | {"ALP", "2"},
|
---|
3429 | {"W", "3"},
|
---|
3430 | {
|
---|
3431 | SuperscriptBox["W", "\[Dagger]"], "4"}
|
---|
3432 | },
|
---|
3433 | GridBoxAlignment->{
|
---|
3434 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3435 | "RowsIndexed" -> {}},
|
---|
3436 | GridBoxSpacings->{"Columns" -> {
|
---|
3437 | Offset[0.27999999999999997`], {
|
---|
3438 | Offset[0.7]},
|
---|
3439 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3440 | Offset[0.2], {
|
---|
3441 | Offset[0.1]},
|
---|
3442 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3443 | FractionBox[
|
---|
3444 | RowBox[{"e", " ",
|
---|
3445 | RowBox[{"(",
|
---|
3446 | RowBox[{
|
---|
3447 | RowBox[{
|
---|
3448 | RowBox[{"-", "4"}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
|
---|
3449 | SubscriptBox["s", "w"], " ",
|
---|
3450 | SubscriptBox["\[Epsilon]",
|
---|
3451 | RowBox[{
|
---|
3452 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
3453 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
|
---|
3454 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
|
---|
3455 | RowBox[{"(",
|
---|
3456 | RowBox[{
|
---|
3457 | RowBox[{
|
---|
3458 | RowBox[{"-",
|
---|
3459 | SubscriptBox["c", "2"]}], " ", "e", " ",
|
---|
3460 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "+",
|
---|
3461 | RowBox[{"16", " ",
|
---|
3462 | SubscriptBox["c",
|
---|
3463 | OverscriptBox["W", "~"]], " ", "\[Pi]", " ",
|
---|
3464 | SubscriptBox["s", "w"], " ",
|
---|
3465 | RowBox[{"(",
|
---|
3466 | RowBox[{
|
---|
3467 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], "+",
|
---|
3468 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
|
---|
3469 | SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}]}],
|
---|
3470 | ")"}]}], "+",
|
---|
3471 | RowBox[{"e", " ",
|
---|
3472 | RowBox[{"(",
|
---|
3473 | RowBox[{
|
---|
3474 | RowBox[{
|
---|
3475 | SubscriptBox["c", "8"], " ", "e"}], "-",
|
---|
3476 | RowBox[{"4", " ",
|
---|
3477 | SubscriptBox["c", "6"], " ", "\[Pi]", " ",
|
---|
3478 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
3479 | RowBox[{"(",
|
---|
3480 | RowBox[{
|
---|
3481 | RowBox[{
|
---|
3482 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
3483 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
3484 | SubscriptBox["\[Eta]",
|
---|
3485 | RowBox[{
|
---|
3486 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
3487 | SubscriptBox["\<\"\[Mu]\"\>", "3"]}]]}], "+",
|
---|
3488 | RowBox[{
|
---|
3489 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
3490 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
3491 | SubscriptBox["\[Eta]",
|
---|
3492 | RowBox[{
|
---|
3493 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
3494 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}], "+",
|
---|
3495 | RowBox[{"8", " ",
|
---|
3496 | SubscriptBox["c", "6"], " ", "e", " ", "\[Pi]", " ",
|
---|
3497 | SubscriptBox["s", "w"], " ",
|
---|
3498 | SubsuperscriptBox["\<\"p\"\>", "2",
|
---|
3499 | SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
|
---|
3500 | SubscriptBox["\[Eta]",
|
---|
3501 | RowBox[{
|
---|
3502 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
3503 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}],
|
---|
3504 | RowBox[{"16", " ",
|
---|
3505 | SubscriptBox["f", "a"], " ",
|
---|
3506 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3507 | SubsuperscriptBox["s", "w", "2"]}]]},
|
---|
3508 | {GridBox[{
|
---|
3509 | {"ALP", "1"},
|
---|
3510 | {"W", "2"},
|
---|
3511 | {
|
---|
3512 | SuperscriptBox["W", "\[Dagger]"], "3"},
|
---|
3513 | {"Z", "4"}
|
---|
3514 | },
|
---|
3515 | GridBoxAlignment->{
|
---|
3516 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3517 | "RowsIndexed" -> {}},
|
---|
3518 | GridBoxSpacings->{"Columns" -> {
|
---|
3519 | Offset[0.27999999999999997`], {
|
---|
3520 | Offset[0.7]},
|
---|
3521 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3522 | Offset[0.2], {
|
---|
3523 | Offset[0.1]},
|
---|
3524 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3525 | FractionBox[
|
---|
3526 | RowBox[{"e", " ",
|
---|
3527 | RowBox[{"(",
|
---|
3528 | RowBox[{
|
---|
3529 | RowBox[{
|
---|
3530 | RowBox[{"-", "4"}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
|
---|
3531 | SubscriptBox["s", "w"], " ",
|
---|
3532 | SubscriptBox["\[Epsilon]",
|
---|
3533 | RowBox[{
|
---|
3534 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
|
---|
3535 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
3536 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
|
---|
3537 | RowBox[{"(",
|
---|
3538 | RowBox[{
|
---|
3539 | RowBox[{"e", " ",
|
---|
3540 | RowBox[{"(",
|
---|
3541 | RowBox[{
|
---|
3542 | RowBox[{"3", " ",
|
---|
3543 | SubscriptBox["c", "2"]}], "+",
|
---|
3544 | RowBox[{"2", " ",
|
---|
3545 | SubscriptBox["c", "7"]}], "-",
|
---|
3546 | RowBox[{"2", " ",
|
---|
3547 | SubscriptBox["c", "2"], " ",
|
---|
3548 | SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
|
---|
3549 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"]}], "+",
|
---|
3550 | RowBox[{"32", " ",
|
---|
3551 | SubscriptBox["c",
|
---|
3552 | OverscriptBox["W", "~"]], " ", "\[Pi]", " ",
|
---|
3553 | SubscriptBox["s", "w"], " ",
|
---|
3554 | RowBox[{"(",
|
---|
3555 | RowBox[{
|
---|
3556 | RowBox[{"-", "1"}], "+",
|
---|
3557 | SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
|
---|
3558 | RowBox[{"(",
|
---|
3559 | RowBox[{
|
---|
3560 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], "+",
|
---|
3561 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
|
---|
3562 | SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}]}],
|
---|
3563 | ")"}]}], "+",
|
---|
3564 | RowBox[{"e", " ",
|
---|
3565 | RowBox[{"(",
|
---|
3566 | RowBox[{
|
---|
3567 | RowBox[{"2", " ",
|
---|
3568 | RowBox[{"(",
|
---|
3569 | RowBox[{
|
---|
3570 | RowBox[{
|
---|
3571 | SubscriptBox["c", "5"], " ", "e"}], "-",
|
---|
3572 | RowBox[{"8", " ",
|
---|
3573 | SubscriptBox["c", "6"], " ", "\[Pi]", " ",
|
---|
3574 | SubscriptBox["s", "w"], " ",
|
---|
3575 | RowBox[{"(",
|
---|
3576 | RowBox[{
|
---|
3577 | RowBox[{"-", "1"}], "+",
|
---|
3578 | SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
|
---|
3579 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3580 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
3581 | SubscriptBox["\[Eta]",
|
---|
3582 | RowBox[{
|
---|
3583 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
3584 | SubscriptBox["\<\"\[Mu]\"\>", "3"]}]]}], "+",
|
---|
3585 | RowBox[{
|
---|
3586 | RowBox[{"(",
|
---|
3587 | RowBox[{
|
---|
3588 | RowBox[{
|
---|
3589 | SubscriptBox["c", "4"], " ", "e"}], "+",
|
---|
3590 | RowBox[{"2", " ",
|
---|
3591 | SubscriptBox["s", "w"], " ",
|
---|
3592 | RowBox[{"(",
|
---|
3593 | RowBox[{
|
---|
3594 | RowBox[{
|
---|
3595 | RowBox[{"-",
|
---|
3596 | SubscriptBox["c", "8"]}], " ", "e", " ",
|
---|
3597 | SubscriptBox["s", "w"]}], "+",
|
---|
3598 | RowBox[{"4", " ",
|
---|
3599 | SubscriptBox["c", "6"], " ", "\[Pi]", " ",
|
---|
3600 | RowBox[{"(",
|
---|
3601 | RowBox[{
|
---|
3602 | RowBox[{"-", "1"}], "+",
|
---|
3603 | SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}]}]}],
|
---|
3604 | ")"}], " ",
|
---|
3605 | RowBox[{"(",
|
---|
3606 | RowBox[{
|
---|
3607 | RowBox[{
|
---|
3608 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3609 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
3610 | SubscriptBox["\[Eta]",
|
---|
3611 | RowBox[{
|
---|
3612 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
3613 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}], "+",
|
---|
3614 | RowBox[{
|
---|
3615 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3616 | SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
|
---|
3617 | SubscriptBox["\[Eta]",
|
---|
3618 | RowBox[{
|
---|
3619 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
3620 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}]}],
|
---|
3621 | ")"}]}]}], ")"}]}],
|
---|
3622 | RowBox[{"32", " ",
|
---|
3623 | SubscriptBox["c", "w"], " ",
|
---|
3624 | SubscriptBox["f", "a"], " ",
|
---|
3625 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3626 | SubsuperscriptBox["s", "w", "3"]}]]},
|
---|
3627 | {GridBox[{
|
---|
3628 | {"A", "1"},
|
---|
3629 | {"ALP", "2"},
|
---|
3630 | {"H", "3"},
|
---|
3631 | {"Z", "4"}
|
---|
3632 | },
|
---|
3633 | GridBoxAlignment->{
|
---|
3634 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3635 | "RowsIndexed" -> {}},
|
---|
3636 | GridBoxSpacings->{"Columns" -> {
|
---|
3637 | Offset[0.27999999999999997`], {
|
---|
3638 | Offset[0.7]},
|
---|
3639 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3640 | Offset[0.2], {
|
---|
3641 | Offset[0.1]},
|
---|
3642 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3643 | RowBox[{"-",
|
---|
3644 | FractionBox[
|
---|
3645 | RowBox[{"\[ImaginaryI]", " ", "e", " ",
|
---|
3646 | RowBox[{"(",
|
---|
3647 | RowBox[{
|
---|
3648 | RowBox[{"2", " ",
|
---|
3649 | SubscriptBox["a", "1"], " ",
|
---|
3650 | SubscriptBox["c", "1"], " ",
|
---|
3651 | SubscriptBox["c", "w"]}], "+",
|
---|
3652 | RowBox[{
|
---|
3653 | SubscriptBox["a", "2"], " ",
|
---|
3654 | SubscriptBox["c", "2"], " ",
|
---|
3655 | SubscriptBox["s", "w"]}], "+",
|
---|
3656 | RowBox[{"2", " ",
|
---|
3657 | SubscriptBox["a", "7"], " ",
|
---|
3658 | SubscriptBox["c", "7"], " ",
|
---|
3659 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
3660 | SubscriptBox["\[Epsilon]",
|
---|
3661 | RowBox[{
|
---|
3662 | SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
|
---|
3663 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "mu$1", ",", "mu$2"}]],
|
---|
3664 | " ",
|
---|
3665 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
|
---|
3666 | SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}],
|
---|
3667 | RowBox[{"4", " ",
|
---|
3668 | SubscriptBox["c", "w"], " ",
|
---|
3669 | SubscriptBox["f", "a"], " ", "\[Pi]", " ",
|
---|
3670 | SubscriptBox["s", "w"], " ", "vev"}]]}]},
|
---|
3671 | {GridBox[{
|
---|
3672 | {"ALP", "1"},
|
---|
3673 | {"H", "2"},
|
---|
3674 | {"Z", "3"},
|
---|
3675 | {"Z", "4"}
|
---|
3676 | },
|
---|
3677 | GridBoxAlignment->{
|
---|
3678 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3679 | "RowsIndexed" -> {}},
|
---|
3680 | GridBoxSpacings->{"Columns" -> {
|
---|
3681 | Offset[0.27999999999999997`], {
|
---|
3682 | Offset[0.7]},
|
---|
3683 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3684 | Offset[0.2], {
|
---|
3685 | Offset[0.1]},
|
---|
3686 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3687 | FractionBox[
|
---|
3688 | RowBox[{"\[ImaginaryI]", " ", "e", " ",
|
---|
3689 | RowBox[{"(",
|
---|
3690 | RowBox[{
|
---|
3691 | RowBox[{
|
---|
3692 | SubscriptBox["a", "2"], " ",
|
---|
3693 | SubscriptBox["c", "2"], " ",
|
---|
3694 | SubscriptBox["c", "w"]}], "+",
|
---|
3695 | RowBox[{"2", " ",
|
---|
3696 | SubscriptBox["a", "7"], " ",
|
---|
3697 | SubscriptBox["c", "7"], " ",
|
---|
3698 | SubscriptBox["c", "w"]}], "-",
|
---|
3699 | RowBox[{"2", " ",
|
---|
3700 | SubscriptBox["a", "1"], " ",
|
---|
3701 | SubscriptBox["c", "1"], " ",
|
---|
3702 | SubscriptBox["s", "w"]}]}], ")"}], " ",
|
---|
3703 | SubscriptBox["\[Epsilon]",
|
---|
3704 | RowBox[{
|
---|
3705 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
3706 | SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "mu$1", ",", "mu$2"}]], " ",
|
---|
3707 | SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
|
---|
3708 | RowBox[{"(",
|
---|
3709 | RowBox[{
|
---|
3710 | RowBox[{"-",
|
---|
3711 | SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}], "+",
|
---|
3712 | SubsuperscriptBox["\<\"p\"\>", "4", "mu$2"]}], ")"}]}],
|
---|
3713 | RowBox[{"4", " ",
|
---|
3714 | SubscriptBox["c", "w"], " ",
|
---|
3715 | SubscriptBox["f", "a"], " ", "\[Pi]", " ",
|
---|
3716 | SubscriptBox["s", "w"], " ", "vev"}]]},
|
---|
3717 | {GridBox[{
|
---|
3718 | {"ALP", "1"},
|
---|
3719 | {"Z", "2"},
|
---|
3720 | {"Z", "3"},
|
---|
3721 | {"Z", "4"}
|
---|
3722 | },
|
---|
3723 | GridBoxAlignment->{
|
---|
3724 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3725 | "RowsIndexed" -> {}},
|
---|
3726 | GridBoxSpacings->{"Columns" -> {
|
---|
3727 | Offset[0.27999999999999997`], {
|
---|
3728 | Offset[0.7]},
|
---|
3729 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3730 | Offset[0.2], {
|
---|
3731 | Offset[0.1]},
|
---|
3732 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3733 | FractionBox[
|
---|
3734 | RowBox[{
|
---|
3735 | RowBox[{"(",
|
---|
3736 | RowBox[{
|
---|
3737 | SubscriptBox["c", "4"], "+",
|
---|
3738 | SubscriptBox["c", "5"], "+",
|
---|
3739 | RowBox[{"2", " ",
|
---|
3740 | SubscriptBox["c", "9"]}]}], ")"}], " ",
|
---|
3741 | SuperscriptBox["e", "3"], " ",
|
---|
3742 | RowBox[{"(",
|
---|
3743 | RowBox[{
|
---|
3744 | RowBox[{
|
---|
3745 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3746 | SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
|
---|
3747 | SubscriptBox["\[Eta]",
|
---|
3748 | RowBox[{
|
---|
3749 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
3750 | SubscriptBox["\<\"\[Mu]\"\>", "3"]}]]}], "+",
|
---|
3751 | RowBox[{
|
---|
3752 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3753 | SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
|
---|
3754 | SubscriptBox["\[Eta]",
|
---|
3755 | RowBox[{
|
---|
3756 | SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
|
---|
3757 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}], "+",
|
---|
3758 | RowBox[{
|
---|
3759 | SubsuperscriptBox["\<\"p\"\>", "1",
|
---|
3760 | SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
|
---|
3761 | SubscriptBox["\[Eta]",
|
---|
3762 | RowBox[{
|
---|
3763 | SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
|
---|
3764 | SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}],
|
---|
3765 | RowBox[{"16", " ",
|
---|
3766 | SubsuperscriptBox["c", "w", "3"], " ",
|
---|
3767 | SubscriptBox["f", "a"], " ",
|
---|
3768 | SuperscriptBox["\[Pi]", "2"], " ",
|
---|
3769 | SubsuperscriptBox["s", "w", "3"]}]]}
|
---|
3770 | },
|
---|
3771 | GridBoxAlignment->{
|
---|
3772 | "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
---|
3773 | "RowsIndexed" -> {}},
|
---|
3774 | GridBoxSpacings->{"Columns" -> {
|
---|
3775 | Offset[0.27999999999999997`], {
|
---|
3776 | Offset[2.0999999999999996`]},
|
---|
3777 | Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
---|
3778 | Offset[0.2], {
|
---|
3779 | Offset[0.4]},
|
---|
3780 | Offset[0.2]}, "RowsIndexed" -> {}}],
|
---|
3781 | TableForm[{{{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {FeynRules`H, 3}, {
|
---|
3782 | FeynRules`H, 4}}, Rational[-1, 2] $CellContext`fa^(-1)
|
---|
3783 | Pi^(-1) ($CellContext`b3 $CellContext`C3 $CellContext`cw + \
|
---|
3784 | $CellContext`b10 $CellContext`C10 $CellContext`sw) $CellContext`vev^(-2) ((
|
---|
3785 | FeynRules`FV[3,
|
---|
3786 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3787 | FeynRules`Ext[1]]] + FeynRules`FV[4,
|
---|
3788 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3789 | FeynRules`Ext[1]]]) FeynRules`SP[1, 2] - FeynRules`FV[2,
|
---|
3790 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3791 | FeynRules`Ext[1]]] (FeynRules`SP[1, 3] +
|
---|
3792 | FeynRules`SP[1, 4]))}, {{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {
|
---|
3793 | FeynRules`H, 3}}, Rational[1, 2] $CellContext`fa^(-1)
|
---|
3794 | Pi^(-1) ($CellContext`a3 $CellContext`C3 $CellContext`cw + \
|
---|
3795 | $CellContext`a10 $CellContext`C10 $CellContext`sw) $CellContext`vev^(-1) (-
|
---|
3796 | FeynRules`FV[3,
|
---|
3797 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3798 | FeynRules`Ext[1]]] FeynRules`SP[1, 2] + FeynRules`FV[2,
|
---|
3799 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3800 | FeynRules`Ext[1]]] FeynRules`SP[1, 3])}, {{{$CellContext`ALP, 1}, {
|
---|
3801 | FeynRules`H, 2}, {FeynRules`H, 3}, {$CellContext`Z, 4}},
|
---|
3802 | Rational[1, 8] $CellContext`cw^(-1) $CellContext`fa^(-1)
|
---|
3803 | Pi^(-2) $CellContext`sw^(-1) $CellContext`vev^(-2) (
|
---|
3804 | FeynRules`ee (FeynRules`FV[3,
|
---|
3805 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3806 | FeynRules`Ext[4]]] ($CellContext`b11 $CellContext`C11
|
---|
3807 | FeynRules`SP[1, 1] +
|
---|
3808 | 2 $CellContext`a16 $CellContext`a16prime $CellContext`C16
|
---|
3809 | FeynRules`SP[1, 2] + $CellContext`b14 $CellContext`C14 (
|
---|
3810 | FeynRules`SP[1, 2] + FeynRules`SP[1, 3])) + FeynRules`FV[2,
|
---|
3811 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3812 | FeynRules`Ext[4]]] ($CellContext`b11 $CellContext`C11
|
---|
3813 | FeynRules`SP[1, 1] +
|
---|
3814 | 2 $CellContext`a16 $CellContext`a16prime $CellContext`C16
|
---|
3815 | FeynRules`SP[1, 3] + $CellContext`b14 $CellContext`C14 (
|
---|
3816 | FeynRules`SP[1, 2] + FeynRules`SP[1, 3]))) +
|
---|
3817 | 4 Pi $CellContext`sw ($CellContext`b3 $CellContext`C3 $CellContext`cw \
|
---|
3818 | $CellContext`sw + $CellContext`b10 $CellContext`C10 (-1 + $CellContext`sw^2)) \
|
---|
3819 | (FeynRules`FV[2,
|
---|
3820 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3821 | FeynRules`Ext[4]]] + FeynRules`FV[3,
|
---|
3822 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3823 | FeynRules`Ext[4]]]) FeynRules`SP[1, 4] - FeynRules`FV[1,
|
---|
3824 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3825 | FeynRules`Ext[4]]] (
|
---|
3826 | 16 $CellContext`b2D $CellContext`C2D FeynRules`ee
|
---|
3827 | Pi^2 $CellContext`vev^2 -
|
---|
3828 | FeynRules`ee ($CellContext`b17 $CellContext`C17
|
---|
3829 | FeynRules`SP[1, 1] + $CellContext`b12 $CellContext`C12 (
|
---|
3830 | FeynRules`SP[1, 2] + FeynRules`SP[1, 3]) +
|
---|
3831 | 4 $CellContext`a15 $CellContext`a15prime $CellContext`C15
|
---|
3832 | FeynRules`SP[2, 3] + $CellContext`b13 $CellContext`C13 (
|
---|
3833 | FeynRules`SP[2, 2] + 2 FeynRules`SP[2, 3] + FeynRules`SP[3, 3])) +
|
---|
3834 | 4 Pi $CellContext`sw ($CellContext`b3 $CellContext`C3 $CellContext`cw \
|
---|
3835 | $CellContext`sw + $CellContext`b10 $CellContext`C10 (-1 + $CellContext`sw^2)) \
|
---|
3836 | (FeynRules`SP[2, 4] + FeynRules`SP[3, 4])))}, {{{$CellContext`ALP, 1}, {
|
---|
3837 | FeynRules`H, 2}, {$CellContext`Z, 3}},
|
---|
3838 | Rational[1, 8] $CellContext`cw^(-1) $CellContext`fa^(-1)
|
---|
3839 | Pi^(-2) $CellContext`sw^(-1) $CellContext`vev^(-1) (FeynRules`FV[2,
|
---|
3840 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3841 | FeynRules`Ext[3]]] ($CellContext`a11 $CellContext`C11 FeynRules`ee
|
---|
3842 | FeynRules`SP[1, 1] + $CellContext`a14 $CellContext`C14 FeynRules`ee
|
---|
3843 | FeynRules`SP[1, 2] +
|
---|
3844 | 4 Pi $CellContext`sw ($CellContext`a3 $CellContext`C3 $CellContext`cw \
|
---|
3845 | $CellContext`sw + $CellContext`a10 $CellContext`C10 (-1 + $CellContext`sw^2))
|
---|
3846 | FeynRules`SP[1, 3]) + FeynRules`FV[1,
|
---|
3847 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3848 | FeynRules`Ext[3]]] (
|
---|
3849 | FeynRules`ee ((-16) $CellContext`a2D $CellContext`C2D
|
---|
3850 | Pi^2 $CellContext`vev^2 + $CellContext`a17 $CellContext`C17
|
---|
3851 | FeynRules`SP[1, 1] + $CellContext`a12 $CellContext`C12
|
---|
3852 | FeynRules`SP[1, 2] + $CellContext`a13 $CellContext`C13
|
---|
3853 | FeynRules`SP[2, 2]) - 4
|
---|
3854 | Pi $CellContext`sw ($CellContext`a3 $CellContext`C3 $CellContext`cw \
|
---|
3855 | $CellContext`sw + $CellContext`a10 $CellContext`C10 (-1 + $CellContext`sw^2))
|
---|
3856 | FeynRules`SP[2, 3]))}, {{{$CellContext`A, 1}, {$CellContext`A,
|
---|
3857 | 2}, {$CellContext`ALP, 3}},
|
---|
3858 | Complex[0, -2] $CellContext`fa^(-1) (-$CellContext`CBtil + \
|
---|
3859 | ($CellContext`CBtil - $CellContext`CWtil) $CellContext`sw^2) FeynRules`Eps[
|
---|
3860 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3861 | FeynRules`Ext[1]],
|
---|
3862 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3863 | FeynRules`Ext[2]],
|
---|
3864 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
3865 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[1,
|
---|
3866 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
3867 | FeynRules`FV[2,
|
---|
3868 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
3869 | FeynRules`FV[1,
|
---|
3870 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[2,
|
---|
3871 | FeynRules`Index[
|
---|
3872 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP, 1}, {
|
---|
3873 | FeynRules`G, 2}, {FeynRules`G, 3}}, Complex[0,
|
---|
3874 | Rational[1, 2]] $CellContext`CGtil $CellContext`fa^(-1) (
|
---|
3875 | FeynRules`Eps[
|
---|
3876 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3877 | FeynRules`Ext[2]],
|
---|
3878 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3879 | FeynRules`Ext[3]],
|
---|
3880 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
|
---|
3881 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
|
---|
3882 | FeynRules`FV[2,
|
---|
3883 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
|
---|
3884 | FeynRules`FV[3,
|
---|
3885 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
|
---|
3886 | FeynRules`FV[2,
|
---|
3887 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
|
---|
3888 | FeynRules`FV[3,
|
---|
3889 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
|
---|
3890 | FeynRules`Eps[
|
---|
3891 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3892 | FeynRules`Ext[2]],
|
---|
3893 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3894 | FeynRules`Ext[3]],
|
---|
3895 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
|
---|
3896 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (-
|
---|
3897 | FeynRules`FV[2,
|
---|
3898 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
|
---|
3899 | FeynRules`FV[3,
|
---|
3900 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
|
---|
3901 | FeynRules`FV[2,
|
---|
3902 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
|
---|
3903 | FeynRules`FV[3,
|
---|
3904 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
|
---|
3905 | FeynRules`Eps[
|
---|
3906 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3907 | FeynRules`Ext[2]],
|
---|
3908 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3909 | FeynRules`Ext[3]],
|
---|
3910 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
|
---|
3911 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
|
---|
3912 | FeynRules`FV[2,
|
---|
3913 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
|
---|
3914 | FeynRules`FV[3,
|
---|
3915 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
|
---|
3916 | FeynRules`FV[2,
|
---|
3917 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
|
---|
3918 | FeynRules`FV[3,
|
---|
3919 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]) +
|
---|
3920 | FeynRules`Eps[
|
---|
3921 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3922 | FeynRules`Ext[2]],
|
---|
3923 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3924 | FeynRules`Ext[3]],
|
---|
3925 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
|
---|
3926 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
|
---|
3927 | FeynRules`FV[2,
|
---|
3928 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
|
---|
3929 | FeynRules`FV[3,
|
---|
3930 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] -
|
---|
3931 | FeynRules`FV[2,
|
---|
3932 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
|
---|
3933 | FeynRules`FV[3,
|
---|
3934 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]))
|
---|
3935 | FeynRules`IndexDelta[
|
---|
3936 | FeynRules`Index[FeynRules`Gluon,
|
---|
3937 | FeynRules`Ext[2]],
|
---|
3938 | FeynRules`Index[FeynRules`Gluon,
|
---|
3939 | FeynRules`Ext[3]]]}, {{{$CellContext`ALP, 1}, {
|
---|
3940 | FeynRules`W, 2}, {$CellContext`Wbar, 3}},
|
---|
3941 | Rational[1, 16] $CellContext`fa^(-1)
|
---|
3942 | Pi^(-2) $CellContext`sw^(-2) (
|
---|
3943 | Complex[0, 2] Pi $CellContext`sw FeynRules`Eps[
|
---|
3944 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3945 | FeynRules`Ext[2]],
|
---|
3946 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3947 | FeynRules`Ext[3]],
|
---|
3948 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
3949 | FeynRules`Index[
|
---|
3950 | FeynRules`Lorentz, $CellContext`mu$2]] ($CellContext`C2 FeynRules`ee
|
---|
3951 | FeynRules`FV[1,
|
---|
3952 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (-
|
---|
3953 | FeynRules`FV[2,
|
---|
3954 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] +
|
---|
3955 | FeynRules`FV[3,
|
---|
3956 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]) +
|
---|
3957 | 16 $CellContext`CWtil Pi $CellContext`sw (FeynRules`FV[2,
|
---|
3958 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
3959 | FeynRules`FV[3,
|
---|
3960 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
3961 | FeynRules`FV[2,
|
---|
3962 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
|
---|
3963 | FeynRules`FV[3,
|
---|
3964 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]])) -
|
---|
3965 | FeynRules`ee (FeynRules`FV[1,
|
---|
3966 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3967 | FeynRules`Ext[3]]] ($CellContext`C8 FeynRules`ee FeynRules`FV[2,
|
---|
3968 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3969 | FeynRules`Ext[2]]] +
|
---|
3970 | 4 $CellContext`C6 Pi $CellContext`sw FeynRules`FV[3,
|
---|
3971 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3972 | FeynRules`Ext[2]]]) - FeynRules`FV[1,
|
---|
3973 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3974 | FeynRules`Ext[2]]] (
|
---|
3975 | 4 $CellContext`C6 Pi $CellContext`sw FeynRules`FV[2,
|
---|
3976 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3977 | FeynRules`Ext[3]]] + $CellContext`C8 FeynRules`ee
|
---|
3978 | FeynRules`FV[3,
|
---|
3979 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3980 | FeynRules`Ext[3]]]) +
|
---|
3981 | 4 $CellContext`C6 Pi $CellContext`sw FeynRules`ME[
|
---|
3982 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3983 | FeynRules`Ext[2]],
|
---|
3984 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3985 | FeynRules`Ext[3]]] (FeynRules`SP[1, 2] - FeynRules`SP[
|
---|
3986 | 1, 3])))}, {{{$CellContext`A, 1}, {$CellContext`ALP,
|
---|
3987 | 2}, {$CellContext`Z, 3}}, Complex[0,
|
---|
3988 | Rational[-1, 8]] $CellContext`cw^(-1) $CellContext`fa^(-1)
|
---|
3989 | Pi^(-1) $CellContext`sw^(-1) FeynRules`Eps[
|
---|
3990 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3991 | FeynRules`Ext[1]],
|
---|
3992 | FeynRules`Index[FeynRules`Lorentz,
|
---|
3993 | FeynRules`Ext[3]],
|
---|
3994 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
3995 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[1,
|
---|
3996 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (
|
---|
3997 | FeynRules`ee (
|
---|
3998 | 2 $CellContext`C1 $CellContext`cw + ($CellContext`C2 +
|
---|
3999 | 2 $CellContext`C7) $CellContext`sw) FeynRules`FV[2,
|
---|
4000 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
4001 | 16 ($CellContext`CBtil - $CellContext`CWtil)
|
---|
4002 | Pi $CellContext`sw^2 (-1 + $CellContext`sw^2) FeynRules`FV[3,
|
---|
4003 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]) +
|
---|
4004 | 16 ($CellContext`CBtil - $CellContext`CWtil)
|
---|
4005 | Pi $CellContext`sw^2 (-1 + $CellContext`sw^2) FeynRules`FV[1,
|
---|
4006 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
|
---|
4007 | FeynRules`FV[3,
|
---|
4008 | FeynRules`Index[
|
---|
4009 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP,
|
---|
4010 | 1}, {$CellContext`Z, 2}, {$CellContext`Z, 3}}, Complex[0,
|
---|
4011 | Rational[-1, 8]] $CellContext`cw^(-1) $CellContext`fa^(-1)
|
---|
4012 | Pi^(-1) $CellContext`sw^(-1) FeynRules`Eps[
|
---|
4013 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4014 | FeynRules`Ext[2]],
|
---|
4015 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4016 | FeynRules`Ext[3]],
|
---|
4017 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
4018 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (
|
---|
4019 | FeynRules`ee ($CellContext`C2 $CellContext`cw +
|
---|
4020 | 2 $CellContext`C7 $CellContext`cw - 2 $CellContext`C1 $CellContext`sw)
|
---|
4021 | FeynRules`FV[1,
|
---|
4022 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (
|
---|
4023 | FeynRules`FV[2,
|
---|
4024 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] -
|
---|
4025 | FeynRules`FV[3,
|
---|
4026 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]) +
|
---|
4027 | 16 $CellContext`cw
|
---|
4028 | Pi $CellContext`sw (-$CellContext`CWtil + (-$CellContext`CBtil + \
|
---|
4029 | $CellContext`CWtil) $CellContext`sw^2) (FeynRules`FV[2,
|
---|
4030 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
4031 | FeynRules`FV[3,
|
---|
4032 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
|
---|
4033 | FeynRules`FV[2,
|
---|
4034 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
|
---|
4035 | FeynRules`FV[3,
|
---|
4036 | FeynRules`Index[
|
---|
4037 | FeynRules`Lorentz, $CellContext`mu$2]]))}, {{{$CellContext`ALP,
|
---|
4038 | 1}, {FeynRules`G, 2}, {FeynRules`G, 3}, {
|
---|
4039 | FeynRules`G, 4}}, -$CellContext`CGtil $CellContext`fa^(-1) FeynRules`gs
|
---|
4040 | FeynRules`f[
|
---|
4041 | FeynRules`Index[FeynRules`Gluon,
|
---|
4042 | FeynRules`Ext[2]],
|
---|
4043 | FeynRules`Index[FeynRules`Gluon,
|
---|
4044 | FeynRules`Ext[3]],
|
---|
4045 | FeynRules`Index[FeynRules`Gluon,
|
---|
4046 | FeynRules`Ext[4]]] (FeynRules`Eps[
|
---|
4047 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4048 | FeynRules`Ext[2]],
|
---|
4049 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4050 | FeynRules`Ext[3]],
|
---|
4051 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4052 | FeynRules`Ext[4]],
|
---|
4053 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] (
|
---|
4054 | FeynRules`FV[2,
|
---|
4055 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
|
---|
4056 | FeynRules`FV[3,
|
---|
4057 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
|
---|
4058 | FeynRules`FV[4,
|
---|
4059 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]) +
|
---|
4060 | FeynRules`Eps[
|
---|
4061 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4062 | FeynRules`Ext[2]],
|
---|
4063 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4064 | FeynRules`Ext[3]],
|
---|
4065 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4066 | FeynRules`Ext[4]],
|
---|
4067 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
|
---|
4068 | FeynRules`FV[2,
|
---|
4069 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
|
---|
4070 | FeynRules`FV[3,
|
---|
4071 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
|
---|
4072 | FeynRules`FV[4,
|
---|
4073 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
|
---|
4074 | FeynRules`Eps[
|
---|
4075 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4076 | FeynRules`Ext[2]],
|
---|
4077 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4078 | FeynRules`Ext[3]],
|
---|
4079 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4080 | FeynRules`Ext[4]],
|
---|
4081 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] (
|
---|
4082 | FeynRules`FV[2,
|
---|
4083 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
|
---|
4084 | FeynRules`FV[3,
|
---|
4085 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
|
---|
4086 | FeynRules`FV[4,
|
---|
4087 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
|
---|
4088 | FeynRules`Eps[
|
---|
4089 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4090 | FeynRules`Ext[2]],
|
---|
4091 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4092 | FeynRules`Ext[3]],
|
---|
4093 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4094 | FeynRules`Ext[4]],
|
---|
4095 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
|
---|
4096 | FeynRules`FV[2,
|
---|
4097 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
|
---|
4098 | FeynRules`FV[3,
|
---|
4099 | FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
|
---|
4100 | FeynRules`FV[4,
|
---|
4101 | FeynRules`Index[
|
---|
4102 | FeynRules`Lorentz, $CellContext`\[Delta]1]]))}, \
|
---|
4103 | {{{$CellContext`dqbar, 1}, {$CellContext`dq, 2}, {$CellContext`ALP, 3}, {
|
---|
4104 | FeynRules`H, 4}}, Rational[-1, 4]
|
---|
4105 | 2^Rational[-1, 2] $CellContext`aD $CellContext`fa^(-1)
|
---|
4106 | Pi^(-2) $CellContext`vev^(-2) FeynRules`IndexDelta[
|
---|
4107 | FeynRules`Index[FeynRules`Colour,
|
---|
4108 | FeynRules`Ext[1]],
|
---|
4109 | FeynRules`Index[FeynRules`Colour,
|
---|
4110 | FeynRules`Ext[2]]] (
|
---|
4111 | 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
|
---|
4112 | FeynRules`SP[3, 3]) (Conjugate[
|
---|
4113 | $CellContext`CKM[
|
---|
4114 | FeynRules`Index[$CellContext`Generation,
|
---|
4115 | FeynRules`Ext[2]],
|
---|
4116 |
|
---|
4117 | FeynRules`Index[$CellContext`Generation, \
|
---|
4118 | $CellContext`Generation$1]]] Conjugate[
|
---|
4119 | $CellContext`yd[
|
---|
4120 | FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
|
---|
4121 | FeynRules`Index[$CellContext`Generation,
|
---|
4122 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
4123 | FeynRules`Index[FeynRules`Spin,
|
---|
4124 | FeynRules`Ext[1]],
|
---|
4125 | FeynRules`Index[FeynRules`Spin,
|
---|
4126 | FeynRules`Ext[2]]] - $CellContext`CKM[
|
---|
4127 | FeynRules`Index[$CellContext`Generation,
|
---|
4128 | FeynRules`Ext[1]],
|
---|
4129 | FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1]]
|
---|
4130 | FeynRules`ProjP[
|
---|
4131 | FeynRules`Index[FeynRules`Spin,
|
---|
4132 | FeynRules`Ext[1]],
|
---|
4133 | FeynRules`Index[FeynRules`Spin,
|
---|
4134 | FeynRules`Ext[2]]] $CellContext`yd[
|
---|
4135 | FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
|
---|
4136 | FeynRules`Index[$CellContext`Generation,
|
---|
4137 | FeynRules`Ext[2]]])}, {{{$CellContext`dqbar, 1}, {$CellContext`dq,
|
---|
4138 | 2}, {$CellContext`ALP, 3}}, Rational[-1, 8]
|
---|
4139 | 2^Rational[-1, 2] $CellContext`fa^(-1) Pi^(-2) $CellContext`vev^(-1)
|
---|
4140 | FeynRules`IndexDelta[
|
---|
4141 | FeynRules`Index[FeynRules`Colour,
|
---|
4142 | FeynRules`Ext[1]],
|
---|
4143 | FeynRules`Index[FeynRules`Colour,
|
---|
4144 | FeynRules`Ext[2]]] (
|
---|
4145 | 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
|
---|
4146 | FeynRules`SP[3, 3]) (Conjugate[
|
---|
4147 | $CellContext`CKM[
|
---|
4148 | FeynRules`Index[$CellContext`Generation,
|
---|
4149 | FeynRules`Ext[2]],
|
---|
4150 |
|
---|
4151 | FeynRules`Index[$CellContext`Generation, \
|
---|
4152 | $CellContext`Generation$1]]] Conjugate[
|
---|
4153 | $CellContext`yd[
|
---|
4154 | FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
|
---|
4155 | FeynRules`Index[$CellContext`Generation,
|
---|
4156 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
4157 | FeynRules`Index[FeynRules`Spin,
|
---|
4158 | FeynRules`Ext[1]],
|
---|
4159 | FeynRules`Index[FeynRules`Spin,
|
---|
4160 | FeynRules`Ext[2]]] - $CellContext`CKM[
|
---|
4161 | FeynRules`Index[$CellContext`Generation,
|
---|
4162 | FeynRules`Ext[1]],
|
---|
4163 | FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1]]
|
---|
4164 | FeynRules`ProjP[
|
---|
4165 | FeynRules`Index[FeynRules`Spin,
|
---|
4166 | FeynRules`Ext[1]],
|
---|
4167 | FeynRules`Index[FeynRules`Spin,
|
---|
4168 | FeynRules`Ext[2]]] $CellContext`yd[
|
---|
4169 | FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
|
---|
4170 | FeynRules`Index[$CellContext`Generation,
|
---|
4171 | FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
|
---|
4172 | FeynRules`l, 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}},
|
---|
4173 | Rational[-1, 4] 2^Rational[-1, 2] $CellContext`aL $CellContext`fa^(-1)
|
---|
4174 | Pi^(-2) $CellContext`vev^(-2) (
|
---|
4175 | 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
|
---|
4176 | FeynRules`SP[3, 3]) (Conjugate[
|
---|
4177 | $CellContext`yl[
|
---|
4178 | FeynRules`Index[$CellContext`Generation,
|
---|
4179 | FeynRules`Ext[2]],
|
---|
4180 | FeynRules`Index[$CellContext`Generation,
|
---|
4181 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
4182 | FeynRules`Index[FeynRules`Spin,
|
---|
4183 | FeynRules`Ext[1]],
|
---|
4184 | FeynRules`Index[FeynRules`Spin,
|
---|
4185 | FeynRules`Ext[2]]] - FeynRules`ProjP[
|
---|
4186 | FeynRules`Index[FeynRules`Spin,
|
---|
4187 | FeynRules`Ext[1]],
|
---|
4188 | FeynRules`Index[FeynRules`Spin,
|
---|
4189 | FeynRules`Ext[2]]] $CellContext`yl[
|
---|
4190 | FeynRules`Index[$CellContext`Generation,
|
---|
4191 | FeynRules`Ext[1]],
|
---|
4192 | FeynRules`Index[$CellContext`Generation,
|
---|
4193 | FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
|
---|
4194 | FeynRules`l, 2}, {$CellContext`ALP, 3}}, Rational[-1, 8]
|
---|
4195 | 2^Rational[-1, 2] $CellContext`fa^(-1)
|
---|
4196 | Pi^(-2) $CellContext`vev^(-1) (
|
---|
4197 | 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
|
---|
4198 | FeynRules`SP[3, 3]) (Conjugate[
|
---|
4199 | $CellContext`yl[
|
---|
4200 | FeynRules`Index[$CellContext`Generation,
|
---|
4201 | FeynRules`Ext[2]],
|
---|
4202 | FeynRules`Index[$CellContext`Generation,
|
---|
4203 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
4204 | FeynRules`Index[FeynRules`Spin,
|
---|
4205 | FeynRules`Ext[1]],
|
---|
4206 | FeynRules`Index[FeynRules`Spin,
|
---|
4207 | FeynRules`Ext[2]]] - FeynRules`ProjP[
|
---|
4208 | FeynRules`Index[FeynRules`Spin,
|
---|
4209 | FeynRules`Ext[1]],
|
---|
4210 | FeynRules`Index[FeynRules`Spin,
|
---|
4211 | FeynRules`Ext[2]]] $CellContext`yl[
|
---|
4212 | FeynRules`Index[$CellContext`Generation,
|
---|
4213 | FeynRules`Ext[1]],
|
---|
4214 | FeynRules`Index[$CellContext`Generation,
|
---|
4215 | FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
|
---|
4216 | 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}}, Rational[1, 4]
|
---|
4217 | 2^Rational[-1, 2] $CellContext`aU $CellContext`fa^(-1)
|
---|
4218 | Pi^(-2) $CellContext`vev^(-2) FeynRules`IndexDelta[
|
---|
4219 | FeynRules`Index[FeynRules`Colour,
|
---|
4220 | FeynRules`Ext[1]],
|
---|
4221 | FeynRules`Index[FeynRules`Colour,
|
---|
4222 | FeynRules`Ext[2]]] (
|
---|
4223 | 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
|
---|
4224 | FeynRules`SP[3, 3]) (Conjugate[
|
---|
4225 | $CellContext`yu[
|
---|
4226 | FeynRules`Index[$CellContext`Generation,
|
---|
4227 | FeynRules`Ext[2]],
|
---|
4228 | FeynRules`Index[$CellContext`Generation,
|
---|
4229 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
4230 | FeynRules`Index[FeynRules`Spin,
|
---|
4231 | FeynRules`Ext[1]],
|
---|
4232 | FeynRules`Index[FeynRules`Spin,
|
---|
4233 | FeynRules`Ext[2]]] - FeynRules`ProjP[
|
---|
4234 | FeynRules`Index[FeynRules`Spin,
|
---|
4235 | FeynRules`Ext[1]],
|
---|
4236 | FeynRules`Index[FeynRules`Spin,
|
---|
4237 | FeynRules`Ext[2]]] $CellContext`yu[
|
---|
4238 | FeynRules`Index[$CellContext`Generation,
|
---|
4239 | FeynRules`Ext[1]],
|
---|
4240 | FeynRules`Index[$CellContext`Generation,
|
---|
4241 | FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
|
---|
4242 | 2}, {$CellContext`ALP, 3}}, Rational[1, 8]
|
---|
4243 | 2^Rational[-1, 2] $CellContext`fa^(-1) Pi^(-2) $CellContext`vev^(-1)
|
---|
4244 | FeynRules`IndexDelta[
|
---|
4245 | FeynRules`Index[FeynRules`Colour,
|
---|
4246 | FeynRules`Ext[1]],
|
---|
4247 | FeynRules`Index[FeynRules`Colour,
|
---|
4248 | FeynRules`Ext[2]]] (
|
---|
4249 | 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
|
---|
4250 | FeynRules`SP[3, 3]) (Conjugate[
|
---|
4251 | $CellContext`yu[
|
---|
4252 | FeynRules`Index[$CellContext`Generation,
|
---|
4253 | FeynRules`Ext[2]],
|
---|
4254 | FeynRules`Index[$CellContext`Generation,
|
---|
4255 | FeynRules`Ext[1]]]] FeynRules`ProjM[
|
---|
4256 | FeynRules`Index[FeynRules`Spin,
|
---|
4257 | FeynRules`Ext[1]],
|
---|
4258 | FeynRules`Index[FeynRules`Spin,
|
---|
4259 | FeynRules`Ext[2]]] - FeynRules`ProjP[
|
---|
4260 | FeynRules`Index[FeynRules`Spin,
|
---|
4261 | FeynRules`Ext[1]],
|
---|
4262 | FeynRules`Index[FeynRules`Spin,
|
---|
4263 | FeynRules`Ext[2]]] $CellContext`yu[
|
---|
4264 | FeynRules`Index[$CellContext`Generation,
|
---|
4265 | FeynRules`Ext[1]],
|
---|
4266 | FeynRules`Index[$CellContext`Generation,
|
---|
4267 | FeynRules`Ext[2]]])}, {{{$CellContext`ALP, 1}, {FeynRules`H, 2}, {
|
---|
4268 | FeynRules`W, 3}, {$CellContext`Wbar, 4}}, Rational[-1, 8]
|
---|
4269 | FeynRules`ee $CellContext`fa^(-1)
|
---|
4270 | Pi^(-2) $CellContext`sw^(-2) $CellContext`vev^(-1) (FeynRules`FV[1,
|
---|
4271 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4272 | FeynRules`Ext[4]]] ($CellContext`a8 $CellContext`C8 FeynRules`ee
|
---|
4273 | FeynRules`FV[3,
|
---|
4274 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4275 | FeynRules`Ext[3]]] +
|
---|
4276 | 4 Pi $CellContext`sw ($CellContext`a10 $CellContext`C10
|
---|
4277 | FeynRules`FV[2,
|
---|
4278 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4279 | FeynRules`Ext[3]]] + $CellContext`a6 $CellContext`C6
|
---|
4280 | FeynRules`FV[4,
|
---|
4281 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4282 | FeynRules`Ext[3]]])) - FeynRules`FV[1,
|
---|
4283 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4284 | FeynRules`Ext[3]]] (
|
---|
4285 | 4 Pi $CellContext`sw ($CellContext`a10 $CellContext`C10 FeynRules`FV[2,
|
---|
4286 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4287 | FeynRules`Ext[4]]] + $CellContext`a6 $CellContext`C6
|
---|
4288 | FeynRules`FV[3,
|
---|
4289 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4290 | FeynRules`Ext[4]]]) + $CellContext`a8 $CellContext`C8
|
---|
4291 | FeynRules`ee FeynRules`FV[4,
|
---|
4292 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4293 | FeynRules`Ext[4]]]) +
|
---|
4294 | 2 Pi $CellContext`sw (
|
---|
4295 | Complex[0, -1] FeynRules`a2 $CellContext`C2 FeynRules`Eps[
|
---|
4296 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4297 | FeynRules`Ext[4]],
|
---|
4298 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4299 | FeynRules`Ext[3]],
|
---|
4300 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
4301 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
4302 | FeynRules`FV[1,
|
---|
4303 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (
|
---|
4304 | FeynRules`FV[3,
|
---|
4305 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] -
|
---|
4306 | FeynRules`FV[4,
|
---|
4307 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]) +
|
---|
4308 | 2 $CellContext`a6 $CellContext`C6 FeynRules`ME[
|
---|
4309 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4310 | FeynRules`Ext[3]],
|
---|
4311 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4312 | FeynRules`Ext[4]]] (FeynRules`SP[1, 3] - FeynRules`SP[
|
---|
4313 | 1, 4])))}, {{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {
|
---|
4314 | FeynRules`W, 3}, {$CellContext`Wbar, 4}}, Rational[1, 16]
|
---|
4315 | FeynRules`ee $CellContext`fa^(-1)
|
---|
4316 | Pi^(-2) $CellContext`sw^(-2) (
|
---|
4317 | Complex[0, -4] Pi $CellContext`sw FeynRules`Eps[
|
---|
4318 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4319 | FeynRules`Ext[1]],
|
---|
4320 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4321 | FeynRules`Ext[4]],
|
---|
4322 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4323 | FeynRules`Ext[3]],
|
---|
4324 | FeynRules`Index[
|
---|
4325 | FeynRules`Lorentz, $CellContext`mu$1]] (-$CellContext`C2
|
---|
4326 | FeynRules`ee FeynRules`FV[2,
|
---|
4327 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
4328 | 16 $CellContext`CWtil Pi $CellContext`sw (FeynRules`FV[1,
|
---|
4329 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
4330 | FeynRules`FV[3,
|
---|
4331 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
4332 | FeynRules`FV[4,
|
---|
4333 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]])) +
|
---|
4334 | FeynRules`ee ($CellContext`C8 FeynRules`ee - 4 $CellContext`C6
|
---|
4335 | Pi $CellContext`sw) (FeynRules`FV[2,
|
---|
4336 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4337 | FeynRules`Ext[4]]] FeynRules`ME[
|
---|
4338 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4339 | FeynRules`Ext[1]],
|
---|
4340 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4341 | FeynRules`Ext[3]]] + FeynRules`FV[2,
|
---|
4342 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4343 | FeynRules`Ext[3]]] FeynRules`ME[
|
---|
4344 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4345 | FeynRules`Ext[1]],
|
---|
4346 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4347 | FeynRules`Ext[4]]]) +
|
---|
4348 | 8 $CellContext`C6 FeynRules`ee Pi $CellContext`sw FeynRules`FV[2,
|
---|
4349 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4350 | FeynRules`Ext[1]]] FeynRules`ME[
|
---|
4351 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4352 | FeynRules`Ext[3]],
|
---|
4353 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4354 | FeynRules`Ext[4]]])}, {{{$CellContext`ALP, 1}, {
|
---|
4355 | FeynRules`W, 2}, {$CellContext`Wbar, 3}, {$CellContext`Z, 4}},
|
---|
4356 | Rational[1, 32] $CellContext`cw^(-1) FeynRules`ee $CellContext`fa^(-1)
|
---|
4357 | Pi^(-2) $CellContext`sw^(-3) (
|
---|
4358 | Complex[0, -4] Pi $CellContext`sw FeynRules`Eps[
|
---|
4359 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4360 | FeynRules`Ext[4]],
|
---|
4361 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4362 | FeynRules`Ext[2]],
|
---|
4363 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4364 | FeynRules`Ext[3]],
|
---|
4365 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (
|
---|
4366 | FeynRules`ee (3 $CellContext`C2 + 2 $CellContext`C7 -
|
---|
4367 | 2 $CellContext`C2 $CellContext`sw^2) FeynRules`FV[1,
|
---|
4368 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
4369 | 32 $CellContext`CWtil
|
---|
4370 | Pi $CellContext`sw (-1 + $CellContext`sw^2) (FeynRules`FV[2,
|
---|
4371 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
4372 | FeynRules`FV[3,
|
---|
4373 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
|
---|
4374 | FeynRules`FV[4,
|
---|
4375 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]])) +
|
---|
4376 | FeynRules`ee (
|
---|
4377 | 2 ($CellContext`C5 FeynRules`ee - 8 $CellContext`C6
|
---|
4378 | Pi $CellContext`sw (-1 + $CellContext`sw^2)) FeynRules`FV[1,
|
---|
4379 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4380 | FeynRules`Ext[4]]] FeynRules`ME[
|
---|
4381 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4382 | FeynRules`Ext[2]],
|
---|
4383 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4384 | FeynRules`Ext[3]]] + ($CellContext`C4 FeynRules`ee +
|
---|
4385 | 2 $CellContext`sw (-$CellContext`C8 FeynRules`ee $CellContext`sw +
|
---|
4386 | 4 $CellContext`C6 Pi (-1 + $CellContext`sw^2))) (FeynRules`FV[1,
|
---|
4387 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4388 | FeynRules`Ext[3]]] FeynRules`ME[
|
---|
4389 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4390 | FeynRules`Ext[2]],
|
---|
4391 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4392 | FeynRules`Ext[4]]] + FeynRules`FV[1,
|
---|
4393 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4394 | FeynRules`Ext[2]]] FeynRules`ME[
|
---|
4395 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4396 | FeynRules`Ext[3]],
|
---|
4397 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4398 | FeynRules`Ext[4]]])))}, {{{$CellContext`A,
|
---|
4399 | 1}, {$CellContext`ALP, 2}, {FeynRules`H, 3}, {$CellContext`Z, 4}},
|
---|
4400 | Complex[0,
|
---|
4401 | Rational[-1, 4]] $CellContext`cw^(-1)
|
---|
4402 | FeynRules`ee $CellContext`fa^(-1)
|
---|
4403 | Pi^(-1) $CellContext`sw^(-1) (
|
---|
4404 | 2 FeynRules`a1 $CellContext`C1 $CellContext`cw +
|
---|
4405 | FeynRules`a2 $CellContext`C2 $CellContext`sw +
|
---|
4406 | 2 $CellContext`a7 $CellContext`C7 $CellContext`sw) $CellContext`vev^(-1)
|
---|
4407 | FeynRules`Eps[
|
---|
4408 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4409 | FeynRules`Ext[1]],
|
---|
4410 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4411 | FeynRules`Ext[4]],
|
---|
4412 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
4413 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
4414 | FeynRules`FV[1,
|
---|
4415 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
4416 | FeynRules`FV[2,
|
---|
4417 | FeynRules`Index[
|
---|
4418 | FeynRules`Lorentz, $CellContext`mu$1]]}, {{{$CellContext`ALP, 1}, {
|
---|
4419 | FeynRules`H, 2}, {$CellContext`Z, 3}, {$CellContext`Z, 4}}, Complex[0,
|
---|
4420 | Rational[1, 4]] $CellContext`cw^(-1) FeynRules`ee $CellContext`fa^(-1)
|
---|
4421 | Pi^(-1) $CellContext`sw^(-1) (
|
---|
4422 | FeynRules`a2 $CellContext`C2 $CellContext`cw +
|
---|
4423 | 2 $CellContext`a7 $CellContext`C7 $CellContext`cw - 2
|
---|
4424 | FeynRules`a1 $CellContext`C1 $CellContext`sw) $CellContext`vev^(-1)
|
---|
4425 | FeynRules`Eps[
|
---|
4426 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4427 | FeynRules`Ext[3]],
|
---|
4428 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4429 | FeynRules`Ext[4]],
|
---|
4430 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
|
---|
4431 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
|
---|
4432 | FeynRules`FV[1,
|
---|
4433 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (-
|
---|
4434 | FeynRules`FV[3,
|
---|
4435 | FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] +
|
---|
4436 | FeynRules`FV[4,
|
---|
4437 | FeynRules`Index[
|
---|
4438 | FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP,
|
---|
4439 | 1}, {$CellContext`Z, 2}, {$CellContext`Z, 3}, {$CellContext`Z, 4}},
|
---|
4440 | Rational[1, 16] ($CellContext`C4 + $CellContext`C5 +
|
---|
4441 | 2 $CellContext`C9) $CellContext`cw^(-3)
|
---|
4442 | FeynRules`ee^3 $CellContext`fa^(-1)
|
---|
4443 | Pi^(-2) $CellContext`sw^(-3) (FeynRules`FV[1,
|
---|
4444 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4445 | FeynRules`Ext[4]]] FeynRules`ME[
|
---|
4446 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4447 | FeynRules`Ext[2]],
|
---|
4448 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4449 | FeynRules`Ext[3]]] + FeynRules`FV[1,
|
---|
4450 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4451 | FeynRules`Ext[3]]] FeynRules`ME[
|
---|
4452 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4453 | FeynRules`Ext[2]],
|
---|
4454 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4455 | FeynRules`Ext[4]]] + FeynRules`FV[1,
|
---|
4456 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4457 | FeynRules`Ext[2]]] FeynRules`ME[
|
---|
4458 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4459 | FeynRules`Ext[3]],
|
---|
4460 | FeynRules`Index[FeynRules`Lorentz,
|
---|
4461 | FeynRules`Ext[4]]])}}]]], "Output",
|
---|
4462 | CellChangeTimes->{{3.638614114774802*^9, 3.638614120544181*^9}, {
|
---|
4463 | 3.638614318695908*^9, 3.638614365439787*^9}, {3.638614433232692*^9,
|
---|
4464 | 3.638614464705694*^9}, 3.6386224388916407`*^9, 3.6386225007679977`*^9,
|
---|
4465 | 3.6386226973043947`*^9, 3.6386227333544188`*^9, 3.638623278409637*^9,
|
---|
4466 | 3.6386236952225227`*^9, 3.63862388459741*^9, 3.638681852154767*^9,
|
---|
4467 | 3.63868270965028*^9, 3.6386851562356977`*^9, 3.638686844261732*^9,
|
---|
4468 | 3.638700137162476*^9, 3.638702832337493*^9, 3.6387029349627132`*^9, {
|
---|
4469 | 3.638703100427805*^9, 3.6387031136888237`*^9}, {3.63870321256925*^9,
|
---|
4470 | 3.638703230424244*^9}, {3.638703278436899*^9, 3.638703292187565*^9},
|
---|
4471 | 3.6387033347871733`*^9, 3.638703390597958*^9, 3.638704548504233*^9,
|
---|
4472 | 3.638707599815777*^9, 3.638708193011647*^9, 3.638708294314163*^9,
|
---|
4473 | 3.638712328104225*^9, 3.638714899545281*^9, 3.6387158861274137`*^9, {
|
---|
4474 | 3.638716073530249*^9, 3.6387160868743467`*^9}, {3.63871612959566*^9,
|
---|
4475 | 3.638716213883053*^9}, 3.638768861462468*^9, 3.639820343194125*^9,
|
---|
4476 | 3.6415554721097116`*^9, 3.641556006389512*^9, 3.641556218296584*^9,
|
---|
4477 | 3.6415568954663677`*^9, 3.675577255235321*^9, 3.6755773956759577`*^9,
|
---|
4478 | 3.6761156287361507`*^9, 3.676199644982154*^9, {3.6761997657926407`*^9,
|
---|
4479 | 3.676199788244617*^9}, 3.676202161727428*^9, 3.676286259801929*^9,
|
---|
4480 | 3.676286831252707*^9, 3.676286963494295*^9, 3.7149005669550333`*^9}]
|
---|
4481 | }, Open ]]
|
---|
4482 | }, Closed]],
|
---|
4483 |
|
---|
4484 | Cell[CellGroupData[{
|
---|
4485 |
|
---|
4486 | Cell["Export to UFO", "Subsection",
|
---|
4487 | CellChangeTimes->{{3.638798084002553*^9, 3.6387980887087*^9}, {
|
---|
4488 | 3.7149007705746527`*^9, 3.7149007713720427`*^9}}],
|
---|
4489 |
|
---|
4490 | Cell[CellGroupData[{
|
---|
4491 |
|
---|
4492 | Cell[BoxData[
|
---|
4493 | RowBox[{"WriteUFO", "[",
|
---|
4494 | RowBox[{
|
---|
4495 | RowBox[{"LSM", "+", "LALP"}], ",",
|
---|
4496 | RowBox[{"MaxParticles", "\[Rule]", "4"}], ",", " ",
|
---|
4497 | RowBox[{"Output", "\[Rule]", "\"\<ALP_chiral_UFO\>\""}]}], "]"}]], "Input",\
|
---|
4498 |
|
---|
4499 | CellChangeTimes->{{3.638796268087139*^9, 3.638796293694366*^9}, {
|
---|
4500 | 3.676286245623457*^9, 3.676286247246126*^9}, {3.6943356972519197`*^9,
|
---|
4501 | 3.6943356990015907`*^9}, {3.714900494999193*^9, 3.714900536696802*^9}}],
|
---|
4502 |
|
---|
4503 | Cell[CellGroupData[{
|
---|
4504 |
|
---|
4505 | Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
|
---|
4506 | "Print",
|
---|
4507 | CellChangeTimes->{3.714900591927953*^9}],
|
---|
4508 |
|
---|
4509 | Cell[BoxData[
|
---|
4510 | StyleBox["\<\"Starting Feynman rule calculation.\"\>",
|
---|
4511 | StripOnInput->False,
|
---|
4512 | LineColor->RGBColor[1, 0.5, 0],
|
---|
4513 | FrontFaceColor->RGBColor[1, 0.5, 0],
|
---|
4514 | BackFaceColor->RGBColor[1, 0.5, 0],
|
---|
4515 | GraphicsColor->RGBColor[1, 0.5, 0],
|
---|
4516 | FontWeight->Bold,
|
---|
4517 | FontColor->RGBColor[1, 0.5, 0]]], "Print",
|
---|
4518 | CellChangeTimes->{3.714900592506741*^9}],
|
---|
4519 |
|
---|
4520 | Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
|
---|
4521 | CellChangeTimes->{3.714900592507815*^9}],
|
---|
4522 |
|
---|
4523 | Cell[BoxData[
|
---|
4524 | InterpretationBox[
|
---|
4525 | RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
|
---|
4526 | "\[InvisibleSpace]", "\<\" cores\"\>"}],
|
---|
4527 | SequenceForm["Expanding the indices over ", 2, " cores"],
|
---|
4528 | Editable->False]], "Print",
|
---|
4529 | CellChangeTimes->{3.714900592508318*^9}],
|
---|
4530 |
|
---|
4531 | Cell[BoxData["\<\"Collecting the different structures that enter the \
|
---|
4532 | vertex.\"\>"], "Print",
|
---|
4533 | CellChangeTimes->{3.714900608629657*^9}],
|
---|
4534 |
|
---|
4535 | Cell[BoxData[
|
---|
4536 | InterpretationBox[
|
---|
4537 | RowBox[{
|
---|
4538 | "58", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
|
---|
4539 | -> starting the computation: \"\>", "\[InvisibleSpace]",
|
---|
4540 | DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
|
---|
4541 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
4542 | "\[InvisibleSpace]", "58", "\[InvisibleSpace]", "\<\".\"\>"}],
|
---|
4543 | SequenceForm[
|
---|
4544 | 58, " possible non-zero vertices have been found -> starting the \
|
---|
4545 | computation: ",
|
---|
4546 | Dynamic[FeynRules`FR$FeynmanRules], " / ", 58, "."],
|
---|
4547 | Editable->False]], "Print",
|
---|
4548 | CellChangeTimes->{3.714900608708271*^9}],
|
---|
4549 |
|
---|
4550 | Cell[BoxData[
|
---|
4551 | InterpretationBox[
|
---|
4552 | RowBox[{"53", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
|
---|
4553 | SequenceForm[53, " vertices obtained."],
|
---|
4554 | Editable->False]], "Print",
|
---|
4555 | CellChangeTimes->{3.714900616841229*^9}],
|
---|
4556 |
|
---|
4557 | Cell[BoxData[
|
---|
4558 | InterpretationBox[
|
---|
4559 | RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
|
---|
4560 | "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" cores: \"\>",
|
---|
4561 | "\[InvisibleSpace]",
|
---|
4562 | DynamicBox[ToBoxes[FeynRules`FR$Count1, StandardForm],
|
---|
4563 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
4564 | "\[InvisibleSpace]", "53"}],
|
---|
4565 | SequenceForm[
|
---|
4566 | "Flavor expansion of the vertices distributed over ", 2, " cores: ",
|
---|
4567 | Dynamic[FeynRules`FR$Count1], " / ", 53],
|
---|
4568 | Editable->False]], "Print",
|
---|
4569 | CellChangeTimes->{3.714900618127434*^9}],
|
---|
4570 |
|
---|
4571 | Cell[BoxData["\<\" - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
|
---|
4572 | CellChangeTimes->{3.714900624975767*^9}],
|
---|
4573 |
|
---|
4574 | Cell[BoxData[
|
---|
4575 | StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
|
---|
4576 | decays: \"\>",
|
---|
4577 | StripOnInput->False,
|
---|
4578 | LineColor->RGBColor[1, 0.5, 0],
|
---|
4579 | FrontFaceColor->RGBColor[1, 0.5, 0],
|
---|
4580 | BackFaceColor->RGBColor[1, 0.5, 0],
|
---|
4581 | GraphicsColor->RGBColor[1, 0.5, 0],
|
---|
4582 | FontWeight->Bold,
|
---|
4583 | FontColor->RGBColor[1, 0.5, 0]]], "Print",
|
---|
4584 | CellChangeTimes->{3.7149006250032682`*^9}],
|
---|
4585 |
|
---|
4586 | Cell[BoxData[
|
---|
4587 | InterpretationBox[
|
---|
4588 | RowBox[{
|
---|
4589 | DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
|
---|
4590 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
4591 | "\[InvisibleSpace]", "70"}],
|
---|
4592 | SequenceForm[
|
---|
4593 | Dynamic[PRIVATE`mycounter], " / ", 70],
|
---|
4594 | Editable->False]], "Print",
|
---|
4595 | CellChangeTimes->{3.714900625010377*^9}],
|
---|
4596 |
|
---|
4597 | Cell[BoxData[
|
---|
4598 | InterpretationBox[
|
---|
4599 | RowBox[{"\<\"Squared matrix elent compute in \"\>", "\[InvisibleSpace]",
|
---|
4600 | "20.716`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
|
---|
4601 | SequenceForm["Squared matrix elent compute in ", 20.716, " seconds."],
|
---|
4602 | Editable->False]], "Print",
|
---|
4603 | CellChangeTimes->{3.714900682420899*^9}],
|
---|
4604 |
|
---|
4605 | Cell[BoxData[
|
---|
4606 | InterpretationBox[
|
---|
4607 | RowBox[{
|
---|
4608 | DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
|
---|
4609 | ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
|
---|
4610 | "\[InvisibleSpace]", "89"}],
|
---|
4611 | SequenceForm[
|
---|
4612 | Dynamic[PRIVATE`mycounter], " / ", 89],
|
---|
4613 | Editable->False]], "Print",
|
---|
4614 | CellChangeTimes->{3.714900682430378*^9}],
|
---|
4615 |
|
---|
4616 | Cell[BoxData[
|
---|
4617 | InterpretationBox[
|
---|
4618 | RowBox[{"\<\"Decay widths computed in \"\>", "\[InvisibleSpace]", "4.82`",
|
---|
4619 | "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
|
---|
4620 | SequenceForm["Decay widths computed in ", 4.82, " seconds."],
|
---|
4621 | Editable->False]], "Print",
|
---|
4622 | CellChangeTimes->{3.7149006884162073`*^9}],
|
---|
4623 |
|
---|
4624 | Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
|
---|
4625 | CellChangeTimes->{3.7149006884176807`*^9}],
|
---|
4626 |
|
---|
4627 | Cell[BoxData["\<\" - Splitting vertices into building blocks.\"\>"], \
|
---|
4628 | "Print",
|
---|
4629 | CellChangeTimes->{3.714900688859367*^9}],
|
---|
4630 |
|
---|
4631 | Cell[BoxData[
|
---|
4632 | InterpretationBox[
|
---|
4633 | RowBox[{"\<\"Splitting of vertices distributed over \"\>",
|
---|
4634 | "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
|
---|
4635 | SequenceForm["Splitting of vertices distributed over ", 2, " kernels."],
|
---|
4636 | Editable->False]], "Print",
|
---|
4637 | CellChangeTimes->{3.714900688951193*^9}],
|
---|
4638 |
|
---|
4639 | Cell[BoxData[
|
---|
4640 | InterpretationBox[
|
---|
4641 | RowBox[{"\<\" - Optimizing: \"\>", "\[InvisibleSpace]",
|
---|
4642 | DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
|
---|
4643 | ImageSizeCache->{24., {0., 9.}}], "\[InvisibleSpace]", "\<\"/\"\>",
|
---|
4644 | "\[InvisibleSpace]", "121", "\[InvisibleSpace]", "\<\" .\"\>"}],
|
---|
4645 | SequenceForm[" - Optimizing: ",
|
---|
4646 | Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 121, " ."],
|
---|
4647 | Editable->False]], "Print",
|
---|
4648 | CellChangeTimes->{3.71490069124506*^9}],
|
---|
4649 |
|
---|
4650 | Cell[BoxData["\<\" - Writing files.\"\>"], "Print",
|
---|
4651 | CellChangeTimes->{3.714900691465427*^9}],
|
---|
4652 |
|
---|
4653 | Cell[BoxData["\<\"Done!\"\>"], "Print",
|
---|
4654 | CellChangeTimes->{3.7149006929108877`*^9}]
|
---|
4655 | }, Open ]]
|
---|
4656 | }, Open ]]
|
---|
4657 | }, Closed]]
|
---|
4658 | }, Closed]]
|
---|
4659 | }, Open ]]
|
---|
4660 | },
|
---|
4661 | WindowSize->{1149, 1028},
|
---|
4662 | WindowMargins->{{Automatic, 322}, {-123, Automatic}},
|
---|
4663 | PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}},
|
---|
4664 | ShowSelection->True,
|
---|
4665 | FrontEndVersion->"11.0 for Linux x86 (64-bit) (September 21, 2016)",
|
---|
4666 | StyleDefinitions->"Default.nb"
|
---|
4667 | ]
|
---|
4668 | (* End of Notebook Content *)
|
---|
4669 |
|
---|
4670 | (* Internal cache information *)
|
---|
4671 | (*CellTagsOutline
|
---|
4672 | CellTagsIndex->{}
|
---|
4673 | *)
|
---|
4674 | (*CellTagsIndex
|
---|
4675 | CellTagsIndex->{}
|
---|
4676 | *)
|
---|
4677 | (*NotebookFileOutline
|
---|
4678 | Notebook[{
|
---|
4679 | Cell[CellGroupData[{
|
---|
4680 | Cell[567, 22, 173, 2, 66, "Chapter"],
|
---|
4681 | Cell[743, 26, 506, 14, 209, "Text"],
|
---|
4682 | Cell[1252, 42, 991, 16, 159, "Text"],
|
---|
4683 | Cell[CellGroupData[{
|
---|
4684 | Cell[2268, 62, 212, 3, 65, "Section"],
|
---|
4685 | Cell[2483, 67, 1183, 20, 78, "Input"]
|
---|
4686 | }, Open ]],
|
---|
4687 | Cell[CellGroupData[{
|
---|
4688 | Cell[3703, 92, 301, 4, 65, "Section"],
|
---|
4689 | Cell[CellGroupData[{
|
---|
4690 | Cell[4029, 100, 1690, 29, 58, "Input"],
|
---|
4691 | Cell[CellGroupData[{
|
---|
4692 | Cell[5744, 133, 327, 4, 24, "Print"],
|
---|
4693 | Cell[6074, 139, 345, 4, 24, "Print"],
|
---|
4694 | Cell[6422, 145, 380, 5, 26, "Print"],
|
---|
4695 | Cell[6805, 152, 447, 8, 24, "Print"],
|
---|
4696 | Cell[7255, 162, 318, 4, 24, "Print"],
|
---|
4697 | Cell[7576, 168, 321, 4, 24, "Print"],
|
---|
4698 | Cell[7900, 174, 350, 4, 24, "Print"],
|
---|
4699 | Cell[8253, 180, 352, 5, 26, "Print"],
|
---|
4700 | Cell[8608, 187, 305, 4, 24, "Print"],
|
---|
4701 | Cell[8916, 193, 334, 4, 24, "Print"],
|
---|
4702 | Cell[9253, 199, 338, 4, 24, "Print"],
|
---|
4703 | Cell[9594, 205, 336, 4, 24, "Print"],
|
---|
4704 | Cell[9933, 211, 509, 9, 45, "Print"]
|
---|
4705 | }, Open ]]
|
---|
4706 | }, Open ]],
|
---|
4707 | Cell[CellGroupData[{
|
---|
4708 | Cell[10491, 226, 203, 3, 45, "Subsection"],
|
---|
4709 | Cell[CellGroupData[{
|
---|
4710 | Cell[10719, 233, 628, 13, 34, "Input"],
|
---|
4711 | Cell[CellGroupData[{
|
---|
4712 | Cell[11372, 250, 1225, 21, 24, "Print"],
|
---|
4713 | Cell[12600, 273, 982, 13, 24, "Print"],
|
---|
4714 | Cell[13585, 288, 1161, 18, 24, "Print"],
|
---|
4715 | Cell[14749, 308, 1204, 19, 24, "Print"],
|
---|
4716 | Cell[15956, 329, 1013, 14, 24, "Print"],
|
---|
4717 | Cell[16972, 345, 1494, 25, 24, "Print"],
|
---|
4718 | Cell[18469, 372, 1095, 17, 24, "Print"]
|
---|
4719 | }, Open ]]
|
---|
4720 | }, Open ]],
|
---|
4721 | Cell[CellGroupData[{
|
---|
4722 | Cell[19613, 395, 1267, 24, 36, "Input"],
|
---|
4723 | Cell[20883, 421, 43874, 1114, 834, "Output"]
|
---|
4724 | }, Open ]]
|
---|
4725 | }, Open ]],
|
---|
4726 | Cell[CellGroupData[{
|
---|
4727 | Cell[64806, 1541, 152, 2, 45, "Subsection"],
|
---|
4728 | Cell[CellGroupData[{
|
---|
4729 | Cell[64983, 1547, 494, 10, 34, "Input"],
|
---|
4730 | Cell[CellGroupData[{
|
---|
4731 | Cell[65502, 1561, 147, 2, 24, "Print"],
|
---|
4732 | Cell[65652, 1565, 372, 9, 24, "Print"],
|
---|
4733 | Cell[66027, 1576, 125, 1, 24, "Print"],
|
---|
4734 | Cell[66155, 1579, 309, 6, 24, "Print"],
|
---|
4735 | Cell[66467, 1587, 158, 2, 24, "Print"],
|
---|
4736 | Cell[66628, 1591, 639, 13, 24, "Print"],
|
---|
4737 | Cell[67270, 1606, 242, 5, 24, "Print"],
|
---|
4738 | Cell[67515, 1613, 594, 12, 24, "Print"],
|
---|
4739 | Cell[68112, 1627, 141, 1, 24, "Print"],
|
---|
4740 | Cell[68256, 1630, 406, 10, 24, "Print"],
|
---|
4741 | Cell[68665, 1642, 359, 9, 24, "Print"],
|
---|
4742 | Cell[69027, 1653, 332, 6, 24, "Print"],
|
---|
4743 | Cell[69362, 1661, 360, 9, 24, "Print"],
|
---|
4744 | Cell[69725, 1672, 317, 6, 24, "Print"],
|
---|
4745 | Cell[70045, 1680, 122, 1, 24, "Print"],
|
---|
4746 | Cell[70170, 1683, 146, 2, 24, "Print"],
|
---|
4747 | Cell[70319, 1687, 336, 6, 24, "Print"],
|
---|
4748 | Cell[70658, 1695, 496, 9, 24, "Print"],
|
---|
4749 | Cell[71157, 1706, 118, 1, 24, "Print"],
|
---|
4750 | Cell[71278, 1709, 103, 1, 24, "Print"]
|
---|
4751 | }, Open ]]
|
---|
4752 | }, Open ]]
|
---|
4753 | }, Open ]]
|
---|
4754 | }, Closed]],
|
---|
4755 | Cell[CellGroupData[{
|
---|
4756 | Cell[71454, 1718, 250, 3, 51, "Section"],
|
---|
4757 | Cell[CellGroupData[{
|
---|
4758 | Cell[71729, 1725, 1638, 28, 58, "Input"],
|
---|
4759 | Cell[CellGroupData[{
|
---|
4760 | Cell[73392, 1757, 283, 4, 24, "Print"],
|
---|
4761 | Cell[73678, 1763, 299, 4, 24, "Print"],
|
---|
4762 | Cell[73980, 1769, 334, 5, 26, "Print"],
|
---|
4763 | Cell[74317, 1776, 401, 8, 24, "Print"],
|
---|
4764 | Cell[74721, 1786, 270, 4, 24, "Print"],
|
---|
4765 | Cell[74994, 1792, 275, 4, 24, "Print"],
|
---|
4766 | Cell[75272, 1798, 304, 4, 24, "Print"],
|
---|
4767 | Cell[75579, 1804, 307, 5, 26, "Print"],
|
---|
4768 | Cell[75889, 1811, 259, 4, 24, "Print"],
|
---|
4769 | Cell[76151, 1817, 289, 4, 24, "Print"],
|
---|
4770 | Cell[76443, 1823, 292, 4, 24, "Print"],
|
---|
4771 | Cell[76738, 1829, 292, 4, 24, "Print"],
|
---|
4772 | Cell[77033, 1835, 463, 9, 45, "Print"]
|
---|
4773 | }, Open ]]
|
---|
4774 | }, Open ]],
|
---|
4775 | Cell[CellGroupData[{
|
---|
4776 | Cell[77545, 1850, 203, 3, 45, "Subsection"],
|
---|
4777 | Cell[CellGroupData[{
|
---|
4778 | Cell[77773, 1857, 628, 13, 34, "Input"],
|
---|
4779 | Cell[CellGroupData[{
|
---|
4780 | Cell[78426, 1874, 1203, 21, 24, "Print"],
|
---|
4781 | Cell[79632, 1897, 961, 13, 24, "Print"],
|
---|
4782 | Cell[80596, 1912, 1143, 18, 24, "Print"],
|
---|
4783 | Cell[81742, 1932, 1185, 19, 24, "Print"],
|
---|
4784 | Cell[82930, 1953, 994, 14, 24, "Print"],
|
---|
4785 | Cell[83927, 1969, 1474, 25, 24, "Print"],
|
---|
4786 | Cell[85404, 1996, 1076, 17, 24, "Print"]
|
---|
4787 | }, Open ]]
|
---|
4788 | }, Open ]],
|
---|
4789 | Cell[CellGroupData[{
|
---|
4790 | Cell[86529, 2019, 1267, 24, 36, "Input"],
|
---|
4791 | Cell[87799, 2045, 98371, 2434, 1292, "Output"]
|
---|
4792 | }, Open ]]
|
---|
4793 | }, Closed]],
|
---|
4794 | Cell[CellGroupData[{
|
---|
4795 | Cell[186219, 4485, 152, 2, 37, "Subsection"],
|
---|
4796 | Cell[CellGroupData[{
|
---|
4797 | Cell[186396, 4491, 441, 9, 34, "Input"],
|
---|
4798 | Cell[CellGroupData[{
|
---|
4799 | Cell[186862, 4504, 125, 2, 24, "Print"],
|
---|
4800 | Cell[186990, 4508, 348, 9, 24, "Print"],
|
---|
4801 | Cell[187341, 4519, 103, 1, 24, "Print"],
|
---|
4802 | Cell[187447, 4522, 285, 6, 24, "Print"],
|
---|
4803 | Cell[187735, 4530, 136, 2, 24, "Print"],
|
---|
4804 | Cell[187874, 4534, 617, 13, 24, "Print"],
|
---|
4805 | Cell[188494, 4549, 218, 5, 24, "Print"],
|
---|
4806 | Cell[188715, 4556, 572, 12, 24, "Print"],
|
---|
4807 | Cell[189290, 4570, 117, 1, 24, "Print"],
|
---|
4808 | Cell[189410, 4573, 386, 10, 24, "Print"],
|
---|
4809 | Cell[189799, 4585, 338, 9, 24, "Print"],
|
---|
4810 | Cell[190140, 4596, 312, 6, 24, "Print"],
|
---|
4811 | Cell[190455, 4604, 338, 9, 24, "Print"],
|
---|
4812 | Cell[190796, 4615, 296, 6, 24, "Print"],
|
---|
4813 | Cell[191095, 4623, 102, 1, 24, "Print"],
|
---|
4814 | Cell[191200, 4626, 124, 2, 24, "Print"],
|
---|
4815 | Cell[191327, 4630, 315, 6, 24, "Print"],
|
---|
4816 | Cell[191645, 4638, 473, 9, 24, "Print"],
|
---|
4817 | Cell[192121, 4649, 96, 1, 24, "Print"],
|
---|
4818 | Cell[192220, 4652, 83, 1, 24, "Print"]
|
---|
4819 | }, Open ]]
|
---|
4820 | }, Open ]]
|
---|
4821 | }, Closed]]
|
---|
4822 | }, Closed]]
|
---|
4823 | }, Open ]]
|
---|
4824 | }
|
---|
4825 | ]
|
---|
4826 | *)
|
---|
4827 |
|
---|