ALPsEFT: ALPs_EFT.nb

File ALPs_EFT.nb, 193.0 KB (added by Ilaria Brivio, 7 years ago)
Line 
1(* Content-type: application/mathematica *)
2
3(*** Wolfram Notebook File ***)
4(* http://www.wolfram.com/nb *)
5
6(* CreatedBy='Mathematica 6.0' *)
7
8(*CacheID: 234*)
9(* Internal cache information:
10NotebookFileLineBreakTest
11NotebookFileLineBreakTest
12NotebookDataPosition[ 145, 7]
13NotebookDataLength[ 197498, 4819]
14NotebookOptionsPosition[ 192367, 4660]
15NotebookOutlinePosition[ 192810, 4677]
16CellTagsIndexPosition[ 192767, 4674]
17WindowFrame->Normal*)
18
19(* Beginning of Notebook Content *)
20Notebook[{
21
22Cell[CellGroupData[{
23Cell["Demo notebook for the ALPs EFT models", "Chapter",
24 CellChangeTimes->{{3.714472665588029*^9, 3.714472689729048*^9}, {
25 3.714899887219674*^9, 3.7148998914966784`*^9}}],
26
27Cell["\<\
28Effective field theories for a light ALP particle adopted in 1701.05379.
29
30Contains two models:
31
32ALP_linear - linear EFT (section 2)
33ALP_chiral - chiral EFT (section 3)
34
35The models only contain the ALP field and Lagrangian, so they must be loaded \
36besides the SM.
37\
38\>", "Text",
39 CellChangeTimes->{{3.7149005914889593`*^9, 3.714900592898365*^9}, {
40 3.714900686180849*^9, 3.714900749569977*^9}, {3.7149010364554167`*^9,
41 3.714901156363299*^9}, {3.7149012109755774`*^9, 3.714901221896302*^9}}],
42
43Cell[TextData[{
44 StyleBox["Lagrangians defined ",
45 FontVariations->{"Underline"->True}],
46 "\n\nLSM - SM Lagrangian\nLAlp0 - Leading ALP Lagrangian. Contains ALP mass \
47and kinetic term.\nLAlp1 - Higher order terms in the ALP Lagrangian. Contains \
48all the effective operators\nLALP - LAlp0 + LAlp1"
49}], "Text",
50 CellChangeTimes->{{3.696239302643662*^9, 3.6962395961998587`*^9}, {
51 3.6962426279211273`*^9, 3.6962426382382174`*^9}, {3.69624269955401*^9,
52 3.696242713138926*^9}, {3.697464963087976*^9, 3.697464974471815*^9}, {
53 3.697781321319046*^9, 3.697781411435602*^9}, {3.697781761740079*^9,
54 3.697781762068541*^9}, 3.7074035932516823`*^9, {3.714027372165451*^9,
55 3.714027386105159*^9}, {3.714037377699317*^9, 3.7140373790930023`*^9}, {
56 3.714472728601252*^9, 3.7144729472637987`*^9}, {3.714474312375147*^9,
57 3.7144743155330887`*^9}, {3.714474392406591*^9, 3.714474503350297*^9}, {
58 3.714901264631907*^9, 3.714901383884622*^9}},
59 Background->RGBColor[0.94, 0.91, 0.88]],
60
61Cell[CellGroupData[{
62
63Cell["FeynRules initialization", "Section",
64 CellChangeTimes->{{3.696241144773179*^9, 3.696241150440773*^9}, {
65 3.6965809461276217`*^9, 3.6965809488385057`*^9}, {3.7144743309076147`*^9,
66 3.71447433315618*^9}}],
67
68Cell[BoxData[{
69 RowBox[{"$FeynRulesPath", "=",
70 RowBox[{
71 "SetDirectory", "[", "\"\<-----/feynrules-current/\>\"",
72 "]"}]}], "\[IndentingNewLine]",
73 RowBox[{"<<", "FeynRules`"}], "\[IndentingNewLine]",
74 RowBox[{
75 RowBox[{"SetDirectory", "[",
76 RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]}], "Input",
77 CellChangeTimes->{{3.41265862251538*^9, 3.412658649947229*^9}, {
78 3.423415585782702*^9, 3.423415597189939*^9}, {3.4234163173467493`*^9,
79 3.4234163227881193`*^9}, {3.569593920256028*^9, 3.5695939561647587`*^9}, {
80 3.633429030562295*^9, 3.6334290416321917`*^9}, 3.633429072465761*^9, {
81 3.635234890077219*^9, 3.6352349006796503`*^9}, {3.638618091550831*^9,
82 3.638618091841796*^9}, {3.6386187643019457`*^9, 3.638618764970313*^9}, {
83 3.638620435812201*^9, 3.6386204366894207`*^9}, {3.638623211106428*^9,
84 3.638623212908428*^9}, {3.638712295761613*^9, 3.6387122976840363`*^9}, {
85 3.638877760050136*^9, 3.6388777607355757`*^9}, 3.675576332946599*^9, {
86 3.6761099093380632`*^9, 3.676109922535201*^9}, 3.68648945229902*^9,
87 3.694262296773966*^9, {3.71490017175248*^9, 3.7149001719624357`*^9}, {
88 3.7149013954837923`*^9, 3.714901396082449*^9}}]
89}, Open ]],
90
91Cell[CellGroupData[{
92
93Cell["ALP linear EFT", "Section",
94 CellChangeTimes->{{3.696241144773179*^9, 3.696241150440773*^9}, {
95 3.6965809461276217`*^9, 3.6965809488385057`*^9}, {3.7144743309076147`*^9,
96 3.71447433315618*^9}, {3.7148999134555597`*^9, 3.714899915627069*^9}, {
97 3.714900792676422*^9, 3.7149007933801117`*^9}}],
98
99Cell[CellGroupData[{
100
101Cell[BoxData[{
102 RowBox[{
103 RowBox[{"LoadModel", "[",
104 RowBox[{"\"\<SM.fr\>\"", ",", "\"\<alp_linear.fr\>\""}], "]"}],
105 ";"}], "\[IndentingNewLine]",
106 RowBox[{
107 RowBox[{"$Assumptions", "=",
108 RowBox[{
109 RowBox[{
110 SuperscriptBox["cw", "2"], "+",
111 SuperscriptBox["sw", "2"]}], "\[Equal]", "1"}]}], ";"}]}], "Input",
112 CellChangeTimes->{{3.419073170860696*^9, 3.419073182827229*^9}, {
113 3.5695939666521587`*^9, 3.569593975189637*^9}, {3.571998624557815*^9,
114 3.571998628157531*^9}, {3.5722426658955507`*^9, 3.5722426665661163`*^9}, {
115 3.57373494999842*^9, 3.573734950506782*^9}, {3.573738411070033*^9,
116 3.573738411475131*^9}, {3.581766296877213*^9, 3.5817662993035793`*^9}, {
117 3.582711295612512*^9, 3.582711304079101*^9}, {3.58271455619954*^9,
118 3.582714556539135*^9}, {3.5837271421921186`*^9, 3.5837271424321213`*^9}, {
119 3.624620697450859*^9, 3.6246207033691893`*^9}, {3.6334178673816833`*^9,
120 3.633417870423235*^9}, {3.635168745836775*^9, 3.635168746552165*^9}, {
121 3.635234921249031*^9, 3.6352349280391006`*^9}, {3.638611693959074*^9,
122 3.638611733478942*^9}, {3.638618101259109*^9, 3.638618101467348*^9},
123 3.63861936248402*^9, 3.638619484234972*^9, {3.638620679982355*^9,
124 3.638620680842409*^9}, {3.6386861262510643`*^9, 3.638686136772785*^9}, {
125 3.6415550100096617`*^9, 3.641555015231119*^9}, {3.676109930720601*^9,
126 3.6761099312888002`*^9}, {3.6761959551581984`*^9, 3.67619595753176*^9}, {
127 3.676196049763735*^9, 3.6761960518031893`*^9}, {3.71489982794697*^9,
128 3.714899828966436*^9}, {3.71490004046701*^9, 3.714900043136207*^9}, {
129 3.7149001684519243`*^9, 3.714900176622246*^9}, {3.714900801997252*^9,
130 3.7149008039924498`*^9}}],
131
132Cell[CellGroupData[{
133
134Cell[BoxData["\<\"Merging model-files...\"\>"], "Print",
135 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
136 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
137 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
138 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969187937*^9}],
139
140Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
141 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
142 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
143 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
144 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969211878*^9}],
145
146Cell[BoxData["\<\"I. Brivio, M.B. Gavela, L. Merlo, K. Mimasu, J.M. No, R. \
147del Rey, V. Sanz\"\>"], "Print",
148 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
149 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
150 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
151 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969213647*^9}],
152
153Cell[BoxData[
154 InterpretationBox[
155 RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"1\"\>"}],
156 SequenceForm["Model Version: ", "1"],
157 Editable->False]], "Print",
158 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
159 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
160 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
161 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969214779*^9}],
162
163Cell[BoxData["\<\"Please cite\"\>"], "Print",
164 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
165 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
166 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
167 3.7149001775995293`*^9, 3.714900805104293*^9, 3.7149009692156963`*^9}],
168
169Cell[BoxData["\<\"arXiv:1701.05379\"\>"], "Print",
170 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
171 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
172 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
173 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969216604*^9}],
174
175Cell[BoxData["\<\"https://feynrules.irmp.ucl.ac.be/wiki/ALPsEFT\"\>"], "Print",
176 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
177 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
178 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
179 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969217536*^9}],
180
181Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
182"Print",
183 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
184 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
185 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
186 3.7149001775995293`*^9, 3.714900805104293*^9, 3.71490096921843*^9}],
187
188Cell[BoxData["\<\"\"\>"], "Print",
189 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
190 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
191 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
192 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969219322*^9}],
193
194Cell[BoxData["\<\" - Loading particle classes.\"\>"], "Print",
195 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
196 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
197 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
198 3.7149001775995293`*^9, 3.714900805104293*^9, 3.71490096922018*^9}],
199
200Cell[BoxData["\<\" - Loading gauge group classes.\"\>"], "Print",
201 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
202 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
203 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
204 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969309099*^9}],
205
206Cell[BoxData["\<\" - Loading parameter classes.\"\>"], "Print",
207 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
208 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
209 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
210 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969311594*^9}],
211
212Cell[BoxData[
213 InterpretationBox[
214 RowBox[{"\<\"\\nModel \"\>", "\[InvisibleSpace]", "\<\"ALP_linear\"\>",
215 "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
216 SequenceForm["\nModel ", "ALP_linear", " loaded."],
217 Editable->False]], "Print",
218 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
219 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
220 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
221 3.7149001775995293`*^9, 3.714900805104293*^9, 3.714900969359498*^9}]
222}, Open ]]
223}, Open ]],
224
225Cell[CellGroupData[{
226
227Cell["Feynman rules", "Subsection",
228 CellChangeTimes->{{3.638612958456888*^9, 3.638612964903018*^9}, {
229 3.641555437690887*^9, 3.6415554385930634`*^9}, {3.714900458407517*^9,
230 3.7149004631939707`*^9}}],
231
232Cell[CellGroupData[{
233
234Cell[BoxData[
235 RowBox[{
236 RowBox[{"AlpFR", "=",
237 RowBox[{
238 RowBox[{"FeynmanRules", "[",
239 RowBox[{"LALP", ",",
240 RowBox[{"MaxParticles", "\[Rule]", "4"}]}], "]"}], "//", "Simplify"}]}],
241 ";"}]], "Input",
242 CellChangeTimes->{{3.638612399979039*^9, 3.638612438377034*^9}, {
243 3.6386128833730392`*^9, 3.638612887379834*^9}, {3.638613614059422*^9,
244 3.638613674285076*^9}, {3.638613735408643*^9, 3.6386137469743147`*^9}, {
245 3.638703969309166*^9, 3.63870398233029*^9}, {3.676198845702183*^9,
246 3.676198850854022*^9}, {3.6762862015383883`*^9, 3.676286202884295*^9}, {
247 3.714900437388975*^9, 3.714900439208026*^9}}],
248
249Cell[CellGroupData[{
250
251Cell[BoxData[
252 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
253 StripOnInput->False,
254 LineColor->RGBColor[1, 0.5, 0],
255 FrontFaceColor->RGBColor[1, 0.5, 0],
256 BackFaceColor->RGBColor[1, 0.5, 0],
257 GraphicsColor->RGBColor[1, 0.5, 0],
258 FontWeight->Bold,
259 FontColor->RGBColor[1, 0.5, 0]]], "Print",
260 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
261 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
262 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
263 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
264 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
265 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
266 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
267 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
268 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
269 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
270 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
271 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
272 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900976603509*^9}],
273
274Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
275 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
276 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
277 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
278 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
279 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
280 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
281 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
282 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
283 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
284 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
285 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
286 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
287 3.6762869143369417`*^9, 3.714900449903*^9, 3.7149009766042957`*^9}],
288
289Cell[BoxData[
290 InterpretationBox[
291 RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
292 "\[InvisibleSpace]", "\<\" cores\"\>"}],
293 SequenceForm["Expanding the indices over ", 2, " cores"],
294 Editable->False]], "Print",
295 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
296 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
297 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
298 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
299 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
300 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
301 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
302 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
303 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
304 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
305 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
306 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
307 3.6762869143369417`*^9, 3.714900449903*^9, 3.71490097660509*^9}],
308
309Cell[BoxData[
310 InterpretationBox[
311 RowBox[{"\<\"Neglecting all terms with more than \"\>",
312 "\[InvisibleSpace]", "\<\"4\"\>",
313 "\[InvisibleSpace]", "\<\" particles.\"\>"}],
314 SequenceForm["Neglecting all terms with more than ", "4", " particles."],
315 Editable->False]], "Print",
316 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
317 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
318 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
319 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
320 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
321 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
322 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
323 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
324 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
325 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
326 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
327 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
328 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900976638345*^9}],
329
330Cell[BoxData["\<\"Collecting the different structures that enter the \
331vertex.\"\>"], "Print",
332 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
333 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
334 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
335 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
336 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
337 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
338 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
339 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
340 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
341 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
342 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
343 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
344 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900980955859*^9}],
345
346Cell[BoxData[
347 InterpretationBox[
348 RowBox[{
349 "14", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
350-> starting the computation: \"\>", "\[InvisibleSpace]",
351 DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
352 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
353 "\[InvisibleSpace]", "14", "\[InvisibleSpace]", "\<\".\"\>"}],
354 SequenceForm[
355 14, " possible non-zero vertices have been found -> starting the \
356computation: ",
357 Dynamic[FeynRules`FR$FeynmanRules], " / ", 14, "."],
358 Editable->False]], "Print",
359 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
360 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
361 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
362 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
363 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
364 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
365 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
366 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
367 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
368 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
369 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
370 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
371 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900980995866*^9}],
372
373Cell[BoxData[
374 InterpretationBox[
375 RowBox[{"14", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
376 SequenceForm[14, " vertices obtained."],
377 Editable->False]], "Print",
378 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
379 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
380 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
381 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
382 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
383 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
384 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
385 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
386 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
387 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
388 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
389 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
390 3.6762869143369417`*^9, 3.714900449903*^9, 3.714900983120726*^9}]
391}, Open ]]
392}, Open ]],
393
394Cell[CellGroupData[{
395
396Cell[BoxData[
397 RowBox[{
398 RowBox[{"AlpFRSimp", "=",
399 RowBox[{
400 RowBox[{"AlpFR", "//", "Simplify"}], "//",
401 RowBox[{
402 RowBox[{"Collect", "[",
403 RowBox[{"#", ",",
404 RowBox[{"{",
405 SubscriptBox["\[Epsilon]", "_"], "}"}], ",", "FullSimplify"}], "]"}],
406 "&"}]}]}], ";",
407 RowBox[{"AlpFRSimp", "//", "TableForm"}]}]], "Input",
408 CellChangeTimes->{{3.638613750408924*^9, 3.638613917314427*^9}, {
409 3.6386139618919573`*^9, 3.6386140242555027`*^9}, {3.638614110850162*^9,
410 3.63861411992393*^9}, {3.6386142738449593`*^9, 3.638614464079233*^9}, {
411 3.638622495805666*^9, 3.6386224999713*^9}, {3.638622681020277*^9,
412 3.6386226879638844`*^9}, {3.638622722309443*^9, 3.6386227454282093`*^9}, {
413 3.638623669647767*^9, 3.638623670261174*^9}, 3.638682708207778*^9, {
414 3.638700133618009*^9, 3.638700136676296*^9}, {3.638702929466498*^9,
415 3.638702931898744*^9}, {3.6387030695743713`*^9, 3.6387031130558977`*^9}, {
416 3.638703151342684*^9, 3.638703247383995*^9}, {3.638703282975972*^9,
417 3.638703379857666*^9}, {3.6387160628081417`*^9, 3.638716079998055*^9}, {
418 3.638716121793007*^9, 3.638716206718704*^9}, {3.676115591639645*^9,
419 3.6761155983649282`*^9}, {3.676199742374304*^9, 3.676199767888208*^9},
420 3.676286209033051*^9}],
421
422Cell[BoxData[
423 InterpretationBox[GridBox[{
424 {GridBox[{
425 {"A", "1"},
426 {"A", "2"},
427 {"ALP", "3"}
428 },
429 GridBoxAlignment->{
430 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
431 "RowsIndexed" -> {}},
432 GridBoxSpacings->{"Columns" -> {
433 Offset[0.27999999999999997`], {
434 Offset[0.7]},
435 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
436 Offset[0.2], {
437 Offset[0.1]},
438 Offset[0.2]}, "RowsIndexed" -> {}}],
439 RowBox[{"-",
440 FractionBox[
441 RowBox[{"2", " ", "\[ImaginaryI]", " ",
442 RowBox[{"(",
443 RowBox[{
444 RowBox[{"-",
445 SubscriptBox["c",
446 OverscriptBox["B", "~"]]}], "+",
447 RowBox[{
448 RowBox[{"(",
449 RowBox[{
450 SubscriptBox["c",
451 OverscriptBox["B", "~"]], "-",
452 SubscriptBox["c",
453 OverscriptBox["W", "~"]]}], ")"}], " ",
454 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
455 SubscriptBox["\[Epsilon]",
456 RowBox[{
457 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
458 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "mu$1", ",", "mu$2"}]],
459 " ",
460 RowBox[{"(",
461 RowBox[{
462 RowBox[{
463 SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
464 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "-",
465 RowBox[{
466 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
467 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"]}]}], ")"}]}],
468 SubscriptBox["f", "a"]]}]},
469 {GridBox[{
470 {"ALP", "1"},
471 {"G", "2"},
472 {"G", "3"}
473 },
474 GridBoxAlignment->{
475 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
476 "RowsIndexed" -> {}},
477 GridBoxSpacings->{"Columns" -> {
478 Offset[0.27999999999999997`], {
479 Offset[0.7]},
480 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
481 Offset[0.2], {
482 Offset[0.1]},
483 Offset[0.2]}, "RowsIndexed" -> {}}],
484 FractionBox[
485 RowBox[{"\[ImaginaryI]", " ",
486 SubscriptBox["c",
487 OverscriptBox["G", "~"]], " ",
488 RowBox[{"(",
489 RowBox[{
490 RowBox[{
491 SubscriptBox["\[Epsilon]",
492 RowBox[{
493 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
494 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
495 "\[Beta]1"}]], " ",
496 RowBox[{"(",
497 RowBox[{
498 RowBox[{
499 SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
500 SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
501 RowBox[{
502 SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
503 SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}]}], ")"}]}],
504 "+",
505 RowBox[{
506 SubscriptBox["\[Epsilon]",
507 RowBox[{
508 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
509 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
510 "\[Beta]1"}]], " ",
511 RowBox[{"(",
512 RowBox[{
513 RowBox[{
514 RowBox[{"-",
515 SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"]}], " ",
516 SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}], "+",
517 RowBox[{
518 SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
519 SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}]}], ")"}]}],
520 "+",
521 RowBox[{
522 SubscriptBox["\[Epsilon]",
523 RowBox[{
524 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
525 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
526 "\[Delta]1"}]], " ",
527 RowBox[{"(",
528 RowBox[{
529 RowBox[{
530 SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
531 SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
532 RowBox[{
533 SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
534 SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}],
535 "+",
536 RowBox[{
537 SubscriptBox["\[Epsilon]",
538 RowBox[{
539 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
540 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
541 "\[Delta]1"}]], " ",
542 RowBox[{"(",
543 RowBox[{
544 RowBox[{
545 SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
546 SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}], "-",
547 RowBox[{
548 SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
549 SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}]}],
550 ")"}], " ",
551 SubscriptBox["\[Delta]",
552 RowBox[{
553 SubscriptBox["\<\"a\"\>", "2"], ",",
554 SubscriptBox["\<\"a\"\>", "3"]}]]}],
555 RowBox[{"2", " ",
556 SubscriptBox["f", "a"]}]]},
557 {GridBox[{
558 {"ALP", "1"},
559 {"W", "2"},
560 {
561 SuperscriptBox["W", "\[Dagger]"], "3"}
562 },
563 GridBoxAlignment->{
564 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
565 "RowsIndexed" -> {}},
566 GridBoxSpacings->{"Columns" -> {
567 Offset[0.27999999999999997`], {
568 Offset[0.7]},
569 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
570 Offset[0.2], {
571 Offset[0.1]},
572 Offset[0.2]}, "RowsIndexed" -> {}}],
573 FractionBox[
574 RowBox[{"2", " ", "\[ImaginaryI]", " ",
575 SubscriptBox["c",
576 OverscriptBox["W", "~"]], " ",
577 SubscriptBox["\[Epsilon]",
578 RowBox[{
579 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
580 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]], " ",
581 RowBox[{"(",
582 RowBox[{
583 RowBox[{
584 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
585 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
586 RowBox[{
587 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
588 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
589 SubscriptBox["f", "a"]]},
590 {GridBox[{
591 {"A", "1"},
592 {"ALP", "2"},
593 {"Z", "3"}
594 },
595 GridBoxAlignment->{
596 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
597 "RowsIndexed" -> {}},
598 GridBoxSpacings->{"Columns" -> {
599 Offset[0.27999999999999997`], {
600 Offset[0.7]},
601 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
602 Offset[0.2], {
603 Offset[0.1]},
604 Offset[0.2]}, "RowsIndexed" -> {}}],
605 FractionBox[
606 RowBox[{"2", " ", "\[ImaginaryI]", " ",
607 SubscriptBox["c", "w"], " ",
608 RowBox[{"(",
609 RowBox[{
610 SubscriptBox["c",
611 OverscriptBox["B", "~"]], "-",
612 SubscriptBox["c",
613 OverscriptBox["W", "~"]]}], ")"}], " ",
614 SubscriptBox["s", "w"], " ",
615 SubscriptBox["\[Epsilon]",
616 RowBox[{
617 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
618 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]], " ",
619 RowBox[{"(",
620 RowBox[{
621 RowBox[{
622 RowBox[{"-",
623 SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"]}], " ",
624 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "+",
625 RowBox[{
626 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
627 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
628 SubscriptBox["f", "a"]]},
629 {GridBox[{
630 {"ALP", "1"},
631 {"Z", "2"},
632 {"Z", "3"}
633 },
634 GridBoxAlignment->{
635 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
636 "RowsIndexed" -> {}},
637 GridBoxSpacings->{"Columns" -> {
638 Offset[0.27999999999999997`], {
639 Offset[0.7]},
640 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
641 Offset[0.2], {
642 Offset[0.1]},
643 Offset[0.2]}, "RowsIndexed" -> {}}],
644 RowBox[{"-",
645 FractionBox[
646 RowBox[{"2", " ", "\[ImaginaryI]", " ",
647 RowBox[{"(",
648 RowBox[{
649 RowBox[{"-",
650 SubscriptBox["c",
651 OverscriptBox["W", "~"]]}], "+",
652 RowBox[{
653 RowBox[{"(",
654 RowBox[{
655 RowBox[{"-",
656 SubscriptBox["c",
657 OverscriptBox["B", "~"]]}], "+",
658 SubscriptBox["c",
659 OverscriptBox["W", "~"]]}], ")"}], " ",
660 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
661 SubscriptBox["\[Epsilon]",
662 RowBox[{
663 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
664 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
665 " ",
666 RowBox[{"(",
667 RowBox[{
668 RowBox[{
669 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
670 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
671 RowBox[{
672 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
673 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
674 SubscriptBox["f", "a"]]}]},
675 {GridBox[{
676 {"ALP", "1"},
677 {"G", "2"},
678 {"G", "3"},
679 {"G", "4"}
680 },
681 GridBoxAlignment->{
682 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
683 "RowsIndexed" -> {}},
684 GridBoxSpacings->{"Columns" -> {
685 Offset[0.27999999999999997`], {
686 Offset[0.7]},
687 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
688 Offset[0.2], {
689 Offset[0.1]},
690 Offset[0.2]}, "RowsIndexed" -> {}}],
691 RowBox[{"-",
692 FractionBox[
693 RowBox[{
694 SubscriptBox["c",
695 OverscriptBox["G", "~"]], " ",
696 SubscriptBox["g", "s"], " ",
697 SubscriptBox["f",
698 RowBox[{
699 SubscriptBox["\<\"a\"\>", "2"], ",",
700 SubscriptBox["\<\"a\"\>", "3"], ",",
701 SubscriptBox["\<\"a\"\>", "4"]}]], " ",
702 RowBox[{"(",
703 RowBox[{
704 RowBox[{
705 SubscriptBox["\[Epsilon]",
706 RowBox[{
707 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
708 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
709 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Alpha]1"}]], " ",
710 RowBox[{"(",
711 RowBox[{
712 SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], "+",
713 SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"], "+",
714 SubsuperscriptBox["\<\"p\"\>", "4", "\[Alpha]1"]}], ")"}]}], "+",
715 RowBox[{
716 SubscriptBox["\[Epsilon]",
717 RowBox[{
718 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
719 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
720 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Beta]1"}]], " ",
721 RowBox[{"(",
722 RowBox[{
723 SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], "+",
724 SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"], "+",
725 SubsuperscriptBox["\<\"p\"\>", "4", "\[Beta]1"]}], ")"}]}], "+",
726
727 RowBox[{
728 SubscriptBox["\[Epsilon]",
729 RowBox[{
730 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
731 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
732 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Gamma]1"}]], " ",
733 RowBox[{"(",
734 RowBox[{
735 SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], "+",
736 SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"], "+",
737 SubsuperscriptBox["\<\"p\"\>", "4", "\[Gamma]1"]}], ")"}]}], "+",
738 RowBox[{
739 SubscriptBox["\[Epsilon]",
740 RowBox[{
741 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
742 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
743 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Delta]1"}]], " ",
744 RowBox[{"(",
745 RowBox[{
746 SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], "+",
747 SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"], "+",
748 SubsuperscriptBox["\<\"p\"\>", "4", "\[Delta]1"]}], ")"}]}]}],
749 ")"}]}],
750 SubscriptBox["f", "a"]]}]},
751 {GridBox[{
752 {
753 OverscriptBox["dq", "\<\"-\"\>"], "1"},
754 {"dq", "2"},
755 {"ALP", "3"},
756 {"H", "4"}
757 },
758 GridBoxAlignment->{
759 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
760 "RowsIndexed" -> {}},
761 GridBoxSpacings->{"Columns" -> {
762 Offset[0.27999999999999997`], {
763 Offset[0.7]},
764 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
765 Offset[0.2], {
766 Offset[0.1]},
767 Offset[0.2]}, "RowsIndexed" -> {}}],
768 FractionBox[
769 RowBox[{
770 SubscriptBox["c", "a\[Phi]"], " ",
771 SubscriptBox["\[Delta]",
772 RowBox[{
773 SubscriptBox["\<\"m\"\>", "1"], ",",
774 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
775 RowBox[{"(",
776 RowBox[{
777 RowBox[{
778 RowBox[{"-",
779 SubsuperscriptBox[
780 RowBox[{"(",
781 TemplateBox[{"y","d"},
782 "Superscript"], ")"}],
783 RowBox[{
784 SubscriptBox["\<\"f\"\>", "2"], ",",
785 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
786 SubscriptBox[
787 SubscriptBox["P", "\<\"-\"\>"],
788 RowBox[{
789 SubscriptBox["\<\"s\"\>", "1"], ",",
790 SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
791 RowBox[{
792 SubscriptBox[
793 SubscriptBox["P", "\<\"+\"\>"],
794 RowBox[{
795 SubscriptBox["\<\"s\"\>", "1"], ",",
796 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
797 SubscriptBox[
798 TemplateBox[{"y","d"},
799 "Superscript"],
800 RowBox[{
801 SubscriptBox["\<\"f\"\>", "1"], ",",
802 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
803 RowBox[{
804 SqrtBox["2"], " ",
805 SubscriptBox["f", "a"]}]]},
806 {GridBox[{
807 {
808 OverscriptBox["dq", "\<\"-\"\>"], "1"},
809 {"dq", "2"},
810 {"ALP", "3"}
811 },
812 GridBoxAlignment->{
813 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
814 "RowsIndexed" -> {}},
815 GridBoxSpacings->{"Columns" -> {
816 Offset[0.27999999999999997`], {
817 Offset[0.7]},
818 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
819 Offset[0.2], {
820 Offset[0.1]},
821 Offset[0.2]}, "RowsIndexed" -> {}}],
822 FractionBox[
823 RowBox[{
824 SubscriptBox["c", "a\[Phi]"], " ", "vev", " ",
825 SubscriptBox["\[Delta]",
826 RowBox[{
827 SubscriptBox["\<\"m\"\>", "1"], ",",
828 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
829 RowBox[{"(",
830 RowBox[{
831 RowBox[{
832 RowBox[{"-",
833 SubsuperscriptBox[
834 RowBox[{"(",
835 TemplateBox[{"y","d"},
836 "Superscript"], ")"}],
837 RowBox[{
838 SubscriptBox["\<\"f\"\>", "2"], ",",
839 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
840 SubscriptBox[
841 SubscriptBox["P", "\<\"-\"\>"],
842 RowBox[{
843 SubscriptBox["\<\"s\"\>", "1"], ",",
844 SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
845 RowBox[{
846 SubscriptBox[
847 SubscriptBox["P", "\<\"+\"\>"],
848 RowBox[{
849 SubscriptBox["\<\"s\"\>", "1"], ",",
850 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
851 SubscriptBox[
852 TemplateBox[{"y","d"},
853 "Superscript"],
854 RowBox[{
855 SubscriptBox["\<\"f\"\>", "1"], ",",
856 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
857 RowBox[{
858 SqrtBox["2"], " ",
859 SubscriptBox["f", "a"]}]]},
860 {GridBox[{
861 {
862 OverscriptBox["l", "\<\"-\"\>"], "1"},
863 {"l", "2"},
864 {"ALP", "3"},
865 {"H", "4"}
866 },
867 GridBoxAlignment->{
868 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
869 "RowsIndexed" -> {}},
870 GridBoxSpacings->{"Columns" -> {
871 Offset[0.27999999999999997`], {
872 Offset[0.7]},
873 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
874 Offset[0.2], {
875 Offset[0.1]},
876 Offset[0.2]}, "RowsIndexed" -> {}}],
877 FractionBox[
878 RowBox[{
879 SubscriptBox["c", "a\[Phi]"], " ",
880 RowBox[{"(",
881 RowBox[{
882 RowBox[{
883 RowBox[{"-",
884 SubsuperscriptBox[
885 RowBox[{"(",
886 TemplateBox[{"y","l"},
887 "Superscript"], ")"}],
888 RowBox[{
889 SubscriptBox["\<\"f\"\>", "2"], ",",
890 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
891 SubscriptBox[
892 SubscriptBox["P", "\<\"-\"\>"],
893 RowBox[{
894 SubscriptBox["\<\"s\"\>", "1"], ",",
895 SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
896 RowBox[{
897 SubscriptBox[
898 SubscriptBox["P", "\<\"+\"\>"],
899 RowBox[{
900 SubscriptBox["\<\"s\"\>", "1"], ",",
901 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
902 SubscriptBox[
903 TemplateBox[{"y","l"},
904 "Superscript"],
905 RowBox[{
906 SubscriptBox["\<\"f\"\>", "1"], ",",
907 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
908 RowBox[{
909 SqrtBox["2"], " ",
910 SubscriptBox["f", "a"]}]]},
911 {GridBox[{
912 {
913 OverscriptBox["l", "\<\"-\"\>"], "1"},
914 {"l", "2"},
915 {"ALP", "3"}
916 },
917 GridBoxAlignment->{
918 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
919 "RowsIndexed" -> {}},
920 GridBoxSpacings->{"Columns" -> {
921 Offset[0.27999999999999997`], {
922 Offset[0.7]},
923 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
924 Offset[0.2], {
925 Offset[0.1]},
926 Offset[0.2]}, "RowsIndexed" -> {}}],
927 FractionBox[
928 RowBox[{
929 SubscriptBox["c", "a\[Phi]"], " ", "vev", " ",
930 RowBox[{"(",
931 RowBox[{
932 RowBox[{
933 RowBox[{"-",
934 SubsuperscriptBox[
935 RowBox[{"(",
936 TemplateBox[{"y","l"},
937 "Superscript"], ")"}],
938 RowBox[{
939 SubscriptBox["\<\"f\"\>", "2"], ",",
940 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"]}], " ",
941 SubscriptBox[
942 SubscriptBox["P", "\<\"-\"\>"],
943 RowBox[{
944 SubscriptBox["\<\"s\"\>", "1"], ",",
945 SubscriptBox["\<\"s\"\>", "2"]}]]}], "+",
946 RowBox[{
947 SubscriptBox[
948 SubscriptBox["P", "\<\"+\"\>"],
949 RowBox[{
950 SubscriptBox["\<\"s\"\>", "1"], ",",
951 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
952 SubscriptBox[
953 TemplateBox[{"y","l"},
954 "Superscript"],
955 RowBox[{
956 SubscriptBox["\<\"f\"\>", "1"], ",",
957 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
958 RowBox[{
959 SqrtBox["2"], " ",
960 SubscriptBox["f", "a"]}]]},
961 {GridBox[{
962 {
963 OverscriptBox["uq", "\<\"-\"\>"], "1"},
964 {"uq", "2"},
965 {"ALP", "3"},
966 {"H", "4"}
967 },
968 GridBoxAlignment->{
969 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
970 "RowsIndexed" -> {}},
971 GridBoxSpacings->{"Columns" -> {
972 Offset[0.27999999999999997`], {
973 Offset[0.7]},
974 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
975 Offset[0.2], {
976 Offset[0.1]},
977 Offset[0.2]}, "RowsIndexed" -> {}}],
978 FractionBox[
979 RowBox[{
980 SubscriptBox["c", "a\[Phi]"], " ",
981 SubscriptBox["\[Delta]",
982 RowBox[{
983 SubscriptBox["\<\"m\"\>", "1"], ",",
984 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
985 RowBox[{"(",
986 RowBox[{
987 RowBox[{
988 SubsuperscriptBox[
989 RowBox[{"(",
990 TemplateBox[{"y","u"},
991 "Superscript"], ")"}],
992 RowBox[{
993 SubscriptBox["\<\"f\"\>", "2"], ",",
994 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
995 SubscriptBox[
996 SubscriptBox["P", "\<\"-\"\>"],
997 RowBox[{
998 SubscriptBox["\<\"s\"\>", "1"], ",",
999 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
1000 RowBox[{
1001 SubscriptBox[
1002 SubscriptBox["P", "\<\"+\"\>"],
1003 RowBox[{
1004 SubscriptBox["\<\"s\"\>", "1"], ",",
1005 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
1006 SubscriptBox[
1007 TemplateBox[{"y","u"},
1008 "Superscript"],
1009 RowBox[{
1010 SubscriptBox["\<\"f\"\>", "1"], ",",
1011 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
1012 RowBox[{
1013 SqrtBox["2"], " ",
1014 SubscriptBox["f", "a"]}]]},
1015 {GridBox[{
1016 {
1017 OverscriptBox["uq", "\<\"-\"\>"], "1"},
1018 {"uq", "2"},
1019 {"ALP", "3"}
1020 },
1021 GridBoxAlignment->{
1022 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
1023 "RowsIndexed" -> {}},
1024 GridBoxSpacings->{"Columns" -> {
1025 Offset[0.27999999999999997`], {
1026 Offset[0.7]},
1027 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
1028 Offset[0.2], {
1029 Offset[0.1]},
1030 Offset[0.2]}, "RowsIndexed" -> {}}],
1031 FractionBox[
1032 RowBox[{
1033 SubscriptBox["c", "a\[Phi]"], " ", "vev", " ",
1034 SubscriptBox["\[Delta]",
1035 RowBox[{
1036 SubscriptBox["\<\"m\"\>", "1"], ",",
1037 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
1038 RowBox[{"(",
1039 RowBox[{
1040 RowBox[{
1041 SubsuperscriptBox[
1042 RowBox[{"(",
1043 TemplateBox[{"y","u"},
1044 "Superscript"], ")"}],
1045 RowBox[{
1046 SubscriptBox["\<\"f\"\>", "2"], ",",
1047 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
1048 SubscriptBox[
1049 SubscriptBox["P", "\<\"-\"\>"],
1050 RowBox[{
1051 SubscriptBox["\<\"s\"\>", "1"], ",",
1052 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
1053 RowBox[{
1054 SubscriptBox[
1055 SubscriptBox["P", "\<\"+\"\>"],
1056 RowBox[{
1057 SubscriptBox["\<\"s\"\>", "1"], ",",
1058 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
1059 SubscriptBox[
1060 TemplateBox[{"y","u"},
1061 "Superscript"],
1062 RowBox[{
1063 SubscriptBox["\<\"f\"\>", "1"], ",",
1064 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
1065 RowBox[{
1066 SqrtBox["2"], " ",
1067 SubscriptBox["f", "a"]}]]},
1068 {GridBox[{
1069 {"A", "1"},
1070 {"ALP", "2"},
1071 {"W", "3"},
1072 {
1073 SuperscriptBox["W", "\[Dagger]"], "4"}
1074 },
1075 GridBoxAlignment->{
1076 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
1077 "RowsIndexed" -> {}},
1078 GridBoxSpacings->{"Columns" -> {
1079 Offset[0.27999999999999997`], {
1080 Offset[0.7]},
1081 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
1082 Offset[0.2], {
1083 Offset[0.1]},
1084 Offset[0.2]}, "RowsIndexed" -> {}}],
1085 RowBox[{"-",
1086 FractionBox[
1087 RowBox[{"4", " ", "\[ImaginaryI]", " ",
1088 SubscriptBox["c",
1089 OverscriptBox["W", "~"]], " ", "e", " ",
1090 SubscriptBox["\[Epsilon]",
1091 RowBox[{
1092 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
1093 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
1094 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
1095 RowBox[{"(",
1096 RowBox[{
1097 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], "+",
1098 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
1099 SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}],
1100 SubscriptBox["f", "a"]]}]},
1101 {GridBox[{
1102 {"ALP", "1"},
1103 {"W", "2"},
1104 {
1105 SuperscriptBox["W", "\[Dagger]"], "3"},
1106 {"Z", "4"}
1107 },
1108 GridBoxAlignment->{
1109 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
1110 "RowsIndexed" -> {}},
1111 GridBoxSpacings->{"Columns" -> {
1112 Offset[0.27999999999999997`], {
1113 Offset[0.7]},
1114 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
1115 Offset[0.2], {
1116 Offset[0.1]},
1117 Offset[0.2]}, "RowsIndexed" -> {}}],
1118 FractionBox[
1119 RowBox[{"4", " ", "\[ImaginaryI]", " ",
1120 SubscriptBox["c", "w"], " ",
1121 SubscriptBox["c",
1122 OverscriptBox["W", "~"]], " ", "e", " ",
1123 SubscriptBox["\[Epsilon]",
1124 RowBox[{
1125 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
1126 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
1127 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
1128 RowBox[{"(",
1129 RowBox[{
1130 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], "+",
1131 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
1132 SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}],
1133 RowBox[{
1134 SubscriptBox["f", "a"], " ",
1135 SubscriptBox["s", "w"]}]]}
1136 },
1137 GridBoxAlignment->{
1138 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
1139 "RowsIndexed" -> {}},
1140 GridBoxSpacings->{"Columns" -> {
1141 Offset[0.27999999999999997`], {
1142 Offset[2.0999999999999996`]},
1143 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
1144 Offset[0.2], {
1145 Offset[0.4]},
1146 Offset[0.2]}, "RowsIndexed" -> {}}],
1147 TableForm[{{{{$CellContext`A, 1}, {$CellContext`A, 2}, {$CellContext`ALP,
1148 3}}, Complex[
1149 0, -2] $CellContext`fa^(-1) (-$CellContext`CBtil + ($CellContext`CBtil - \
1150$CellContext`CWtil) $CellContext`sw^2) FeynRules`Eps[
1151 FeynRules`Index[FeynRules`Lorentz,
1152 FeynRules`Ext[1]],
1153 FeynRules`Index[FeynRules`Lorentz,
1154 FeynRules`Ext[2]],
1155 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
1156 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[1,
1157 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
1158 FeynRules`FV[2,
1159 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
1160 FeynRules`FV[1,
1161 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[2,
1162 FeynRules`Index[
1163 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP, 1}, {
1164 FeynRules`G, 2}, {FeynRules`G, 3}}, Complex[0,
1165 Rational[1, 2]] $CellContext`CGtil $CellContext`fa^(-1) (
1166 FeynRules`Eps[
1167 FeynRules`Index[FeynRules`Lorentz,
1168 FeynRules`Ext[2]],
1169 FeynRules`Index[FeynRules`Lorentz,
1170 FeynRules`Ext[3]],
1171 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
1172 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
1173 FeynRules`FV[2,
1174 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
1175 FeynRules`FV[3,
1176 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
1177 FeynRules`FV[2,
1178 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
1179 FeynRules`FV[3,
1180 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
1181 FeynRules`Eps[
1182 FeynRules`Index[FeynRules`Lorentz,
1183 FeynRules`Ext[2]],
1184 FeynRules`Index[FeynRules`Lorentz,
1185 FeynRules`Ext[3]],
1186 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
1187 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (-
1188 FeynRules`FV[2,
1189 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
1190 FeynRules`FV[3,
1191 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
1192 FeynRules`FV[2,
1193 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
1194 FeynRules`FV[3,
1195 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
1196 FeynRules`Eps[
1197 FeynRules`Index[FeynRules`Lorentz,
1198 FeynRules`Ext[2]],
1199 FeynRules`Index[FeynRules`Lorentz,
1200 FeynRules`Ext[3]],
1201 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
1202 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
1203 FeynRules`FV[2,
1204 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
1205 FeynRules`FV[3,
1206 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
1207 FeynRules`FV[2,
1208 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
1209 FeynRules`FV[3,
1210 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]) +
1211 FeynRules`Eps[
1212 FeynRules`Index[FeynRules`Lorentz,
1213 FeynRules`Ext[2]],
1214 FeynRules`Index[FeynRules`Lorentz,
1215 FeynRules`Ext[3]],
1216 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
1217 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
1218 FeynRules`FV[2,
1219 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
1220 FeynRules`FV[3,
1221 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] -
1222 FeynRules`FV[2,
1223 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
1224 FeynRules`FV[3,
1225 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]))
1226 FeynRules`IndexDelta[
1227 FeynRules`Index[FeynRules`Gluon,
1228 FeynRules`Ext[2]],
1229 FeynRules`Index[FeynRules`Gluon,
1230 FeynRules`Ext[3]]]}, {{{$CellContext`ALP, 1}, {
1231 FeynRules`W, 2}, {$CellContext`Wbar, 3}},
1232 Complex[0, 2] $CellContext`CWtil $CellContext`fa^(-1) FeynRules`Eps[
1233 FeynRules`Index[FeynRules`Lorentz,
1234 FeynRules`Ext[2]],
1235 FeynRules`Index[FeynRules`Lorentz,
1236 FeynRules`Ext[3]],
1237 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
1238 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[2,
1239 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
1240 FeynRules`FV[3,
1241 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
1242 FeynRules`FV[2,
1243 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[3,
1244 FeynRules`Index[
1245 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`A,
1246 1}, {$CellContext`ALP, 2}, {$CellContext`Z, 3}},
1247 Complex[0,
1248 2] $CellContext`cw ($CellContext`CBtil - $CellContext`CWtil) \
1249$CellContext`fa^(-1) $CellContext`sw FeynRules`Eps[
1250 FeynRules`Index[FeynRules`Lorentz,
1251 FeynRules`Ext[1]],
1252 FeynRules`Index[FeynRules`Lorentz,
1253 FeynRules`Ext[3]],
1254 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
1255 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (-
1256 FeynRules`FV[1,
1257 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
1258 FeynRules`FV[3,
1259 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
1260 FeynRules`FV[1,
1261 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
1262 FeynRules`FV[3,
1263 FeynRules`Index[
1264 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP,
1265 1}, {$CellContext`Z, 2}, {$CellContext`Z, 3}},
1266 Complex[0, -2] $CellContext`fa^(-1) (-$CellContext`CWtil + \
1267(-$CellContext`CBtil + $CellContext`CWtil) $CellContext`sw^2) FeynRules`Eps[
1268 FeynRules`Index[FeynRules`Lorentz,
1269 FeynRules`Ext[2]],
1270 FeynRules`Index[FeynRules`Lorentz,
1271 FeynRules`Ext[3]],
1272 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
1273 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[2,
1274 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
1275 FeynRules`FV[3,
1276 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
1277 FeynRules`FV[2,
1278 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[3,
1279 FeynRules`Index[
1280 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP, 1}, {
1281 FeynRules`G, 2}, {FeynRules`G, 3}, {
1282 FeynRules`G, 4}}, -$CellContext`CGtil $CellContext`fa^(-1) FeynRules`gs
1283 FeynRules`f[
1284 FeynRules`Index[FeynRules`Gluon,
1285 FeynRules`Ext[2]],
1286 FeynRules`Index[FeynRules`Gluon,
1287 FeynRules`Ext[3]],
1288 FeynRules`Index[FeynRules`Gluon,
1289 FeynRules`Ext[4]]] (FeynRules`Eps[
1290 FeynRules`Index[FeynRules`Lorentz,
1291 FeynRules`Ext[2]],
1292 FeynRules`Index[FeynRules`Lorentz,
1293 FeynRules`Ext[3]],
1294 FeynRules`Index[FeynRules`Lorentz,
1295 FeynRules`Ext[4]],
1296 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] (
1297 FeynRules`FV[2,
1298 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
1299 FeynRules`FV[3,
1300 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
1301 FeynRules`FV[4,
1302 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]) +
1303 FeynRules`Eps[
1304 FeynRules`Index[FeynRules`Lorentz,
1305 FeynRules`Ext[2]],
1306 FeynRules`Index[FeynRules`Lorentz,
1307 FeynRules`Ext[3]],
1308 FeynRules`Index[FeynRules`Lorentz,
1309 FeynRules`Ext[4]],
1310 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
1311 FeynRules`FV[2,
1312 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
1313 FeynRules`FV[3,
1314 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
1315 FeynRules`FV[4,
1316 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
1317 FeynRules`Eps[
1318 FeynRules`Index[FeynRules`Lorentz,
1319 FeynRules`Ext[2]],
1320 FeynRules`Index[FeynRules`Lorentz,
1321 FeynRules`Ext[3]],
1322 FeynRules`Index[FeynRules`Lorentz,
1323 FeynRules`Ext[4]],
1324 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] (
1325 FeynRules`FV[2,
1326 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
1327 FeynRules`FV[3,
1328 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
1329 FeynRules`FV[4,
1330 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
1331 FeynRules`Eps[
1332 FeynRules`Index[FeynRules`Lorentz,
1333 FeynRules`Ext[2]],
1334 FeynRules`Index[FeynRules`Lorentz,
1335 FeynRules`Ext[3]],
1336 FeynRules`Index[FeynRules`Lorentz,
1337 FeynRules`Ext[4]],
1338 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
1339 FeynRules`FV[2,
1340 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
1341 FeynRules`FV[3,
1342 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
1343 FeynRules`FV[4,
1344 FeynRules`Index[
1345 FeynRules`Lorentz, $CellContext`\[Delta]1]]))}, \
1346{{{$CellContext`dqbar, 1}, {$CellContext`dq, 2}, {$CellContext`ALP, 3}, {
1347 FeynRules`H, 4}},
1348 2^Rational[-1, 2] $CellContext`CaPhi $CellContext`fa^(-1)
1349 FeynRules`IndexDelta[
1350 FeynRules`Index[FeynRules`Colour,
1351 FeynRules`Ext[1]],
1352 FeynRules`Index[FeynRules`Colour,
1353 FeynRules`Ext[2]]] (-Conjugate[
1354 $CellContext`yd[
1355 FeynRules`Index[$CellContext`Generation,
1356 FeynRules`Ext[2]],
1357 FeynRules`Index[$CellContext`Generation,
1358 FeynRules`Ext[1]]]] FeynRules`ProjM[
1359 FeynRules`Index[FeynRules`Spin,
1360 FeynRules`Ext[1]],
1361 FeynRules`Index[FeynRules`Spin,
1362 FeynRules`Ext[2]]] + FeynRules`ProjP[
1363 FeynRules`Index[FeynRules`Spin,
1364 FeynRules`Ext[1]],
1365 FeynRules`Index[FeynRules`Spin,
1366 FeynRules`Ext[2]]] $CellContext`yd[
1367 FeynRules`Index[$CellContext`Generation,
1368 FeynRules`Ext[1]],
1369 FeynRules`Index[$CellContext`Generation,
1370 FeynRules`Ext[2]]])}, {{{$CellContext`dqbar, 1}, {$CellContext`dq,
1371 2}, {$CellContext`ALP, 3}},
1372 2^Rational[-1,
1373 2] $CellContext`CaPhi $CellContext`fa^(-1) $CellContext`vev
1374 FeynRules`IndexDelta[
1375 FeynRules`Index[FeynRules`Colour,
1376 FeynRules`Ext[1]],
1377 FeynRules`Index[FeynRules`Colour,
1378 FeynRules`Ext[2]]] (-Conjugate[
1379 $CellContext`yd[
1380 FeynRules`Index[$CellContext`Generation,
1381 FeynRules`Ext[2]],
1382 FeynRules`Index[$CellContext`Generation,
1383 FeynRules`Ext[1]]]] FeynRules`ProjM[
1384 FeynRules`Index[FeynRules`Spin,
1385 FeynRules`Ext[1]],
1386 FeynRules`Index[FeynRules`Spin,
1387 FeynRules`Ext[2]]] + FeynRules`ProjP[
1388 FeynRules`Index[FeynRules`Spin,
1389 FeynRules`Ext[1]],
1390 FeynRules`Index[FeynRules`Spin,
1391 FeynRules`Ext[2]]] $CellContext`yd[
1392 FeynRules`Index[$CellContext`Generation,
1393 FeynRules`Ext[1]],
1394 FeynRules`Index[$CellContext`Generation,
1395 FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
1396 FeynRules`l, 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}},
1397 2^Rational[-1, 2] $CellContext`CaPhi $CellContext`fa^(-1) (-Conjugate[
1398 $CellContext`yl[
1399 FeynRules`Index[$CellContext`Generation,
1400 FeynRules`Ext[2]],
1401 FeynRules`Index[$CellContext`Generation,
1402 FeynRules`Ext[1]]]] FeynRules`ProjM[
1403 FeynRules`Index[FeynRules`Spin,
1404 FeynRules`Ext[1]],
1405 FeynRules`Index[FeynRules`Spin,
1406 FeynRules`Ext[2]]] + FeynRules`ProjP[
1407 FeynRules`Index[FeynRules`Spin,
1408 FeynRules`Ext[1]],
1409 FeynRules`Index[FeynRules`Spin,
1410 FeynRules`Ext[2]]] $CellContext`yl[
1411 FeynRules`Index[$CellContext`Generation,
1412 FeynRules`Ext[1]],
1413 FeynRules`Index[$CellContext`Generation,
1414 FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
1415 FeynRules`l, 2}, {$CellContext`ALP, 3}},
1416 2^Rational[-1,
1417 2] $CellContext`CaPhi $CellContext`fa^(-1) $CellContext`vev (-
1418 Conjugate[
1419 $CellContext`yl[
1420 FeynRules`Index[$CellContext`Generation,
1421 FeynRules`Ext[2]],
1422 FeynRules`Index[$CellContext`Generation,
1423 FeynRules`Ext[1]]]] FeynRules`ProjM[
1424 FeynRules`Index[FeynRules`Spin,
1425 FeynRules`Ext[1]],
1426 FeynRules`Index[FeynRules`Spin,
1427 FeynRules`Ext[2]]] + FeynRules`ProjP[
1428 FeynRules`Index[FeynRules`Spin,
1429 FeynRules`Ext[1]],
1430 FeynRules`Index[FeynRules`Spin,
1431 FeynRules`Ext[2]]] $CellContext`yl[
1432 FeynRules`Index[$CellContext`Generation,
1433 FeynRules`Ext[1]],
1434 FeynRules`Index[$CellContext`Generation,
1435 FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
1436 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}},
1437 2^Rational[-1, 2] $CellContext`CaPhi $CellContext`fa^(-1)
1438 FeynRules`IndexDelta[
1439 FeynRules`Index[FeynRules`Colour,
1440 FeynRules`Ext[1]],
1441 FeynRules`Index[FeynRules`Colour,
1442 FeynRules`Ext[2]]] (Conjugate[
1443 $CellContext`yu[
1444 FeynRules`Index[$CellContext`Generation,
1445 FeynRules`Ext[2]],
1446 FeynRules`Index[$CellContext`Generation,
1447 FeynRules`Ext[1]]]] FeynRules`ProjM[
1448 FeynRules`Index[FeynRules`Spin,
1449 FeynRules`Ext[1]],
1450 FeynRules`Index[FeynRules`Spin,
1451 FeynRules`Ext[2]]] - FeynRules`ProjP[
1452 FeynRules`Index[FeynRules`Spin,
1453 FeynRules`Ext[1]],
1454 FeynRules`Index[FeynRules`Spin,
1455 FeynRules`Ext[2]]] $CellContext`yu[
1456 FeynRules`Index[$CellContext`Generation,
1457 FeynRules`Ext[1]],
1458 FeynRules`Index[$CellContext`Generation,
1459 FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
1460 2}, {$CellContext`ALP, 3}},
1461 2^Rational[-1,
1462 2] $CellContext`CaPhi $CellContext`fa^(-1) $CellContext`vev
1463 FeynRules`IndexDelta[
1464 FeynRules`Index[FeynRules`Colour,
1465 FeynRules`Ext[1]],
1466 FeynRules`Index[FeynRules`Colour,
1467 FeynRules`Ext[2]]] (Conjugate[
1468 $CellContext`yu[
1469 FeynRules`Index[$CellContext`Generation,
1470 FeynRules`Ext[2]],
1471 FeynRules`Index[$CellContext`Generation,
1472 FeynRules`Ext[1]]]] FeynRules`ProjM[
1473 FeynRules`Index[FeynRules`Spin,
1474 FeynRules`Ext[1]],
1475 FeynRules`Index[FeynRules`Spin,
1476 FeynRules`Ext[2]]] - FeynRules`ProjP[
1477 FeynRules`Index[FeynRules`Spin,
1478 FeynRules`Ext[1]],
1479 FeynRules`Index[FeynRules`Spin,
1480 FeynRules`Ext[2]]] $CellContext`yu[
1481 FeynRules`Index[$CellContext`Generation,
1482 FeynRules`Ext[1]],
1483 FeynRules`Index[$CellContext`Generation,
1484 FeynRules`Ext[2]]])}, {{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {
1485 FeynRules`W, 3}, {$CellContext`Wbar, 4}},
1486 Complex[0, -4] $CellContext`CWtil FeynRules`ee $CellContext`fa^(-1)
1487 FeynRules`Eps[
1488 FeynRules`Index[FeynRules`Lorentz,
1489 FeynRules`Ext[1]],
1490 FeynRules`Index[FeynRules`Lorentz,
1491 FeynRules`Ext[4]],
1492 FeynRules`Index[FeynRules`Lorentz,
1493 FeynRules`Ext[3]],
1494 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (FeynRules`FV[1,
1495 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
1496 FeynRules`FV[3,
1497 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
1498 FeynRules`FV[4,
1499 FeynRules`Index[
1500 FeynRules`Lorentz, $CellContext`mu$1]])}, {{{$CellContext`ALP, 1}, {
1501 FeynRules`W, 2}, {$CellContext`Wbar, 3}, {$CellContext`Z, 4}},
1502 Complex[0, 4] $CellContext`cw $CellContext`CWtil
1503 FeynRules`ee $CellContext`fa^(-1) $CellContext`sw^(-1) FeynRules`Eps[
1504 FeynRules`Index[FeynRules`Lorentz,
1505 FeynRules`Ext[4]],
1506 FeynRules`Index[FeynRules`Lorentz,
1507 FeynRules`Ext[2]],
1508 FeynRules`Index[FeynRules`Lorentz,
1509 FeynRules`Ext[3]],
1510 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (FeynRules`FV[2,
1511 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
1512 FeynRules`FV[3,
1513 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
1514 FeynRules`FV[4,
1515 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]])}}]]], "Output",\
1516
1517 CellChangeTimes->{{3.638614114774802*^9, 3.638614120544181*^9}, {
1518 3.638614318695908*^9, 3.638614365439787*^9}, {3.638614433232692*^9,
1519 3.638614464705694*^9}, 3.6386224388916407`*^9, 3.6386225007679977`*^9,
1520 3.6386226973043947`*^9, 3.6386227333544188`*^9, 3.638623278409637*^9,
1521 3.6386236952225227`*^9, 3.63862388459741*^9, 3.638681852154767*^9,
1522 3.63868270965028*^9, 3.6386851562356977`*^9, 3.638686844261732*^9,
1523 3.638700137162476*^9, 3.638702832337493*^9, 3.6387029349627132`*^9, {
1524 3.638703100427805*^9, 3.6387031136888237`*^9}, {3.63870321256925*^9,
1525 3.638703230424244*^9}, {3.638703278436899*^9, 3.638703292187565*^9},
1526 3.6387033347871733`*^9, 3.638703390597958*^9, 3.638704548504233*^9,
1527 3.638707599815777*^9, 3.638708193011647*^9, 3.638708294314163*^9,
1528 3.638712328104225*^9, 3.638714899545281*^9, 3.6387158861274137`*^9, {
1529 3.638716073530249*^9, 3.6387160868743467`*^9}, {3.63871612959566*^9,
1530 3.638716213883053*^9}, 3.638768861462468*^9, 3.639820343194125*^9,
1531 3.6415554721097116`*^9, 3.641556006389512*^9, 3.641556218296584*^9,
1532 3.6415568954663677`*^9, 3.675577255235321*^9, 3.6755773956759577`*^9,
1533 3.6761156287361507`*^9, 3.676199644982154*^9, {3.6761997657926407`*^9,
1534 3.676199788244617*^9}, 3.676202161727428*^9, 3.676286259801929*^9,
1535 3.676286831252707*^9, 3.676286963494295*^9, 3.7149005669550333`*^9,
1536 3.714900986609859*^9}]
1537}, Open ]]
1538}, Open ]],
1539
1540Cell[CellGroupData[{
1541
1542Cell["Export to UFO", "Subsection",
1543 CellChangeTimes->{{3.638798084002553*^9, 3.6387980887087*^9}, {
1544 3.7149007705746527`*^9, 3.7149007713720427`*^9}}],
1545
1546Cell[CellGroupData[{
1547
1548Cell[BoxData[
1549 RowBox[{"WriteUFO", "[",
1550 RowBox[{
1551 RowBox[{"LSM", "+", "LALP"}], ",",
1552 RowBox[{"MaxParticles", "\[Rule]", "4"}], ",", " ",
1553 RowBox[{"Output", "\[Rule]", "\"\<ALP_linear_UFO\>\""}]}], "]"}]], "Input",\
1554
1555 CellChangeTimes->{{3.638796268087139*^9, 3.638796293694366*^9}, {
1556 3.676286245623457*^9, 3.676286247246126*^9}, {3.6943356972519197`*^9,
1557 3.6943356990015907`*^9}, {3.714900494999193*^9, 3.714900536696802*^9}, {
1558 3.7149009924193783`*^9, 3.7149009954383917`*^9}}],
1559
1560Cell[CellGroupData[{
1561
1562Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
1563"Print",
1564 CellChangeTimes->{3.714900591927953*^9, 3.714901015063738*^9}],
1565
1566Cell[BoxData[
1567 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
1568 StripOnInput->False,
1569 LineColor->RGBColor[1, 0.5, 0],
1570 FrontFaceColor->RGBColor[1, 0.5, 0],
1571 BackFaceColor->RGBColor[1, 0.5, 0],
1572 GraphicsColor->RGBColor[1, 0.5, 0],
1573 FontWeight->Bold,
1574 FontColor->RGBColor[1, 0.5, 0]]], "Print",
1575 CellChangeTimes->{3.714900591927953*^9, 3.7149010153269167`*^9}],
1576
1577Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
1578 CellChangeTimes->{3.714900591927953*^9, 3.714901015328267*^9}],
1579
1580Cell[BoxData[
1581 InterpretationBox[
1582 RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
1583 "\[InvisibleSpace]", "\<\" cores\"\>"}],
1584 SequenceForm["Expanding the indices over ", 2, " cores"],
1585 Editable->False]], "Print",
1586 CellChangeTimes->{3.714900591927953*^9, 3.7149010153294573`*^9}],
1587
1588Cell[BoxData["\<\"Collecting the different structures that enter the \
1589vertex.\"\>"], "Print",
1590 CellChangeTimes->{3.714900591927953*^9, 3.714901023561137*^9}],
1591
1592Cell[BoxData[
1593 InterpretationBox[
1594 RowBox[{
1595 "50", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
1596-> starting the computation: \"\>", "\[InvisibleSpace]",
1597 DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
1598 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1599 "\[InvisibleSpace]", "50", "\[InvisibleSpace]", "\<\".\"\>"}],
1600 SequenceForm[
1601 50, " possible non-zero vertices have been found -> starting the \
1602computation: ",
1603 Dynamic[FeynRules`FR$FeynmanRules], " / ", 50, "."],
1604 Editable->False]], "Print",
1605 CellChangeTimes->{3.714900591927953*^9, 3.714901023644479*^9}],
1606
1607Cell[BoxData[
1608 InterpretationBox[
1609 RowBox[{"45", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
1610 SequenceForm[45, " vertices obtained."],
1611 Editable->False]], "Print",
1612 CellChangeTimes->{3.714900591927953*^9, 3.7149010282581987`*^9}],
1613
1614Cell[BoxData[
1615 InterpretationBox[
1616 RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
1617 "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" cores: \"\>",
1618 "\[InvisibleSpace]",
1619 DynamicBox[ToBoxes[FeynRules`FR$Count1, StandardForm],
1620 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1621 "\[InvisibleSpace]", "45"}],
1622 SequenceForm[
1623 "Flavor expansion of the vertices distributed over ", 2, " cores: ",
1624 Dynamic[FeynRules`FR$Count1], " / ", 45],
1625 Editable->False]], "Print",
1626 CellChangeTimes->{3.714900591927953*^9, 3.714901029087723*^9}],
1627
1628Cell[BoxData["\<\" - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
1629 CellChangeTimes->{3.714900591927953*^9, 3.7149010340111856`*^9}],
1630
1631Cell[BoxData[
1632 StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
1633decays: \"\>",
1634 StripOnInput->False,
1635 LineColor->RGBColor[1, 0.5, 0],
1636 FrontFaceColor->RGBColor[1, 0.5, 0],
1637 BackFaceColor->RGBColor[1, 0.5, 0],
1638 GraphicsColor->RGBColor[1, 0.5, 0],
1639 FontWeight->Bold,
1640 FontColor->RGBColor[1, 0.5, 0]]], "Print",
1641 CellChangeTimes->{3.714900591927953*^9, 3.714901034050983*^9}],
1642
1643Cell[BoxData[
1644 InterpretationBox[
1645 RowBox[{
1646 DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
1647 ImageSizeCache->{9., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1648 "\[InvisibleSpace]", "62"}],
1649 SequenceForm[
1650 Dynamic[PRIVATE`mycounter], " / ", 62],
1651 Editable->False]], "Print",
1652 CellChangeTimes->{3.714900591927953*^9, 3.714901034052537*^9}],
1653
1654Cell[BoxData[
1655 InterpretationBox[
1656 RowBox[{"\<\"Squared matrix elent compute in \"\>", "\[InvisibleSpace]",
1657 "4.644`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
1658 SequenceForm["Squared matrix elent compute in ", 4.644, " seconds."],
1659 Editable->False]], "Print",
1660 CellChangeTimes->{3.714900591927953*^9, 3.714901049084815*^9}],
1661
1662Cell[BoxData[
1663 InterpretationBox[
1664 RowBox[{
1665 DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
1666 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1667 "\[InvisibleSpace]", "72"}],
1668 SequenceForm[
1669 Dynamic[PRIVATE`mycounter], " / ", 72],
1670 Editable->False]], "Print",
1671 CellChangeTimes->{3.714900591927953*^9, 3.714901049098535*^9}],
1672
1673Cell[BoxData[
1674 InterpretationBox[
1675 RowBox[{"\<\"Decay widths computed in \"\>", "\[InvisibleSpace]", "0.596`",
1676 "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
1677 SequenceForm["Decay widths computed in ", 0.596, " seconds."],
1678 Editable->False]], "Print",
1679 CellChangeTimes->{3.714900591927953*^9, 3.71490105045955*^9}],
1680
1681Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
1682 CellChangeTimes->{3.714900591927953*^9, 3.714901050462216*^9}],
1683
1684Cell[BoxData["\<\" - Splitting vertices into building blocks.\"\>"], \
1685"Print",
1686 CellChangeTimes->{3.714900591927953*^9, 3.714901050621313*^9}],
1687
1688Cell[BoxData[
1689 InterpretationBox[
1690 RowBox[{"\<\"Splitting of vertices distributed over \"\>",
1691 "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
1692 SequenceForm["Splitting of vertices distributed over ", 2, " kernels."],
1693 Editable->False]], "Print",
1694 CellChangeTimes->{3.714900591927953*^9, 3.71490105069834*^9}],
1695
1696Cell[BoxData[
1697 InterpretationBox[
1698 RowBox[{"\<\" - Optimizing: \"\>", "\[InvisibleSpace]",
1699 DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
1700 ImageSizeCache->{24., {0., 9.}}], "\[InvisibleSpace]", "\<\"/\"\>",
1701 "\[InvisibleSpace]", "101", "\[InvisibleSpace]", "\<\" .\"\>"}],
1702 SequenceForm[" - Optimizing: ",
1703 Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 101, " ."],
1704 Editable->False]], "Print",
1705 CellChangeTimes->{3.714900591927953*^9, 3.714901052384447*^9}],
1706
1707Cell[BoxData["\<\" - Writing files.\"\>"], "Print",
1708 CellChangeTimes->{3.714900591927953*^9, 3.714901052437394*^9}],
1709
1710Cell[BoxData["\<\"Done!\"\>"], "Print",
1711 CellChangeTimes->{3.714900591927953*^9, 3.714901052663561*^9}]
1712}, Open ]]
1713}, Open ]]
1714}, Open ]]
1715}, Closed]],
1716
1717Cell[CellGroupData[{
1718
1719Cell["ALP chiral EFT", "Section",
1720 CellChangeTimes->{{3.696241144773179*^9, 3.696241150440773*^9}, {
1721 3.6965809461276217`*^9, 3.6965809488385057`*^9}, {3.7144743309076147`*^9,
1722 3.71447433315618*^9}, {3.7148999134555597`*^9, 3.714899915627069*^9}}],
1723
1724Cell[CellGroupData[{
1725
1726Cell[BoxData[{
1727 RowBox[{
1728 RowBox[{"LoadModel", "[",
1729 RowBox[{"\"\<SM.fr\>\"", ",", "\"\<alp_chiral.fr\>\""}], "]"}],
1730 ";"}], "\[IndentingNewLine]",
1731 RowBox[{
1732 RowBox[{"$Assumptions", "=",
1733 RowBox[{
1734 RowBox[{
1735 SuperscriptBox["cw", "2"], "+",
1736 SuperscriptBox["sw", "2"]}], "\[Equal]", "1"}]}], ";"}]}], "Input",
1737 CellChangeTimes->{{3.419073170860696*^9, 3.419073182827229*^9}, {
1738 3.5695939666521587`*^9, 3.569593975189637*^9}, {3.571998624557815*^9,
1739 3.571998628157531*^9}, {3.5722426658955507`*^9, 3.5722426665661163`*^9}, {
1740 3.57373494999842*^9, 3.573734950506782*^9}, {3.573738411070033*^9,
1741 3.573738411475131*^9}, {3.581766296877213*^9, 3.5817662993035793`*^9}, {
1742 3.582711295612512*^9, 3.582711304079101*^9}, {3.58271455619954*^9,
1743 3.582714556539135*^9}, {3.5837271421921186`*^9, 3.5837271424321213`*^9}, {
1744 3.624620697450859*^9, 3.6246207033691893`*^9}, {3.6334178673816833`*^9,
1745 3.633417870423235*^9}, {3.635168745836775*^9, 3.635168746552165*^9}, {
1746 3.635234921249031*^9, 3.6352349280391006`*^9}, {3.638611693959074*^9,
1747 3.638611733478942*^9}, {3.638618101259109*^9, 3.638618101467348*^9},
1748 3.63861936248402*^9, 3.638619484234972*^9, {3.638620679982355*^9,
1749 3.638620680842409*^9}, {3.6386861262510643`*^9, 3.638686136772785*^9}, {
1750 3.6415550100096617`*^9, 3.641555015231119*^9}, {3.676109930720601*^9,
1751 3.6761099312888002`*^9}, {3.6761959551581984`*^9, 3.67619595753176*^9}, {
1752 3.676196049763735*^9, 3.6761960518031893`*^9}, {3.71489982794697*^9,
1753 3.714899828966436*^9}, {3.71490004046701*^9, 3.714900043136207*^9}, {
1754 3.7149001684519243`*^9, 3.714900176622246*^9}}],
1755
1756Cell[CellGroupData[{
1757
1758Cell[BoxData["\<\"Merging model-files...\"\>"], "Print",
1759 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1760 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1761 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1762 3.7149001775995293`*^9}],
1763
1764Cell[BoxData["\<\"This model implementation was created by\"\>"], "Print",
1765 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1766 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1767 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1768 3.714900177625907*^9}],
1769
1770Cell[BoxData["\<\"I. Brivio, M.B. Gavela, L. Merlo, K. Mimasu, J.M. No, R. \
1771del Rey, V. Sanz\"\>"], "Print",
1772 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1773 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1774 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1775 3.714900177627756*^9}],
1776
1777Cell[BoxData[
1778 InterpretationBox[
1779 RowBox[{"\<\"Model Version: \"\>", "\[InvisibleSpace]", "\<\"1\"\>"}],
1780 SequenceForm["Model Version: ", "1"],
1781 Editable->False]], "Print",
1782 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1783 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1784 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1785 3.714900177628923*^9}],
1786
1787Cell[BoxData["\<\"Please cite\"\>"], "Print",
1788 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1789 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1790 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1791 3.714900177629978*^9}],
1792
1793Cell[BoxData["\<\"arXiv:1701.05379\"\>"], "Print",
1794 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1795 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1796 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1797 3.714900177631019*^9}],
1798
1799Cell[BoxData["\<\"https://feynrules.irmp.ucl.ac.be/wiki/ALPsEFT\"\>"], "Print",
1800 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1801 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1802 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1803 3.714900177632065*^9}],
1804
1805Cell[BoxData["\<\"For more information, type ModelInformation[].\"\>"], \
1806"Print",
1807 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1808 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1809 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1810 3.714900177633066*^9}],
1811
1812Cell[BoxData["\<\"\"\>"], "Print",
1813 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1814 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1815 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1816 3.714900177634055*^9}],
1817
1818Cell[BoxData["\<\" - Loading particle classes.\"\>"], "Print",
1819 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1820 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1821 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1822 3.714900177635138*^9}],
1823
1824Cell[BoxData["\<\" - Loading gauge group classes.\"\>"], "Print",
1825 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1826 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1827 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1828 3.714900177728979*^9}],
1829
1830Cell[BoxData["\<\" - Loading parameter classes.\"\>"], "Print",
1831 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1832 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1833 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1834 3.7149001777671137`*^9}],
1835
1836Cell[BoxData[
1837 InterpretationBox[
1838 RowBox[{"\<\"\\nModel \"\>", "\[InvisibleSpace]", "\<\"ALP_chiral\"\>",
1839 "\[InvisibleSpace]", "\<\" loaded.\"\>"}],
1840 SequenceForm["\nModel ", "ALP_chiral", " loaded."],
1841 Editable->False]], "Print",
1842 CellChangeTimes->{3.6864895218593903`*^9, 3.68992828248105*^9,
1843 3.694262302057581*^9, 3.69426253740763*^9, 3.694335188572085*^9,
1844 3.694335562109014*^9, 3.714899830515174*^9, 3.7148999875453*^9,
1845 3.714900177808638*^9}]
1846}, Open ]]
1847}, Open ]],
1848
1849Cell[CellGroupData[{
1850
1851Cell["Feynman rules", "Subsection",
1852 CellChangeTimes->{{3.638612958456888*^9, 3.638612964903018*^9}, {
1853 3.641555437690887*^9, 3.6415554385930634`*^9}, {3.714900458407517*^9,
1854 3.7149004631939707`*^9}}],
1855
1856Cell[CellGroupData[{
1857
1858Cell[BoxData[
1859 RowBox[{
1860 RowBox[{"AlpFR", "=",
1861 RowBox[{
1862 RowBox[{"FeynmanRules", "[",
1863 RowBox[{"LALP", ",",
1864 RowBox[{"MaxParticles", "\[Rule]", "4"}]}], "]"}], "//", "Simplify"}]}],
1865 ";"}]], "Input",
1866 CellChangeTimes->{{3.638612399979039*^9, 3.638612438377034*^9}, {
1867 3.6386128833730392`*^9, 3.638612887379834*^9}, {3.638613614059422*^9,
1868 3.638613674285076*^9}, {3.638613735408643*^9, 3.6386137469743147`*^9}, {
1869 3.638703969309166*^9, 3.63870398233029*^9}, {3.676198845702183*^9,
1870 3.676198850854022*^9}, {3.6762862015383883`*^9, 3.676286202884295*^9}, {
1871 3.714900437388975*^9, 3.714900439208026*^9}}],
1872
1873Cell[CellGroupData[{
1874
1875Cell[BoxData[
1876 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
1877 StripOnInput->False,
1878 LineColor->RGBColor[1, 0.5, 0],
1879 FrontFaceColor->RGBColor[1, 0.5, 0],
1880 BackFaceColor->RGBColor[1, 0.5, 0],
1881 GraphicsColor->RGBColor[1, 0.5, 0],
1882 FontWeight->Bold,
1883 FontColor->RGBColor[1, 0.5, 0]]], "Print",
1884 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
1885 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
1886 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
1887 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
1888 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
1889 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
1890 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
1891 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
1892 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
1893 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
1894 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
1895 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
1896 3.6762869143369417`*^9, 3.714900449903*^9}],
1897
1898Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
1899 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
1900 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
1901 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
1902 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
1903 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
1904 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
1905 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
1906 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
1907 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
1908 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
1909 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
1910 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
1911 3.6762869143369417`*^9, 3.714900449904093*^9}],
1912
1913Cell[BoxData[
1914 InterpretationBox[
1915 RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
1916 "\[InvisibleSpace]", "\<\" cores\"\>"}],
1917 SequenceForm["Expanding the indices over ", 2, " cores"],
1918 Editable->False]], "Print",
1919 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
1920 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
1921 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
1922 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
1923 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
1924 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
1925 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
1926 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
1927 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
1928 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
1929 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
1930 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
1931 3.6762869143369417`*^9, 3.714900449905498*^9}],
1932
1933Cell[BoxData[
1934 InterpretationBox[
1935 RowBox[{"\<\"Neglecting all terms with more than \"\>",
1936 "\[InvisibleSpace]", "\<\"4\"\>",
1937 "\[InvisibleSpace]", "\<\" particles.\"\>"}],
1938 SequenceForm["Neglecting all terms with more than ", "4", " particles."],
1939 Editable->False]], "Print",
1940 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
1941 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
1942 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
1943 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
1944 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
1945 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
1946 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
1947 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
1948 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
1949 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
1950 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
1951 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
1952 3.6762869143369417`*^9, 3.714900449958639*^9}],
1953
1954Cell[BoxData["\<\"Collecting the different structures that enter the \
1955vertex.\"\>"], "Print",
1956 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
1957 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
1958 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
1959 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
1960 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
1961 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
1962 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
1963 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
1964 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
1965 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
1966 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
1967 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
1968 3.6762869143369417`*^9, 3.714900462610385*^9}],
1969
1970Cell[BoxData[
1971 InterpretationBox[
1972 RowBox[{
1973 "22", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
1974-> starting the computation: \"\>", "\[InvisibleSpace]",
1975 DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
1976 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
1977 "\[InvisibleSpace]", "22", "\[InvisibleSpace]", "\<\".\"\>"}],
1978 SequenceForm[
1979 22, " possible non-zero vertices have been found -> starting the \
1980computation: ",
1981 Dynamic[FeynRules`FR$FeynmanRules], " / ", 22, "."],
1982 Editable->False]], "Print",
1983 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
1984 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
1985 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
1986 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
1987 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
1988 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
1989 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
1990 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
1991 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
1992 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
1993 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
1994 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
1995 3.6762869143369417`*^9, 3.71490046268232*^9}],
1996
1997Cell[BoxData[
1998 InterpretationBox[
1999 RowBox[{"22", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
2000 SequenceForm[22, " vertices obtained."],
2001 Editable->False]], "Print",
2002 CellChangeTimes->{{3.638612439263659*^9, 3.638612450767869*^9},
2003 3.6386128940614233`*^9, {3.638613650524602*^9, 3.63861368019837*^9},
2004 3.638613752618588*^9, 3.638622421421833*^9, 3.638623259654512*^9,
2005 3.638623682719574*^9, 3.63862387089994*^9, 3.638681839413598*^9,
2006 3.638685147339924*^9, 3.638686835296649*^9, 3.638702823739684*^9,
2007 3.6387045306445217`*^9, 3.638707583603277*^9, 3.638708179320146*^9,
2008 3.638708280154018*^9, 3.638712313990831*^9, 3.638714885676031*^9,
2009 3.6387158722970467`*^9, 3.6387688476652308`*^9, 3.6398203261482677`*^9,
2010 3.641555449377819*^9, 3.641555863256626*^9, 3.641556195644968*^9,
2011 3.641556872703511*^9, {3.675577313538183*^9, 3.675577342032565*^9},
2012 3.6761155889016047`*^9, 3.676198861996129*^9, 3.676199452903678*^9,
2013 3.676202111206843*^9, 3.676286210935853*^9, 3.676286782752118*^9,
2014 3.6762869143369417`*^9, 3.714900469803011*^9}]
2015}, Open ]]
2016}, Open ]],
2017
2018Cell[CellGroupData[{
2019
2020Cell[BoxData[
2021 RowBox[{
2022 RowBox[{"AlpFRSimp", "=",
2023 RowBox[{
2024 RowBox[{"AlpFR", "//", "Simplify"}], "//",
2025 RowBox[{
2026 RowBox[{"Collect", "[",
2027 RowBox[{"#", ",",
2028 RowBox[{"{",
2029 SubscriptBox["\[Epsilon]", "_"], "}"}], ",", "FullSimplify"}], "]"}],
2030 "&"}]}]}], ";",
2031 RowBox[{"AlpFRSimp", "//", "TableForm"}]}]], "Input",
2032 CellChangeTimes->{{3.638613750408924*^9, 3.638613917314427*^9}, {
2033 3.6386139618919573`*^9, 3.6386140242555027`*^9}, {3.638614110850162*^9,
2034 3.63861411992393*^9}, {3.6386142738449593`*^9, 3.638614464079233*^9}, {
2035 3.638622495805666*^9, 3.6386224999713*^9}, {3.638622681020277*^9,
2036 3.6386226879638844`*^9}, {3.638622722309443*^9, 3.6386227454282093`*^9}, {
2037 3.638623669647767*^9, 3.638623670261174*^9}, 3.638682708207778*^9, {
2038 3.638700133618009*^9, 3.638700136676296*^9}, {3.638702929466498*^9,
2039 3.638702931898744*^9}, {3.6387030695743713`*^9, 3.6387031130558977`*^9}, {
2040 3.638703151342684*^9, 3.638703247383995*^9}, {3.638703282975972*^9,
2041 3.638703379857666*^9}, {3.6387160628081417`*^9, 3.638716079998055*^9}, {
2042 3.638716121793007*^9, 3.638716206718704*^9}, {3.676115591639645*^9,
2043 3.6761155983649282`*^9}, {3.676199742374304*^9, 3.676199767888208*^9},
2044 3.676286209033051*^9}],
2045
2046Cell[BoxData[
2047 InterpretationBox[GridBox[{
2048 {GridBox[{
2049 {"A", "1"},
2050 {"ALP", "2"},
2051 {"H", "3"},
2052 {"H", "4"}
2053 },
2054 GridBoxAlignment->{
2055 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2056 "RowsIndexed" -> {}},
2057 GridBoxSpacings->{"Columns" -> {
2058 Offset[0.27999999999999997`], {
2059 Offset[0.7]},
2060 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2061 Offset[0.2], {
2062 Offset[0.1]},
2063 Offset[0.2]}, "RowsIndexed" -> {}}],
2064 RowBox[{"-",
2065 FractionBox[
2066 RowBox[{
2067 RowBox[{"(",
2068 RowBox[{
2069 RowBox[{
2070 SubscriptBox["b", "3"], " ",
2071 SubscriptBox["c", "3"], " ",
2072 SubscriptBox["c", "w"]}], "+",
2073 RowBox[{
2074 SubscriptBox["b", "10"], " ",
2075 SubscriptBox["c", "10"], " ",
2076 SubscriptBox["s", "w"]}]}], ")"}], " ",
2077 RowBox[{"(",
2078 RowBox[{
2079 RowBox[{
2080 RowBox[{"(",
2081 RowBox[{
2082 SubsuperscriptBox["\<\"p\"\>", "3",
2083 SubscriptBox["\<\"\[Mu]\"\>", "1"]], "+",
2084 SubsuperscriptBox["\<\"p\"\>", "4",
2085 SubscriptBox["\<\"\[Mu]\"\>", "1"]]}], ")"}], " ",
2086 RowBox[{
2087 SubscriptBox["\<\"p\"\>", "1"], ".",
2088 SubscriptBox["p", "2"]}]}], "-",
2089 RowBox[{
2090 SubsuperscriptBox["\<\"p\"\>", "2",
2091 SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
2092 RowBox[{"(",
2093 RowBox[{
2094 RowBox[{
2095 SubscriptBox["\<\"p\"\>", "1"], ".",
2096 SubscriptBox["p", "3"]}], "+",
2097 RowBox[{
2098 SubscriptBox["\<\"p\"\>", "1"], ".",
2099 SubscriptBox["p", "4"]}]}], ")"}]}]}], ")"}]}],
2100 RowBox[{"2", " ",
2101 SubscriptBox["f", "a"], " ", "\[Pi]", " ",
2102 SuperscriptBox["vev", "2"]}]]}]},
2103 {GridBox[{
2104 {"A", "1"},
2105 {"ALP", "2"},
2106 {"H", "3"}
2107 },
2108 GridBoxAlignment->{
2109 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2110 "RowsIndexed" -> {}},
2111 GridBoxSpacings->{"Columns" -> {
2112 Offset[0.27999999999999997`], {
2113 Offset[0.7]},
2114 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2115 Offset[0.2], {
2116 Offset[0.1]},
2117 Offset[0.2]}, "RowsIndexed" -> {}}],
2118 FractionBox[
2119 RowBox[{
2120 RowBox[{"(",
2121 RowBox[{
2122 RowBox[{
2123 SubscriptBox["a", "3"], " ",
2124 SubscriptBox["c", "3"], " ",
2125 SubscriptBox["c", "w"]}], "+",
2126 RowBox[{
2127 SubscriptBox["a", "10"], " ",
2128 SubscriptBox["c", "10"], " ",
2129 SubscriptBox["s", "w"]}]}], ")"}], " ",
2130 RowBox[{"(",
2131 RowBox[{
2132 RowBox[{
2133 RowBox[{"-",
2134 SubsuperscriptBox["\<\"p\"\>", "3",
2135 SubscriptBox["\<\"\[Mu]\"\>", "1"]]}], " ",
2136 RowBox[{
2137 SubscriptBox["\<\"p\"\>", "1"], ".",
2138 SubscriptBox["p", "2"]}]}], "+",
2139 RowBox[{
2140 SubsuperscriptBox["\<\"p\"\>", "2",
2141 SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
2142 RowBox[{
2143 SubscriptBox["\<\"p\"\>", "1"], ".",
2144 SubscriptBox["p", "3"]}]}]}], ")"}]}],
2145 RowBox[{"2", " ",
2146 SubscriptBox["f", "a"], " ", "\[Pi]", " ", "vev"}]]},
2147 {GridBox[{
2148 {"ALP", "1"},
2149 {"H", "2"},
2150 {"H", "3"},
2151 {"Z", "4"}
2152 },
2153 GridBoxAlignment->{
2154 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2155 "RowsIndexed" -> {}},
2156 GridBoxSpacings->{"Columns" -> {
2157 Offset[0.27999999999999997`], {
2158 Offset[0.7]},
2159 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2160 Offset[0.2], {
2161 Offset[0.1]},
2162 Offset[0.2]}, "RowsIndexed" -> {}}],
2163 FractionBox[
2164 RowBox[{
2165 RowBox[{"e", " ",
2166 RowBox[{"(",
2167 RowBox[{
2168 RowBox[{
2169 SubsuperscriptBox["\<\"p\"\>", "3",
2170 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
2171 RowBox[{"(",
2172 RowBox[{
2173 RowBox[{
2174 SubscriptBox["b", "11"], " ",
2175 SubscriptBox["c", "11"], " ",
2176 RowBox[{
2177 SubscriptBox["\<\"p\"\>", "1"], ".",
2178 SubscriptBox["p", "1"]}]}], "+",
2179 RowBox[{"2", " ",
2180 SubscriptBox["a", "16"], " ",
2181 TemplateBox[{"a","16","\[Prime]"},
2182 "Subsuperscript"], " ",
2183 SubscriptBox["c", "16"], " ",
2184 RowBox[{
2185 SubscriptBox["\<\"p\"\>", "1"], ".",
2186 SubscriptBox["p", "2"]}]}], "+",
2187 RowBox[{
2188 SubscriptBox["b", "14"], " ",
2189 SubscriptBox["c", "14"], " ",
2190 RowBox[{"(",
2191 RowBox[{
2192 RowBox[{
2193 SubscriptBox["\<\"p\"\>", "1"], ".",
2194 SubscriptBox["p", "2"]}], "+",
2195 RowBox[{
2196 SubscriptBox["\<\"p\"\>", "1"], ".",
2197 SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}], "+",
2198 RowBox[{
2199 SubsuperscriptBox["\<\"p\"\>", "2",
2200 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
2201 RowBox[{"(",
2202 RowBox[{
2203 RowBox[{
2204 SubscriptBox["b", "11"], " ",
2205 SubscriptBox["c", "11"], " ",
2206 RowBox[{
2207 SubscriptBox["\<\"p\"\>", "1"], ".",
2208 SubscriptBox["p", "1"]}]}], "+",
2209 RowBox[{"2", " ",
2210 SubscriptBox["a", "16"], " ",
2211 TemplateBox[{"a","16","\[Prime]"},
2212 "Subsuperscript"], " ",
2213 SubscriptBox["c", "16"], " ",
2214 RowBox[{
2215 SubscriptBox["\<\"p\"\>", "1"], ".",
2216 SubscriptBox["p", "3"]}]}], "+",
2217 RowBox[{
2218 SubscriptBox["b", "14"], " ",
2219 SubscriptBox["c", "14"], " ",
2220 RowBox[{"(",
2221 RowBox[{
2222 RowBox[{
2223 SubscriptBox["\<\"p\"\>", "1"], ".",
2224 SubscriptBox["p", "2"]}], "+",
2225 RowBox[{
2226 SubscriptBox["\<\"p\"\>", "1"], ".",
2227 SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}],
2228 "+",
2229 RowBox[{"4", " ", "\[Pi]", " ",
2230 SubscriptBox["s", "w"], " ",
2231 RowBox[{"(",
2232 RowBox[{
2233 RowBox[{
2234 SubscriptBox["b", "3"], " ",
2235 SubscriptBox["c", "3"], " ",
2236 SubscriptBox["c", "w"], " ",
2237 SubscriptBox["s", "w"]}], "+",
2238 RowBox[{
2239 SubscriptBox["b", "10"], " ",
2240 SubscriptBox["c", "10"], " ",
2241 RowBox[{"(",
2242 RowBox[{
2243 RowBox[{"-", "1"}], "+",
2244 SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
2245 RowBox[{"(",
2246 RowBox[{
2247 SubsuperscriptBox["\<\"p\"\>", "2",
2248 SubscriptBox["\<\"\[Mu]\"\>", "4"]], "+",
2249 SubsuperscriptBox["\<\"p\"\>", "3",
2250 SubscriptBox["\<\"\[Mu]\"\>", "4"]]}], ")"}], " ",
2251 RowBox[{
2252 SubscriptBox["\<\"p\"\>", "1"], ".",
2253 SubscriptBox["p", "4"]}]}], "-",
2254 RowBox[{
2255 SubsuperscriptBox["\<\"p\"\>", "1",
2256 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
2257 RowBox[{"(",
2258 RowBox[{
2259 RowBox[{"16", " ",
2260 SubscriptBox["b",
2261 RowBox[{"2", " ", "D"}]], " ",
2262 SubscriptBox["c",
2263 RowBox[{"2", " ", "D"}]], " ", "e", " ",
2264 SuperscriptBox["\[Pi]", "2"], " ",
2265 SuperscriptBox["vev", "2"]}], "-",
2266 RowBox[{"e", " ",
2267 RowBox[{"(",
2268 RowBox[{
2269 RowBox[{
2270 SubscriptBox["b", "17"], " ",
2271 SubscriptBox["c", "17"], " ",
2272 RowBox[{
2273 SubscriptBox["\<\"p\"\>", "1"], ".",
2274 SubscriptBox["p", "1"]}]}], "+",
2275 RowBox[{
2276 SubscriptBox["b", "12"], " ",
2277 SubscriptBox["c", "12"], " ",
2278 RowBox[{"(",
2279 RowBox[{
2280 RowBox[{
2281 SubscriptBox["\<\"p\"\>", "1"], ".",
2282 SubscriptBox["p", "2"]}], "+",
2283 RowBox[{
2284 SubscriptBox["\<\"p\"\>", "1"], ".",
2285 SubscriptBox["p", "3"]}]}], ")"}]}], "+",
2286 RowBox[{"4", " ",
2287 SubscriptBox["a", "15"], " ",
2288 TemplateBox[{"a","15","\[Prime]"},
2289 "Subsuperscript"], " ",
2290 SubscriptBox["c", "15"], " ",
2291 RowBox[{
2292 SubscriptBox["\<\"p\"\>", "2"], ".",
2293 SubscriptBox["p", "3"]}]}], "+",
2294 RowBox[{
2295 SubscriptBox["b", "13"], " ",
2296 SubscriptBox["c", "13"], " ",
2297 RowBox[{"(",
2298 RowBox[{
2299 RowBox[{
2300 SubscriptBox["\<\"p\"\>", "2"], ".",
2301 SubscriptBox["p", "2"]}], "+",
2302 RowBox[{"2", " ",
2303 RowBox[{
2304 SubscriptBox["\<\"p\"\>", "2"], ".",
2305 SubscriptBox["p", "3"]}]}], "+",
2306 RowBox[{
2307 SubscriptBox["\<\"p\"\>", "3"], ".",
2308 SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}], "+",
2309 RowBox[{"4", " ", "\[Pi]", " ",
2310 SubscriptBox["s", "w"], " ",
2311 RowBox[{"(",
2312 RowBox[{
2313 RowBox[{
2314 SubscriptBox["b", "3"], " ",
2315 SubscriptBox["c", "3"], " ",
2316 SubscriptBox["c", "w"], " ",
2317 SubscriptBox["s", "w"]}], "+",
2318 RowBox[{
2319 SubscriptBox["b", "10"], " ",
2320 SubscriptBox["c", "10"], " ",
2321 RowBox[{"(",
2322 RowBox[{
2323 RowBox[{"-", "1"}], "+",
2324 SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
2325 RowBox[{"(",
2326 RowBox[{
2327 RowBox[{
2328 SubscriptBox["\<\"p\"\>", "2"], ".",
2329 SubscriptBox["p", "4"]}], "+",
2330 RowBox[{
2331 SubscriptBox["\<\"p\"\>", "3"], ".",
2332 SubscriptBox["p", "4"]}]}], ")"}]}]}], ")"}]}]}],
2333 RowBox[{"8", " ",
2334 SubscriptBox["c", "w"], " ",
2335 SubscriptBox["f", "a"], " ",
2336 SuperscriptBox["\[Pi]", "2"], " ",
2337 SubscriptBox["s", "w"], " ",
2338 SuperscriptBox["vev", "2"]}]]},
2339 {GridBox[{
2340 {"ALP", "1"},
2341 {"H", "2"},
2342 {"Z", "3"}
2343 },
2344 GridBoxAlignment->{
2345 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2346 "RowsIndexed" -> {}},
2347 GridBoxSpacings->{"Columns" -> {
2348 Offset[0.27999999999999997`], {
2349 Offset[0.7]},
2350 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2351 Offset[0.2], {
2352 Offset[0.1]},
2353 Offset[0.2]}, "RowsIndexed" -> {}}],
2354 FractionBox[
2355 RowBox[{
2356 RowBox[{
2357 SubsuperscriptBox["\<\"p\"\>", "2",
2358 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
2359 RowBox[{"(",
2360 RowBox[{
2361 RowBox[{
2362 SubscriptBox["a", "11"], " ",
2363 SubscriptBox["c", "11"], " ", "e", " ",
2364 RowBox[{
2365 SubscriptBox["\<\"p\"\>", "1"], ".",
2366 SubscriptBox["p", "1"]}]}], "+",
2367 RowBox[{
2368 SubscriptBox["a", "14"], " ",
2369 SubscriptBox["c", "14"], " ", "e", " ",
2370 RowBox[{
2371 SubscriptBox["\<\"p\"\>", "1"], ".",
2372 SubscriptBox["p", "2"]}]}], "+",
2373 RowBox[{"4", " ", "\[Pi]", " ",
2374 SubscriptBox["s", "w"], " ",
2375 RowBox[{"(",
2376 RowBox[{
2377 RowBox[{
2378 SubscriptBox["a", "3"], " ",
2379 SubscriptBox["c", "3"], " ",
2380 SubscriptBox["c", "w"], " ",
2381 SubscriptBox["s", "w"]}], "+",
2382 RowBox[{
2383 SubscriptBox["a", "10"], " ",
2384 SubscriptBox["c", "10"], " ",
2385 RowBox[{"(",
2386 RowBox[{
2387 RowBox[{"-", "1"}], "+",
2388 SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
2389 RowBox[{
2390 SubscriptBox["\<\"p\"\>", "1"], ".",
2391 SubscriptBox["p", "3"]}]}]}], ")"}]}], "+",
2392 RowBox[{
2393 SubsuperscriptBox["\<\"p\"\>", "1",
2394 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
2395 RowBox[{"(",
2396 RowBox[{
2397 RowBox[{"e", " ",
2398 RowBox[{"(",
2399 RowBox[{
2400 RowBox[{
2401 RowBox[{"-", "16"}], " ",
2402 SubscriptBox["a",
2403 RowBox[{"2", " ", "D"}]], " ",
2404 SubscriptBox["c",
2405 RowBox[{"2", " ", "D"}]], " ",
2406 SuperscriptBox["\[Pi]", "2"], " ",
2407 SuperscriptBox["vev", "2"]}], "+",
2408 RowBox[{
2409 SubscriptBox["a", "17"], " ",
2410 SubscriptBox["c", "17"], " ",
2411 RowBox[{
2412 SubscriptBox["\<\"p\"\>", "1"], ".",
2413 SubscriptBox["p", "1"]}]}], "+",
2414 RowBox[{
2415 SubscriptBox["a", "12"], " ",
2416 SubscriptBox["c", "12"], " ",
2417 RowBox[{
2418 SubscriptBox["\<\"p\"\>", "1"], ".",
2419 SubscriptBox["p", "2"]}]}], "+",
2420 RowBox[{
2421 SubscriptBox["a", "13"], " ",
2422 SubscriptBox["c", "13"], " ",
2423 RowBox[{
2424 SubscriptBox["\<\"p\"\>", "2"], ".",
2425 SubscriptBox["p", "2"]}]}]}], ")"}]}], "-",
2426 RowBox[{"4", " ", "\[Pi]", " ",
2427 SubscriptBox["s", "w"], " ",
2428 RowBox[{"(",
2429 RowBox[{
2430 RowBox[{
2431 SubscriptBox["a", "3"], " ",
2432 SubscriptBox["c", "3"], " ",
2433 SubscriptBox["c", "w"], " ",
2434 SubscriptBox["s", "w"]}], "+",
2435 RowBox[{
2436 SubscriptBox["a", "10"], " ",
2437 SubscriptBox["c", "10"], " ",
2438 RowBox[{"(",
2439 RowBox[{
2440 RowBox[{"-", "1"}], "+",
2441 SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
2442 RowBox[{
2443 SubscriptBox["\<\"p\"\>", "2"], ".",
2444 SubscriptBox["p", "3"]}]}]}], ")"}]}]}],
2445 RowBox[{"8", " ",
2446 SubscriptBox["c", "w"], " ",
2447 SubscriptBox["f", "a"], " ",
2448 SuperscriptBox["\[Pi]", "2"], " ",
2449 SubscriptBox["s", "w"], " ", "vev"}]]},
2450 {GridBox[{
2451 {"A", "1"},
2452 {"A", "2"},
2453 {"ALP", "3"}
2454 },
2455 GridBoxAlignment->{
2456 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2457 "RowsIndexed" -> {}},
2458 GridBoxSpacings->{"Columns" -> {
2459 Offset[0.27999999999999997`], {
2460 Offset[0.7]},
2461 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2462 Offset[0.2], {
2463 Offset[0.1]},
2464 Offset[0.2]}, "RowsIndexed" -> {}}],
2465 RowBox[{"-",
2466 FractionBox[
2467 RowBox[{"2", " ", "\[ImaginaryI]", " ",
2468 RowBox[{"(",
2469 RowBox[{
2470 RowBox[{"-",
2471 SubscriptBox["c",
2472 OverscriptBox["B", "~"]]}], "+",
2473 RowBox[{
2474 RowBox[{"(",
2475 RowBox[{
2476 SubscriptBox["c",
2477 OverscriptBox["B", "~"]], "-",
2478 SubscriptBox["c",
2479 OverscriptBox["W", "~"]]}], ")"}], " ",
2480 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
2481 SubscriptBox["\[Epsilon]",
2482 RowBox[{
2483 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
2484 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",", "mu$1", ",", "mu$2"}]],
2485 " ",
2486 RowBox[{"(",
2487 RowBox[{
2488 RowBox[{
2489 SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
2490 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "-",
2491 RowBox[{
2492 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
2493 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"]}]}], ")"}]}],
2494 SubscriptBox["f", "a"]]}]},
2495 {GridBox[{
2496 {"ALP", "1"},
2497 {"G", "2"},
2498 {"G", "3"}
2499 },
2500 GridBoxAlignment->{
2501 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2502 "RowsIndexed" -> {}},
2503 GridBoxSpacings->{"Columns" -> {
2504 Offset[0.27999999999999997`], {
2505 Offset[0.7]},
2506 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2507 Offset[0.2], {
2508 Offset[0.1]},
2509 Offset[0.2]}, "RowsIndexed" -> {}}],
2510 FractionBox[
2511 RowBox[{"\[ImaginaryI]", " ",
2512 SubscriptBox["c",
2513 OverscriptBox["G", "~"]], " ",
2514 RowBox[{"(",
2515 RowBox[{
2516 RowBox[{
2517 SubscriptBox["\[Epsilon]",
2518 RowBox[{
2519 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2520 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
2521 "\[Beta]1"}]], " ",
2522 RowBox[{"(",
2523 RowBox[{
2524 RowBox[{
2525 SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
2526 SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
2527 RowBox[{
2528 SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
2529 SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}]}], ")"}]}],
2530 "+",
2531 RowBox[{
2532 SubscriptBox["\[Epsilon]",
2533 RowBox[{
2534 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2535 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
2536 "\[Beta]1"}]], " ",
2537 RowBox[{"(",
2538 RowBox[{
2539 RowBox[{
2540 RowBox[{"-",
2541 SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"]}], " ",
2542 SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"]}], "+",
2543 RowBox[{
2544 SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], " ",
2545 SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}]}], ")"}]}],
2546 "+",
2547 RowBox[{
2548 SubscriptBox["\[Epsilon]",
2549 RowBox[{
2550 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2551 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Alpha]1", ",",
2552 "\[Delta]1"}]], " ",
2553 RowBox[{"(",
2554 RowBox[{
2555 RowBox[{
2556 SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
2557 SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"]}], "-",
2558 RowBox[{
2559 SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], " ",
2560 SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}],
2561 "+",
2562 RowBox[{
2563 SubscriptBox["\[Epsilon]",
2564 RowBox[{
2565 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2566 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "\[Gamma]1", ",",
2567 "\[Delta]1"}]], " ",
2568 RowBox[{"(",
2569 RowBox[{
2570 RowBox[{
2571 SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], " ",
2572 SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"]}], "-",
2573 RowBox[{
2574 SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], " ",
2575 SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"]}]}], ")"}]}]}],
2576 ")"}], " ",
2577 SubscriptBox["\[Delta]",
2578 RowBox[{
2579 SubscriptBox["\<\"a\"\>", "2"], ",",
2580 SubscriptBox["\<\"a\"\>", "3"]}]]}],
2581 RowBox[{"2", " ",
2582 SubscriptBox["f", "a"]}]]},
2583 {GridBox[{
2584 {"ALP", "1"},
2585 {"W", "2"},
2586 {
2587 SuperscriptBox["W", "\[Dagger]"], "3"}
2588 },
2589 GridBoxAlignment->{
2590 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2591 "RowsIndexed" -> {}},
2592 GridBoxSpacings->{"Columns" -> {
2593 Offset[0.27999999999999997`], {
2594 Offset[0.7]},
2595 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2596 Offset[0.2], {
2597 Offset[0.1]},
2598 Offset[0.2]}, "RowsIndexed" -> {}}],
2599 FractionBox[
2600 RowBox[{
2601 RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
2602 SubscriptBox["s", "w"], " ",
2603 SubscriptBox["\[Epsilon]",
2604 RowBox[{
2605 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2606 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
2607 " ",
2608 RowBox[{"(",
2609 RowBox[{
2610 RowBox[{
2611 SubscriptBox["c", "2"], " ", "e", " ",
2612 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
2613 RowBox[{"(",
2614 RowBox[{
2615 RowBox[{"-",
2616 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"]}], "+",
2617 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}], ")"}]}], "+",
2618 RowBox[{"16", " ",
2619 SubscriptBox["c",
2620 OverscriptBox["W", "~"]], " ", "\[Pi]", " ",
2621 SubscriptBox["s", "w"], " ",
2622 RowBox[{"(",
2623 RowBox[{
2624 RowBox[{
2625 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
2626 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
2627 RowBox[{
2628 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
2629 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}]}],
2630 ")"}]}], "-",
2631 RowBox[{"e", " ",
2632 RowBox[{"(",
2633 RowBox[{
2634 RowBox[{
2635 SubsuperscriptBox["\<\"p\"\>", "1",
2636 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
2637 RowBox[{"(",
2638 RowBox[{
2639 RowBox[{
2640 SubscriptBox["c", "8"], " ", "e", " ",
2641 SubsuperscriptBox["\<\"p\"\>", "2",
2642 SubscriptBox["\<\"\[Mu]\"\>", "2"]]}], "+",
2643 RowBox[{"4", " ",
2644 SubscriptBox["c", "6"], " ", "\[Pi]", " ",
2645 SubscriptBox["s", "w"], " ",
2646 SubsuperscriptBox["\<\"p\"\>", "3",
2647 SubscriptBox["\<\"\[Mu]\"\>", "2"]]}]}], ")"}]}], "-",
2648 RowBox[{
2649 SubsuperscriptBox["\<\"p\"\>", "1",
2650 SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
2651 RowBox[{"(",
2652 RowBox[{
2653 RowBox[{"4", " ",
2654 SubscriptBox["c", "6"], " ", "\[Pi]", " ",
2655 SubscriptBox["s", "w"], " ",
2656 SubsuperscriptBox["\<\"p\"\>", "2",
2657 SubscriptBox["\<\"\[Mu]\"\>", "3"]]}], "+",
2658 RowBox[{
2659 SubscriptBox["c", "8"], " ", "e", " ",
2660 SubsuperscriptBox["\<\"p\"\>", "3",
2661 SubscriptBox["\<\"\[Mu]\"\>", "3"]]}]}], ")"}]}], "+",
2662 RowBox[{"4", " ",
2663 SubscriptBox["c", "6"], " ", "\[Pi]", " ",
2664 SubscriptBox["s", "w"], " ",
2665 SubscriptBox["\[Eta]",
2666 RowBox[{
2667 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2668 SubscriptBox["\<\"\[Mu]\"\>", "3"]}]], " ",
2669 RowBox[{"(",
2670 RowBox[{
2671 RowBox[{
2672 SubscriptBox["\<\"p\"\>", "1"], ".",
2673 SubscriptBox["p", "2"]}], "-",
2674 RowBox[{
2675 SubscriptBox["\<\"p\"\>", "1"], ".",
2676 SubscriptBox["p", "3"]}]}], ")"}]}]}], ")"}]}]}],
2677 RowBox[{"16", " ",
2678 SubscriptBox["f", "a"], " ",
2679 SuperscriptBox["\[Pi]", "2"], " ",
2680 SubsuperscriptBox["s", "w", "2"]}]]},
2681 {GridBox[{
2682 {"A", "1"},
2683 {"ALP", "2"},
2684 {"Z", "3"}
2685 },
2686 GridBoxAlignment->{
2687 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2688 "RowsIndexed" -> {}},
2689 GridBoxSpacings->{"Columns" -> {
2690 Offset[0.27999999999999997`], {
2691 Offset[0.7]},
2692 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2693 Offset[0.2], {
2694 Offset[0.1]},
2695 Offset[0.2]}, "RowsIndexed" -> {}}],
2696 RowBox[{"-",
2697 FractionBox[
2698 RowBox[{"\[ImaginaryI]", " ",
2699 SubscriptBox["\[Epsilon]",
2700 RowBox[{
2701 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
2702 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
2703 " ",
2704 RowBox[{"(",
2705 RowBox[{
2706 RowBox[{
2707 SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
2708 RowBox[{"(",
2709 RowBox[{
2710 RowBox[{"e", " ",
2711 RowBox[{"(",
2712 RowBox[{
2713 RowBox[{"2", " ",
2714 SubscriptBox["c", "1"], " ",
2715 SubscriptBox["c", "w"]}], "+",
2716 RowBox[{
2717 RowBox[{"(",
2718 RowBox[{
2719 SubscriptBox["c", "2"], "+",
2720 RowBox[{"2", " ",
2721 SubscriptBox["c", "7"]}]}], ")"}], " ",
2722 SubscriptBox["s", "w"]}]}], ")"}], " ",
2723 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "-",
2724 RowBox[{"16", " ",
2725 RowBox[{"(",
2726 RowBox[{
2727 SubscriptBox["c",
2728 OverscriptBox["B", "~"]], "-",
2729 SubscriptBox["c",
2730 OverscriptBox["W", "~"]]}], ")"}], " ", "\[Pi]", " ",
2731 SubsuperscriptBox["s", "w", "2"], " ",
2732 RowBox[{"(",
2733 RowBox[{
2734 RowBox[{"-", "1"}], "+",
2735 SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
2736 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}]}], ")"}]}], "+",
2737 RowBox[{"16", " ",
2738 RowBox[{"(",
2739 RowBox[{
2740 SubscriptBox["c",
2741 OverscriptBox["B", "~"]], "-",
2742 SubscriptBox["c",
2743 OverscriptBox["W", "~"]]}], ")"}], " ", "\[Pi]", " ",
2744 SubsuperscriptBox["s", "w", "2"], " ",
2745 RowBox[{"(",
2746 RowBox[{
2747 RowBox[{"-", "1"}], "+",
2748 SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
2749 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
2750 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}],
2751 RowBox[{"8", " ",
2752 SubscriptBox["c", "w"], " ",
2753 SubscriptBox["f", "a"], " ", "\[Pi]", " ",
2754 SubscriptBox["s", "w"]}]]}]},
2755 {GridBox[{
2756 {"ALP", "1"},
2757 {"Z", "2"},
2758 {"Z", "3"}
2759 },
2760 GridBoxAlignment->{
2761 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2762 "RowsIndexed" -> {}},
2763 GridBoxSpacings->{"Columns" -> {
2764 Offset[0.27999999999999997`], {
2765 Offset[0.7]},
2766 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2767 Offset[0.2], {
2768 Offset[0.1]},
2769 Offset[0.2]}, "RowsIndexed" -> {}}],
2770 RowBox[{"-",
2771 FractionBox[
2772 RowBox[{"\[ImaginaryI]", " ",
2773 SubscriptBox["\[Epsilon]",
2774 RowBox[{
2775 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2776 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",", "mu$2"}]],
2777 " ",
2778 RowBox[{"(",
2779 RowBox[{
2780 RowBox[{"e", " ",
2781 RowBox[{"(",
2782 RowBox[{
2783 RowBox[{
2784 SubscriptBox["c", "2"], " ",
2785 SubscriptBox["c", "w"]}], "+",
2786 RowBox[{"2", " ",
2787 SubscriptBox["c", "7"], " ",
2788 SubscriptBox["c", "w"]}], "-",
2789 RowBox[{"2", " ",
2790 SubscriptBox["c", "1"], " ",
2791 SubscriptBox["s", "w"]}]}], ")"}], " ",
2792 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
2793 RowBox[{"(",
2794 RowBox[{
2795 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], "-",
2796 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}], ")"}]}], "+",
2797 RowBox[{"16", " ",
2798 SubscriptBox["c", "w"], " ", "\[Pi]", " ",
2799 SubscriptBox["s", "w"], " ",
2800 RowBox[{"(",
2801 RowBox[{
2802 RowBox[{"-",
2803 SubscriptBox["c",
2804 OverscriptBox["W", "~"]]}], "+",
2805 RowBox[{
2806 RowBox[{"(",
2807 RowBox[{
2808 RowBox[{"-",
2809 SubscriptBox["c",
2810 OverscriptBox["B", "~"]]}], "+",
2811 SubscriptBox["c",
2812 OverscriptBox["W", "~"]]}], ")"}], " ",
2813 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
2814 RowBox[{"(",
2815 RowBox[{
2816 RowBox[{
2817 SubsuperscriptBox["\<\"p\"\>", "2", "mu$2"], " ",
2818 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"]}], "-",
2819 RowBox[{
2820 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], " ",
2821 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}]}], ")"}]}]}],
2822 ")"}]}],
2823 RowBox[{"8", " ",
2824 SubscriptBox["c", "w"], " ",
2825 SubscriptBox["f", "a"], " ", "\[Pi]", " ",
2826 SubscriptBox["s", "w"]}]]}]},
2827 {GridBox[{
2828 {"ALP", "1"},
2829 {"G", "2"},
2830 {"G", "3"},
2831 {"G", "4"}
2832 },
2833 GridBoxAlignment->{
2834 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2835 "RowsIndexed" -> {}},
2836 GridBoxSpacings->{"Columns" -> {
2837 Offset[0.27999999999999997`], {
2838 Offset[0.7]},
2839 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2840 Offset[0.2], {
2841 Offset[0.1]},
2842 Offset[0.2]}, "RowsIndexed" -> {}}],
2843 RowBox[{"-",
2844 FractionBox[
2845 RowBox[{
2846 SubscriptBox["c",
2847 OverscriptBox["G", "~"]], " ",
2848 SubscriptBox["g", "s"], " ",
2849 SubscriptBox["f",
2850 RowBox[{
2851 SubscriptBox["\<\"a\"\>", "2"], ",",
2852 SubscriptBox["\<\"a\"\>", "3"], ",",
2853 SubscriptBox["\<\"a\"\>", "4"]}]], " ",
2854 RowBox[{"(",
2855 RowBox[{
2856 RowBox[{
2857 SubscriptBox["\[Epsilon]",
2858 RowBox[{
2859 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2860 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
2861 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Alpha]1"}]], " ",
2862 RowBox[{"(",
2863 RowBox[{
2864 SubsuperscriptBox["\<\"p\"\>", "2", "\[Alpha]1"], "+",
2865 SubsuperscriptBox["\<\"p\"\>", "3", "\[Alpha]1"], "+",
2866 SubsuperscriptBox["\<\"p\"\>", "4", "\[Alpha]1"]}], ")"}]}], "+",
2867 RowBox[{
2868 SubscriptBox["\[Epsilon]",
2869 RowBox[{
2870 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2871 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
2872 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Beta]1"}]], " ",
2873 RowBox[{"(",
2874 RowBox[{
2875 SubsuperscriptBox["\<\"p\"\>", "2", "\[Beta]1"], "+",
2876 SubsuperscriptBox["\<\"p\"\>", "3", "\[Beta]1"], "+",
2877 SubsuperscriptBox["\<\"p\"\>", "4", "\[Beta]1"]}], ")"}]}], "+",
2878
2879 RowBox[{
2880 SubscriptBox["\[Epsilon]",
2881 RowBox[{
2882 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2883 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
2884 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Gamma]1"}]], " ",
2885 RowBox[{"(",
2886 RowBox[{
2887 SubsuperscriptBox["\<\"p\"\>", "2", "\[Gamma]1"], "+",
2888 SubsuperscriptBox["\<\"p\"\>", "3", "\[Gamma]1"], "+",
2889 SubsuperscriptBox["\<\"p\"\>", "4", "\[Gamma]1"]}], ")"}]}], "+",
2890 RowBox[{
2891 SubscriptBox["\[Epsilon]",
2892 RowBox[{
2893 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
2894 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
2895 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "\[Delta]1"}]], " ",
2896 RowBox[{"(",
2897 RowBox[{
2898 SubsuperscriptBox["\<\"p\"\>", "2", "\[Delta]1"], "+",
2899 SubsuperscriptBox["\<\"p\"\>", "3", "\[Delta]1"], "+",
2900 SubsuperscriptBox["\<\"p\"\>", "4", "\[Delta]1"]}], ")"}]}]}],
2901 ")"}]}],
2902 SubscriptBox["f", "a"]]}]},
2903 {GridBox[{
2904 {
2905 OverscriptBox["dq", "\<\"-\"\>"], "1"},
2906 {"dq", "2"},
2907 {"ALP", "3"},
2908 {"H", "4"}
2909 },
2910 GridBoxAlignment->{
2911 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2912 "RowsIndexed" -> {}},
2913 GridBoxSpacings->{"Columns" -> {
2914 Offset[0.27999999999999997`], {
2915 Offset[0.7]},
2916 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2917 Offset[0.2], {
2918 Offset[0.1]},
2919 Offset[0.2]}, "RowsIndexed" -> {}}],
2920 RowBox[{"-",
2921 FractionBox[
2922 RowBox[{
2923 SubscriptBox["a", "D"], " ",
2924 SubscriptBox["\[Delta]",
2925 RowBox[{
2926 SubscriptBox["\<\"m\"\>", "1"], ",",
2927 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
2928 RowBox[{"(",
2929 RowBox[{
2930 RowBox[{"16", " ",
2931 SubscriptBox["c",
2932 RowBox[{"2", " ", "D"}]], " ",
2933 SuperscriptBox["\[Pi]", "2"], " ",
2934 SuperscriptBox["vev", "2"]}], "-",
2935 RowBox[{
2936 SubscriptBox["c", "17"], " ",
2937 RowBox[{
2938 SubscriptBox["\<\"p\"\>", "3"], ".",
2939 SubscriptBox["p", "3"]}]}]}], ")"}], " ",
2940 RowBox[{"(",
2941 RowBox[{
2942 RowBox[{
2943 SubsuperscriptBox[
2944 RowBox[{"(",
2945 TemplateBox[{"V","CKM"},
2946 "Superscript"], ")"}],
2947 RowBox[{
2948 SubscriptBox["\<\"f\"\>", "2"], ",",
2949 "Generation$1"}], "\<\"*\"\>"], " ",
2950 SubsuperscriptBox[
2951 RowBox[{"(",
2952 TemplateBox[{"y","d"},
2953 "Superscript"], ")"}],
2954 RowBox[{"Generation$1", ",",
2955 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
2956 SubscriptBox[
2957 SubscriptBox["P", "\<\"-\"\>"],
2958 RowBox[{
2959 SubscriptBox["\<\"s\"\>", "1"], ",",
2960 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
2961 RowBox[{
2962 SubscriptBox[
2963 TemplateBox[{"V","CKM"},
2964 "Superscript"],
2965 RowBox[{
2966 SubscriptBox["\<\"f\"\>", "1"], ",", "Generation$1"}]], " ",
2967 SubscriptBox[
2968 SubscriptBox["P", "\<\"+\"\>"],
2969 RowBox[{
2970 SubscriptBox["\<\"s\"\>", "1"], ",",
2971 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
2972 SubscriptBox[
2973 TemplateBox[{"y","d"},
2974 "Superscript"],
2975 RowBox[{"Generation$1", ",",
2976 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
2977 RowBox[{"4", " ",
2978 SqrtBox["2"], " ",
2979 SubscriptBox["f", "a"], " ",
2980 SuperscriptBox["\[Pi]", "2"], " ",
2981 SuperscriptBox["vev", "2"]}]]}]},
2982 {GridBox[{
2983 {
2984 OverscriptBox["dq", "\<\"-\"\>"], "1"},
2985 {"dq", "2"},
2986 {"ALP", "3"}
2987 },
2988 GridBoxAlignment->{
2989 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
2990 "RowsIndexed" -> {}},
2991 GridBoxSpacings->{"Columns" -> {
2992 Offset[0.27999999999999997`], {
2993 Offset[0.7]},
2994 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
2995 Offset[0.2], {
2996 Offset[0.1]},
2997 Offset[0.2]}, "RowsIndexed" -> {}}],
2998 RowBox[{"-",
2999 FractionBox[
3000 RowBox[{
3001 SubscriptBox["\[Delta]",
3002 RowBox[{
3003 SubscriptBox["\<\"m\"\>", "1"], ",",
3004 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
3005 RowBox[{"(",
3006 RowBox[{
3007 RowBox[{"16", " ",
3008 SubscriptBox["c",
3009 RowBox[{"2", " ", "D"}]], " ",
3010 SuperscriptBox["\[Pi]", "2"], " ",
3011 SuperscriptBox["vev", "2"]}], "-",
3012 RowBox[{
3013 SubscriptBox["c", "17"], " ",
3014 RowBox[{
3015 SubscriptBox["\<\"p\"\>", "3"], ".",
3016 SubscriptBox["p", "3"]}]}]}], ")"}], " ",
3017 RowBox[{"(",
3018 RowBox[{
3019 RowBox[{
3020 SubsuperscriptBox[
3021 RowBox[{"(",
3022 TemplateBox[{"V","CKM"},
3023 "Superscript"], ")"}],
3024 RowBox[{
3025 SubscriptBox["\<\"f\"\>", "2"], ",",
3026 "Generation$1"}], "\<\"*\"\>"], " ",
3027 SubsuperscriptBox[
3028 RowBox[{"(",
3029 TemplateBox[{"y","d"},
3030 "Superscript"], ")"}],
3031 RowBox[{"Generation$1", ",",
3032 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
3033 SubscriptBox[
3034 SubscriptBox["P", "\<\"-\"\>"],
3035 RowBox[{
3036 SubscriptBox["\<\"s\"\>", "1"], ",",
3037 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
3038 RowBox[{
3039 SubscriptBox[
3040 TemplateBox[{"V","CKM"},
3041 "Superscript"],
3042 RowBox[{
3043 SubscriptBox["\<\"f\"\>", "1"], ",", "Generation$1"}]], " ",
3044 SubscriptBox[
3045 SubscriptBox["P", "\<\"+\"\>"],
3046 RowBox[{
3047 SubscriptBox["\<\"s\"\>", "1"], ",",
3048 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
3049 SubscriptBox[
3050 TemplateBox[{"y","d"},
3051 "Superscript"],
3052 RowBox[{"Generation$1", ",",
3053 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
3054 RowBox[{"8", " ",
3055 SqrtBox["2"], " ",
3056 SubscriptBox["f", "a"], " ",
3057 SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]},
3058 {GridBox[{
3059 {
3060 OverscriptBox["l", "\<\"-\"\>"], "1"},
3061 {"l", "2"},
3062 {"ALP", "3"},
3063 {"H", "4"}
3064 },
3065 GridBoxAlignment->{
3066 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3067 "RowsIndexed" -> {}},
3068 GridBoxSpacings->{"Columns" -> {
3069 Offset[0.27999999999999997`], {
3070 Offset[0.7]},
3071 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3072 Offset[0.2], {
3073 Offset[0.1]},
3074 Offset[0.2]}, "RowsIndexed" -> {}}],
3075 RowBox[{"-",
3076 FractionBox[
3077 RowBox[{
3078 SubscriptBox["a", "L"], " ",
3079 RowBox[{"(",
3080 RowBox[{
3081 RowBox[{"16", " ",
3082 SubscriptBox["c",
3083 RowBox[{"2", " ", "D"}]], " ",
3084 SuperscriptBox["\[Pi]", "2"], " ",
3085 SuperscriptBox["vev", "2"]}], "-",
3086 RowBox[{
3087 SubscriptBox["c", "17"], " ",
3088 RowBox[{
3089 SubscriptBox["\<\"p\"\>", "3"], ".",
3090 SubscriptBox["p", "3"]}]}]}], ")"}], " ",
3091 RowBox[{"(",
3092 RowBox[{
3093 RowBox[{
3094 SubsuperscriptBox[
3095 RowBox[{"(",
3096 TemplateBox[{"y","l"},
3097 "Superscript"], ")"}],
3098 RowBox[{
3099 SubscriptBox["\<\"f\"\>", "2"], ",",
3100 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
3101 SubscriptBox[
3102 SubscriptBox["P", "\<\"-\"\>"],
3103 RowBox[{
3104 SubscriptBox["\<\"s\"\>", "1"], ",",
3105 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
3106 RowBox[{
3107 SubscriptBox[
3108 SubscriptBox["P", "\<\"+\"\>"],
3109 RowBox[{
3110 SubscriptBox["\<\"s\"\>", "1"], ",",
3111 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
3112 SubscriptBox[
3113 TemplateBox[{"y","l"},
3114 "Superscript"],
3115 RowBox[{
3116 SubscriptBox["\<\"f\"\>", "1"], ",",
3117 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
3118 RowBox[{"4", " ",
3119 SqrtBox["2"], " ",
3120 SubscriptBox["f", "a"], " ",
3121 SuperscriptBox["\[Pi]", "2"], " ",
3122 SuperscriptBox["vev", "2"]}]]}]},
3123 {GridBox[{
3124 {
3125 OverscriptBox["l", "\<\"-\"\>"], "1"},
3126 {"l", "2"},
3127 {"ALP", "3"}
3128 },
3129 GridBoxAlignment->{
3130 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3131 "RowsIndexed" -> {}},
3132 GridBoxSpacings->{"Columns" -> {
3133 Offset[0.27999999999999997`], {
3134 Offset[0.7]},
3135 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3136 Offset[0.2], {
3137 Offset[0.1]},
3138 Offset[0.2]}, "RowsIndexed" -> {}}],
3139 RowBox[{"-",
3140 FractionBox[
3141 RowBox[{
3142 RowBox[{"(",
3143 RowBox[{
3144 RowBox[{"16", " ",
3145 SubscriptBox["c",
3146 RowBox[{"2", " ", "D"}]], " ",
3147 SuperscriptBox["\[Pi]", "2"], " ",
3148 SuperscriptBox["vev", "2"]}], "-",
3149 RowBox[{
3150 SubscriptBox["c", "17"], " ",
3151 RowBox[{
3152 SubscriptBox["\<\"p\"\>", "3"], ".",
3153 SubscriptBox["p", "3"]}]}]}], ")"}], " ",
3154 RowBox[{"(",
3155 RowBox[{
3156 RowBox[{
3157 SubsuperscriptBox[
3158 RowBox[{"(",
3159 TemplateBox[{"y","l"},
3160 "Superscript"], ")"}],
3161 RowBox[{
3162 SubscriptBox["\<\"f\"\>", "2"], ",",
3163 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
3164 SubscriptBox[
3165 SubscriptBox["P", "\<\"-\"\>"],
3166 RowBox[{
3167 SubscriptBox["\<\"s\"\>", "1"], ",",
3168 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
3169 RowBox[{
3170 SubscriptBox[
3171 SubscriptBox["P", "\<\"+\"\>"],
3172 RowBox[{
3173 SubscriptBox["\<\"s\"\>", "1"], ",",
3174 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
3175 SubscriptBox[
3176 TemplateBox[{"y","l"},
3177 "Superscript"],
3178 RowBox[{
3179 SubscriptBox["\<\"f\"\>", "1"], ",",
3180 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
3181 RowBox[{"8", " ",
3182 SqrtBox["2"], " ",
3183 SubscriptBox["f", "a"], " ",
3184 SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]}]},
3185 {GridBox[{
3186 {
3187 OverscriptBox["uq", "\<\"-\"\>"], "1"},
3188 {"uq", "2"},
3189 {"ALP", "3"},
3190 {"H", "4"}
3191 },
3192 GridBoxAlignment->{
3193 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3194 "RowsIndexed" -> {}},
3195 GridBoxSpacings->{"Columns" -> {
3196 Offset[0.27999999999999997`], {
3197 Offset[0.7]},
3198 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3199 Offset[0.2], {
3200 Offset[0.1]},
3201 Offset[0.2]}, "RowsIndexed" -> {}}],
3202 FractionBox[
3203 RowBox[{
3204 SubscriptBox["a", "U"], " ",
3205 SubscriptBox["\[Delta]",
3206 RowBox[{
3207 SubscriptBox["\<\"m\"\>", "1"], ",",
3208 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
3209 RowBox[{"(",
3210 RowBox[{
3211 RowBox[{"16", " ",
3212 SubscriptBox["c",
3213 RowBox[{"2", " ", "D"}]], " ",
3214 SuperscriptBox["\[Pi]", "2"], " ",
3215 SuperscriptBox["vev", "2"]}], "-",
3216 RowBox[{
3217 SubscriptBox["c", "17"], " ",
3218 RowBox[{
3219 SubscriptBox["\<\"p\"\>", "3"], ".",
3220 SubscriptBox["p", "3"]}]}]}], ")"}], " ",
3221 RowBox[{"(",
3222 RowBox[{
3223 RowBox[{
3224 SubsuperscriptBox[
3225 RowBox[{"(",
3226 TemplateBox[{"y","u"},
3227 "Superscript"], ")"}],
3228 RowBox[{
3229 SubscriptBox["\<\"f\"\>", "2"], ",",
3230 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
3231 SubscriptBox[
3232 SubscriptBox["P", "\<\"-\"\>"],
3233 RowBox[{
3234 SubscriptBox["\<\"s\"\>", "1"], ",",
3235 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
3236 RowBox[{
3237 SubscriptBox[
3238 SubscriptBox["P", "\<\"+\"\>"],
3239 RowBox[{
3240 SubscriptBox["\<\"s\"\>", "1"], ",",
3241 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
3242 SubscriptBox[
3243 TemplateBox[{"y","u"},
3244 "Superscript"],
3245 RowBox[{
3246 SubscriptBox["\<\"f\"\>", "1"], ",",
3247 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
3248 RowBox[{"4", " ",
3249 SqrtBox["2"], " ",
3250 SubscriptBox["f", "a"], " ",
3251 SuperscriptBox["\[Pi]", "2"], " ",
3252 SuperscriptBox["vev", "2"]}]]},
3253 {GridBox[{
3254 {
3255 OverscriptBox["uq", "\<\"-\"\>"], "1"},
3256 {"uq", "2"},
3257 {"ALP", "3"}
3258 },
3259 GridBoxAlignment->{
3260 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3261 "RowsIndexed" -> {}},
3262 GridBoxSpacings->{"Columns" -> {
3263 Offset[0.27999999999999997`], {
3264 Offset[0.7]},
3265 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3266 Offset[0.2], {
3267 Offset[0.1]},
3268 Offset[0.2]}, "RowsIndexed" -> {}}],
3269 FractionBox[
3270 RowBox[{
3271 SubscriptBox["\[Delta]",
3272 RowBox[{
3273 SubscriptBox["\<\"m\"\>", "1"], ",",
3274 SubscriptBox["\<\"m\"\>", "2"]}]], " ",
3275 RowBox[{"(",
3276 RowBox[{
3277 RowBox[{"16", " ",
3278 SubscriptBox["c",
3279 RowBox[{"2", " ", "D"}]], " ",
3280 SuperscriptBox["\[Pi]", "2"], " ",
3281 SuperscriptBox["vev", "2"]}], "-",
3282 RowBox[{
3283 SubscriptBox["c", "17"], " ",
3284 RowBox[{
3285 SubscriptBox["\<\"p\"\>", "3"], ".",
3286 SubscriptBox["p", "3"]}]}]}], ")"}], " ",
3287 RowBox[{"(",
3288 RowBox[{
3289 RowBox[{
3290 SubsuperscriptBox[
3291 RowBox[{"(",
3292 TemplateBox[{"y","u"},
3293 "Superscript"], ")"}],
3294 RowBox[{
3295 SubscriptBox["\<\"f\"\>", "2"], ",",
3296 SubscriptBox["\<\"f\"\>", "1"]}], "\<\"*\"\>"], " ",
3297 SubscriptBox[
3298 SubscriptBox["P", "\<\"-\"\>"],
3299 RowBox[{
3300 SubscriptBox["\<\"s\"\>", "1"], ",",
3301 SubscriptBox["\<\"s\"\>", "2"]}]]}], "-",
3302 RowBox[{
3303 SubscriptBox[
3304 SubscriptBox["P", "\<\"+\"\>"],
3305 RowBox[{
3306 SubscriptBox["\<\"s\"\>", "1"], ",",
3307 SubscriptBox["\<\"s\"\>", "2"]}]], " ",
3308 SubscriptBox[
3309 TemplateBox[{"y","u"},
3310 "Superscript"],
3311 RowBox[{
3312 SubscriptBox["\<\"f\"\>", "1"], ",",
3313 SubscriptBox["\<\"f\"\>", "2"]}]]}]}], ")"}]}],
3314 RowBox[{"8", " ",
3315 SqrtBox["2"], " ",
3316 SubscriptBox["f", "a"], " ",
3317 SuperscriptBox["\[Pi]", "2"], " ", "vev"}]]},
3318 {GridBox[{
3319 {"ALP", "1"},
3320 {"H", "2"},
3321 {"W", "3"},
3322 {
3323 SuperscriptBox["W", "\[Dagger]"], "4"}
3324 },
3325 GridBoxAlignment->{
3326 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3327 "RowsIndexed" -> {}},
3328 GridBoxSpacings->{"Columns" -> {
3329 Offset[0.27999999999999997`], {
3330 Offset[0.7]},
3331 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3332 Offset[0.2], {
3333 Offset[0.1]},
3334 Offset[0.2]}, "RowsIndexed" -> {}}],
3335 RowBox[{"-",
3336 FractionBox[
3337 RowBox[{"e", " ",
3338 RowBox[{"(",
3339 RowBox[{
3340 RowBox[{
3341 SubsuperscriptBox["\<\"p\"\>", "1",
3342 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
3343 RowBox[{"(",
3344 RowBox[{
3345 RowBox[{
3346 SubscriptBox["a", "8"], " ",
3347 SubscriptBox["c", "8"], " ", "e", " ",
3348 SubsuperscriptBox["\<\"p\"\>", "3",
3349 SubscriptBox["\<\"\[Mu]\"\>", "3"]]}], "+",
3350 RowBox[{"4", " ", "\[Pi]", " ",
3351 SubscriptBox["s", "w"], " ",
3352 RowBox[{"(",
3353 RowBox[{
3354 RowBox[{
3355 SubscriptBox["a", "10"], " ",
3356 SubscriptBox["c", "10"], " ",
3357 SubsuperscriptBox["\<\"p\"\>", "2",
3358 SubscriptBox["\<\"\[Mu]\"\>", "3"]]}], "+",
3359 RowBox[{
3360 SubscriptBox["a", "6"], " ",
3361 SubscriptBox["c", "6"], " ",
3362 SubsuperscriptBox["\<\"p\"\>", "4",
3363 SubscriptBox["\<\"\[Mu]\"\>", "3"]]}]}], ")"}]}]}], ")"}]}],
3364 "-",
3365 RowBox[{
3366 SubsuperscriptBox["\<\"p\"\>", "1",
3367 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
3368 RowBox[{"(",
3369 RowBox[{
3370 RowBox[{"4", " ", "\[Pi]", " ",
3371 SubscriptBox["s", "w"], " ",
3372 RowBox[{"(",
3373 RowBox[{
3374 RowBox[{
3375 SubscriptBox["a", "10"], " ",
3376 SubscriptBox["c", "10"], " ",
3377 SubsuperscriptBox["\<\"p\"\>", "2",
3378 SubscriptBox["\<\"\[Mu]\"\>", "4"]]}], "+",
3379 RowBox[{
3380 SubscriptBox["a", "6"], " ",
3381 SubscriptBox["c", "6"], " ",
3382 SubsuperscriptBox["\<\"p\"\>", "3",
3383 SubscriptBox["\<\"\[Mu]\"\>", "4"]]}]}], ")"}]}], "+",
3384 RowBox[{
3385 SubscriptBox["a", "8"], " ",
3386 SubscriptBox["c", "8"], " ", "e", " ",
3387 SubsuperscriptBox["\<\"p\"\>", "4",
3388 SubscriptBox["\<\"\[Mu]\"\>", "4"]]}]}], ")"}]}], "+",
3389 RowBox[{"2", " ", "\[Pi]", " ",
3390 SubscriptBox["s", "w"], " ",
3391 RowBox[{"(",
3392 RowBox[{
3393 RowBox[{
3394 RowBox[{"-", "\[ImaginaryI]"}], " ",
3395 SubscriptBox["a", "2"], " ",
3396 SubscriptBox["c", "2"], " ",
3397 SubscriptBox["\[Epsilon]",
3398 RowBox[{
3399 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
3400 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1", ",",
3401 "mu$2"}]], " ",
3402 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
3403 RowBox[{"(",
3404 RowBox[{
3405 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"], "-",
3406 SubsuperscriptBox["\<\"p\"\>", "4", "mu$2"]}], ")"}]}], "+",
3407 RowBox[{"2", " ",
3408 SubscriptBox["a", "6"], " ",
3409 SubscriptBox["c", "6"], " ",
3410 SubscriptBox["\[Eta]",
3411 RowBox[{
3412 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
3413 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]], " ",
3414 RowBox[{"(",
3415 RowBox[{
3416 RowBox[{
3417 SubscriptBox["\<\"p\"\>", "1"], ".",
3418 SubscriptBox["p", "3"]}], "-",
3419 RowBox[{
3420 SubscriptBox["\<\"p\"\>", "1"], ".",
3421 SubscriptBox["p", "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}],
3422 RowBox[{"8", " ",
3423 SubscriptBox["f", "a"], " ",
3424 SuperscriptBox["\[Pi]", "2"], " ",
3425 SubsuperscriptBox["s", "w", "2"], " ", "vev"}]]}]},
3426 {GridBox[{
3427 {"A", "1"},
3428 {"ALP", "2"},
3429 {"W", "3"},
3430 {
3431 SuperscriptBox["W", "\[Dagger]"], "4"}
3432 },
3433 GridBoxAlignment->{
3434 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3435 "RowsIndexed" -> {}},
3436 GridBoxSpacings->{"Columns" -> {
3437 Offset[0.27999999999999997`], {
3438 Offset[0.7]},
3439 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3440 Offset[0.2], {
3441 Offset[0.1]},
3442 Offset[0.2]}, "RowsIndexed" -> {}}],
3443 FractionBox[
3444 RowBox[{"e", " ",
3445 RowBox[{"(",
3446 RowBox[{
3447 RowBox[{
3448 RowBox[{"-", "4"}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
3449 SubscriptBox["s", "w"], " ",
3450 SubscriptBox["\[Epsilon]",
3451 RowBox[{
3452 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3453 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
3454 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
3455 RowBox[{"(",
3456 RowBox[{
3457 RowBox[{
3458 RowBox[{"-",
3459 SubscriptBox["c", "2"]}], " ", "e", " ",
3460 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}], "+",
3461 RowBox[{"16", " ",
3462 SubscriptBox["c",
3463 OverscriptBox["W", "~"]], " ", "\[Pi]", " ",
3464 SubscriptBox["s", "w"], " ",
3465 RowBox[{"(",
3466 RowBox[{
3467 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], "+",
3468 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
3469 SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}]}],
3470 ")"}]}], "+",
3471 RowBox[{"e", " ",
3472 RowBox[{"(",
3473 RowBox[{
3474 RowBox[{
3475 SubscriptBox["c", "8"], " ", "e"}], "-",
3476 RowBox[{"4", " ",
3477 SubscriptBox["c", "6"], " ", "\[Pi]", " ",
3478 SubscriptBox["s", "w"]}]}], ")"}], " ",
3479 RowBox[{"(",
3480 RowBox[{
3481 RowBox[{
3482 SubsuperscriptBox["\<\"p\"\>", "2",
3483 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
3484 SubscriptBox["\[Eta]",
3485 RowBox[{
3486 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3487 SubscriptBox["\<\"\[Mu]\"\>", "3"]}]]}], "+",
3488 RowBox[{
3489 SubsuperscriptBox["\<\"p\"\>", "2",
3490 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
3491 SubscriptBox["\[Eta]",
3492 RowBox[{
3493 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3494 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}], "+",
3495 RowBox[{"8", " ",
3496 SubscriptBox["c", "6"], " ", "e", " ", "\[Pi]", " ",
3497 SubscriptBox["s", "w"], " ",
3498 SubsuperscriptBox["\<\"p\"\>", "2",
3499 SubscriptBox["\<\"\[Mu]\"\>", "1"]], " ",
3500 SubscriptBox["\[Eta]",
3501 RowBox[{
3502 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
3503 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}],
3504 RowBox[{"16", " ",
3505 SubscriptBox["f", "a"], " ",
3506 SuperscriptBox["\[Pi]", "2"], " ",
3507 SubsuperscriptBox["s", "w", "2"]}]]},
3508 {GridBox[{
3509 {"ALP", "1"},
3510 {"W", "2"},
3511 {
3512 SuperscriptBox["W", "\[Dagger]"], "3"},
3513 {"Z", "4"}
3514 },
3515 GridBoxAlignment->{
3516 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3517 "RowsIndexed" -> {}},
3518 GridBoxSpacings->{"Columns" -> {
3519 Offset[0.27999999999999997`], {
3520 Offset[0.7]},
3521 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3522 Offset[0.2], {
3523 Offset[0.1]},
3524 Offset[0.2]}, "RowsIndexed" -> {}}],
3525 FractionBox[
3526 RowBox[{"e", " ",
3527 RowBox[{"(",
3528 RowBox[{
3529 RowBox[{
3530 RowBox[{"-", "4"}], " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
3531 SubscriptBox["s", "w"], " ",
3532 SubscriptBox["\[Epsilon]",
3533 RowBox[{
3534 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",",
3535 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
3536 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",", "mu$1"}]], " ",
3537 RowBox[{"(",
3538 RowBox[{
3539 RowBox[{"e", " ",
3540 RowBox[{"(",
3541 RowBox[{
3542 RowBox[{"3", " ",
3543 SubscriptBox["c", "2"]}], "+",
3544 RowBox[{"2", " ",
3545 SubscriptBox["c", "7"]}], "-",
3546 RowBox[{"2", " ",
3547 SubscriptBox["c", "2"], " ",
3548 SubsuperscriptBox["s", "w", "2"]}]}], ")"}], " ",
3549 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"]}], "+",
3550 RowBox[{"32", " ",
3551 SubscriptBox["c",
3552 OverscriptBox["W", "~"]], " ", "\[Pi]", " ",
3553 SubscriptBox["s", "w"], " ",
3554 RowBox[{"(",
3555 RowBox[{
3556 RowBox[{"-", "1"}], "+",
3557 SubsuperscriptBox["s", "w", "2"]}], ")"}], " ",
3558 RowBox[{"(",
3559 RowBox[{
3560 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"], "+",
3561 SubsuperscriptBox["\<\"p\"\>", "3", "mu$1"], "+",
3562 SubsuperscriptBox["\<\"p\"\>", "4", "mu$1"]}], ")"}]}]}],
3563 ")"}]}], "+",
3564 RowBox[{"e", " ",
3565 RowBox[{"(",
3566 RowBox[{
3567 RowBox[{"2", " ",
3568 RowBox[{"(",
3569 RowBox[{
3570 RowBox[{
3571 SubscriptBox["c", "5"], " ", "e"}], "-",
3572 RowBox[{"8", " ",
3573 SubscriptBox["c", "6"], " ", "\[Pi]", " ",
3574 SubscriptBox["s", "w"], " ",
3575 RowBox[{"(",
3576 RowBox[{
3577 RowBox[{"-", "1"}], "+",
3578 SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}], " ",
3579 SubsuperscriptBox["\<\"p\"\>", "1",
3580 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
3581 SubscriptBox["\[Eta]",
3582 RowBox[{
3583 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
3584 SubscriptBox["\<\"\[Mu]\"\>", "3"]}]]}], "+",
3585 RowBox[{
3586 RowBox[{"(",
3587 RowBox[{
3588 RowBox[{
3589 SubscriptBox["c", "4"], " ", "e"}], "+",
3590 RowBox[{"2", " ",
3591 SubscriptBox["s", "w"], " ",
3592 RowBox[{"(",
3593 RowBox[{
3594 RowBox[{
3595 RowBox[{"-",
3596 SubscriptBox["c", "8"]}], " ", "e", " ",
3597 SubscriptBox["s", "w"]}], "+",
3598 RowBox[{"4", " ",
3599 SubscriptBox["c", "6"], " ", "\[Pi]", " ",
3600 RowBox[{"(",
3601 RowBox[{
3602 RowBox[{"-", "1"}], "+",
3603 SubsuperscriptBox["s", "w", "2"]}], ")"}]}]}], ")"}]}]}],
3604 ")"}], " ",
3605 RowBox[{"(",
3606 RowBox[{
3607 RowBox[{
3608 SubsuperscriptBox["\<\"p\"\>", "1",
3609 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
3610 SubscriptBox["\[Eta]",
3611 RowBox[{
3612 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
3613 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}], "+",
3614 RowBox[{
3615 SubsuperscriptBox["\<\"p\"\>", "1",
3616 SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
3617 SubscriptBox["\[Eta]",
3618 RowBox[{
3619 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
3620 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}]}],
3621 ")"}]}]}], ")"}]}],
3622 RowBox[{"32", " ",
3623 SubscriptBox["c", "w"], " ",
3624 SubscriptBox["f", "a"], " ",
3625 SuperscriptBox["\[Pi]", "2"], " ",
3626 SubsuperscriptBox["s", "w", "3"]}]]},
3627 {GridBox[{
3628 {"A", "1"},
3629 {"ALP", "2"},
3630 {"H", "3"},
3631 {"Z", "4"}
3632 },
3633 GridBoxAlignment->{
3634 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3635 "RowsIndexed" -> {}},
3636 GridBoxSpacings->{"Columns" -> {
3637 Offset[0.27999999999999997`], {
3638 Offset[0.7]},
3639 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3640 Offset[0.2], {
3641 Offset[0.1]},
3642 Offset[0.2]}, "RowsIndexed" -> {}}],
3643 RowBox[{"-",
3644 FractionBox[
3645 RowBox[{"\[ImaginaryI]", " ", "e", " ",
3646 RowBox[{"(",
3647 RowBox[{
3648 RowBox[{"2", " ",
3649 SubscriptBox["a", "1"], " ",
3650 SubscriptBox["c", "1"], " ",
3651 SubscriptBox["c", "w"]}], "+",
3652 RowBox[{
3653 SubscriptBox["a", "2"], " ",
3654 SubscriptBox["c", "2"], " ",
3655 SubscriptBox["s", "w"]}], "+",
3656 RowBox[{"2", " ",
3657 SubscriptBox["a", "7"], " ",
3658 SubscriptBox["c", "7"], " ",
3659 SubscriptBox["s", "w"]}]}], ")"}], " ",
3660 SubscriptBox["\[Epsilon]",
3661 RowBox[{
3662 SubscriptBox["\<\"\[Mu]\"\>", "1"], ",",
3663 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "mu$1", ",", "mu$2"}]],
3664 " ",
3665 SubsuperscriptBox["\<\"p\"\>", "1", "mu$2"], " ",
3666 SubsuperscriptBox["\<\"p\"\>", "2", "mu$1"]}],
3667 RowBox[{"4", " ",
3668 SubscriptBox["c", "w"], " ",
3669 SubscriptBox["f", "a"], " ", "\[Pi]", " ",
3670 SubscriptBox["s", "w"], " ", "vev"}]]}]},
3671 {GridBox[{
3672 {"ALP", "1"},
3673 {"H", "2"},
3674 {"Z", "3"},
3675 {"Z", "4"}
3676 },
3677 GridBoxAlignment->{
3678 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3679 "RowsIndexed" -> {}},
3680 GridBoxSpacings->{"Columns" -> {
3681 Offset[0.27999999999999997`], {
3682 Offset[0.7]},
3683 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3684 Offset[0.2], {
3685 Offset[0.1]},
3686 Offset[0.2]}, "RowsIndexed" -> {}}],
3687 FractionBox[
3688 RowBox[{"\[ImaginaryI]", " ", "e", " ",
3689 RowBox[{"(",
3690 RowBox[{
3691 RowBox[{
3692 SubscriptBox["a", "2"], " ",
3693 SubscriptBox["c", "2"], " ",
3694 SubscriptBox["c", "w"]}], "+",
3695 RowBox[{"2", " ",
3696 SubscriptBox["a", "7"], " ",
3697 SubscriptBox["c", "7"], " ",
3698 SubscriptBox["c", "w"]}], "-",
3699 RowBox[{"2", " ",
3700 SubscriptBox["a", "1"], " ",
3701 SubscriptBox["c", "1"], " ",
3702 SubscriptBox["s", "w"]}]}], ")"}], " ",
3703 SubscriptBox["\[Epsilon]",
3704 RowBox[{
3705 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
3706 SubscriptBox["\<\"\[Mu]\"\>", "4"], ",", "mu$1", ",", "mu$2"}]], " ",
3707 SubsuperscriptBox["\<\"p\"\>", "1", "mu$1"], " ",
3708 RowBox[{"(",
3709 RowBox[{
3710 RowBox[{"-",
3711 SubsuperscriptBox["\<\"p\"\>", "3", "mu$2"]}], "+",
3712 SubsuperscriptBox["\<\"p\"\>", "4", "mu$2"]}], ")"}]}],
3713 RowBox[{"4", " ",
3714 SubscriptBox["c", "w"], " ",
3715 SubscriptBox["f", "a"], " ", "\[Pi]", " ",
3716 SubscriptBox["s", "w"], " ", "vev"}]]},
3717 {GridBox[{
3718 {"ALP", "1"},
3719 {"Z", "2"},
3720 {"Z", "3"},
3721 {"Z", "4"}
3722 },
3723 GridBoxAlignment->{
3724 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3725 "RowsIndexed" -> {}},
3726 GridBoxSpacings->{"Columns" -> {
3727 Offset[0.27999999999999997`], {
3728 Offset[0.7]},
3729 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3730 Offset[0.2], {
3731 Offset[0.1]},
3732 Offset[0.2]}, "RowsIndexed" -> {}}],
3733 FractionBox[
3734 RowBox[{
3735 RowBox[{"(",
3736 RowBox[{
3737 SubscriptBox["c", "4"], "+",
3738 SubscriptBox["c", "5"], "+",
3739 RowBox[{"2", " ",
3740 SubscriptBox["c", "9"]}]}], ")"}], " ",
3741 SuperscriptBox["e", "3"], " ",
3742 RowBox[{"(",
3743 RowBox[{
3744 RowBox[{
3745 SubsuperscriptBox["\<\"p\"\>", "1",
3746 SubscriptBox["\<\"\[Mu]\"\>", "4"]], " ",
3747 SubscriptBox["\[Eta]",
3748 RowBox[{
3749 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
3750 SubscriptBox["\<\"\[Mu]\"\>", "3"]}]]}], "+",
3751 RowBox[{
3752 SubsuperscriptBox["\<\"p\"\>", "1",
3753 SubscriptBox["\<\"\[Mu]\"\>", "3"]], " ",
3754 SubscriptBox["\[Eta]",
3755 RowBox[{
3756 SubscriptBox["\<\"\[Mu]\"\>", "2"], ",",
3757 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}], "+",
3758 RowBox[{
3759 SubsuperscriptBox["\<\"p\"\>", "1",
3760 SubscriptBox["\<\"\[Mu]\"\>", "2"]], " ",
3761 SubscriptBox["\[Eta]",
3762 RowBox[{
3763 SubscriptBox["\<\"\[Mu]\"\>", "3"], ",",
3764 SubscriptBox["\<\"\[Mu]\"\>", "4"]}]]}]}], ")"}]}],
3765 RowBox[{"16", " ",
3766 SubsuperscriptBox["c", "w", "3"], " ",
3767 SubscriptBox["f", "a"], " ",
3768 SuperscriptBox["\[Pi]", "2"], " ",
3769 SubsuperscriptBox["s", "w", "3"]}]]}
3770 },
3771 GridBoxAlignment->{
3772 "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
3773 "RowsIndexed" -> {}},
3774 GridBoxSpacings->{"Columns" -> {
3775 Offset[0.27999999999999997`], {
3776 Offset[2.0999999999999996`]},
3777 Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
3778 Offset[0.2], {
3779 Offset[0.4]},
3780 Offset[0.2]}, "RowsIndexed" -> {}}],
3781 TableForm[{{{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {FeynRules`H, 3}, {
3782 FeynRules`H, 4}}, Rational[-1, 2] $CellContext`fa^(-1)
3783 Pi^(-1) ($CellContext`b3 $CellContext`C3 $CellContext`cw + \
3784$CellContext`b10 $CellContext`C10 $CellContext`sw) $CellContext`vev^(-2) ((
3785 FeynRules`FV[3,
3786 FeynRules`Index[FeynRules`Lorentz,
3787 FeynRules`Ext[1]]] + FeynRules`FV[4,
3788 FeynRules`Index[FeynRules`Lorentz,
3789 FeynRules`Ext[1]]]) FeynRules`SP[1, 2] - FeynRules`FV[2,
3790 FeynRules`Index[FeynRules`Lorentz,
3791 FeynRules`Ext[1]]] (FeynRules`SP[1, 3] +
3792 FeynRules`SP[1, 4]))}, {{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {
3793 FeynRules`H, 3}}, Rational[1, 2] $CellContext`fa^(-1)
3794 Pi^(-1) ($CellContext`a3 $CellContext`C3 $CellContext`cw + \
3795$CellContext`a10 $CellContext`C10 $CellContext`sw) $CellContext`vev^(-1) (-
3796 FeynRules`FV[3,
3797 FeynRules`Index[FeynRules`Lorentz,
3798 FeynRules`Ext[1]]] FeynRules`SP[1, 2] + FeynRules`FV[2,
3799 FeynRules`Index[FeynRules`Lorentz,
3800 FeynRules`Ext[1]]] FeynRules`SP[1, 3])}, {{{$CellContext`ALP, 1}, {
3801 FeynRules`H, 2}, {FeynRules`H, 3}, {$CellContext`Z, 4}},
3802 Rational[1, 8] $CellContext`cw^(-1) $CellContext`fa^(-1)
3803 Pi^(-2) $CellContext`sw^(-1) $CellContext`vev^(-2) (
3804 FeynRules`ee (FeynRules`FV[3,
3805 FeynRules`Index[FeynRules`Lorentz,
3806 FeynRules`Ext[4]]] ($CellContext`b11 $CellContext`C11
3807 FeynRules`SP[1, 1] +
3808 2 $CellContext`a16 $CellContext`a16prime $CellContext`C16
3809 FeynRules`SP[1, 2] + $CellContext`b14 $CellContext`C14 (
3810 FeynRules`SP[1, 2] + FeynRules`SP[1, 3])) + FeynRules`FV[2,
3811 FeynRules`Index[FeynRules`Lorentz,
3812 FeynRules`Ext[4]]] ($CellContext`b11 $CellContext`C11
3813 FeynRules`SP[1, 1] +
3814 2 $CellContext`a16 $CellContext`a16prime $CellContext`C16
3815 FeynRules`SP[1, 3] + $CellContext`b14 $CellContext`C14 (
3816 FeynRules`SP[1, 2] + FeynRules`SP[1, 3]))) +
3817 4 Pi $CellContext`sw ($CellContext`b3 $CellContext`C3 $CellContext`cw \
3818$CellContext`sw + $CellContext`b10 $CellContext`C10 (-1 + $CellContext`sw^2)) \
3819(FeynRules`FV[2,
3820 FeynRules`Index[FeynRules`Lorentz,
3821 FeynRules`Ext[4]]] + FeynRules`FV[3,
3822 FeynRules`Index[FeynRules`Lorentz,
3823 FeynRules`Ext[4]]]) FeynRules`SP[1, 4] - FeynRules`FV[1,
3824 FeynRules`Index[FeynRules`Lorentz,
3825 FeynRules`Ext[4]]] (
3826 16 $CellContext`b2D $CellContext`C2D FeynRules`ee
3827 Pi^2 $CellContext`vev^2 -
3828 FeynRules`ee ($CellContext`b17 $CellContext`C17
3829 FeynRules`SP[1, 1] + $CellContext`b12 $CellContext`C12 (
3830 FeynRules`SP[1, 2] + FeynRules`SP[1, 3]) +
3831 4 $CellContext`a15 $CellContext`a15prime $CellContext`C15
3832 FeynRules`SP[2, 3] + $CellContext`b13 $CellContext`C13 (
3833 FeynRules`SP[2, 2] + 2 FeynRules`SP[2, 3] + FeynRules`SP[3, 3])) +
3834 4 Pi $CellContext`sw ($CellContext`b3 $CellContext`C3 $CellContext`cw \
3835$CellContext`sw + $CellContext`b10 $CellContext`C10 (-1 + $CellContext`sw^2)) \
3836(FeynRules`SP[2, 4] + FeynRules`SP[3, 4])))}, {{{$CellContext`ALP, 1}, {
3837 FeynRules`H, 2}, {$CellContext`Z, 3}},
3838 Rational[1, 8] $CellContext`cw^(-1) $CellContext`fa^(-1)
3839 Pi^(-2) $CellContext`sw^(-1) $CellContext`vev^(-1) (FeynRules`FV[2,
3840 FeynRules`Index[FeynRules`Lorentz,
3841 FeynRules`Ext[3]]] ($CellContext`a11 $CellContext`C11 FeynRules`ee
3842 FeynRules`SP[1, 1] + $CellContext`a14 $CellContext`C14 FeynRules`ee
3843 FeynRules`SP[1, 2] +
3844 4 Pi $CellContext`sw ($CellContext`a3 $CellContext`C3 $CellContext`cw \
3845$CellContext`sw + $CellContext`a10 $CellContext`C10 (-1 + $CellContext`sw^2))
3846 FeynRules`SP[1, 3]) + FeynRules`FV[1,
3847 FeynRules`Index[FeynRules`Lorentz,
3848 FeynRules`Ext[3]]] (
3849 FeynRules`ee ((-16) $CellContext`a2D $CellContext`C2D
3850 Pi^2 $CellContext`vev^2 + $CellContext`a17 $CellContext`C17
3851 FeynRules`SP[1, 1] + $CellContext`a12 $CellContext`C12
3852 FeynRules`SP[1, 2] + $CellContext`a13 $CellContext`C13
3853 FeynRules`SP[2, 2]) - 4
3854 Pi $CellContext`sw ($CellContext`a3 $CellContext`C3 $CellContext`cw \
3855$CellContext`sw + $CellContext`a10 $CellContext`C10 (-1 + $CellContext`sw^2))
3856 FeynRules`SP[2, 3]))}, {{{$CellContext`A, 1}, {$CellContext`A,
3857 2}, {$CellContext`ALP, 3}},
3858 Complex[0, -2] $CellContext`fa^(-1) (-$CellContext`CBtil + \
3859($CellContext`CBtil - $CellContext`CWtil) $CellContext`sw^2) FeynRules`Eps[
3860 FeynRules`Index[FeynRules`Lorentz,
3861 FeynRules`Ext[1]],
3862 FeynRules`Index[FeynRules`Lorentz,
3863 FeynRules`Ext[2]],
3864 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
3865 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[1,
3866 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
3867 FeynRules`FV[2,
3868 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
3869 FeynRules`FV[1,
3870 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] FeynRules`FV[2,
3871 FeynRules`Index[
3872 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP, 1}, {
3873 FeynRules`G, 2}, {FeynRules`G, 3}}, Complex[0,
3874 Rational[1, 2]] $CellContext`CGtil $CellContext`fa^(-1) (
3875 FeynRules`Eps[
3876 FeynRules`Index[FeynRules`Lorentz,
3877 FeynRules`Ext[2]],
3878 FeynRules`Index[FeynRules`Lorentz,
3879 FeynRules`Ext[3]],
3880 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
3881 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
3882 FeynRules`FV[2,
3883 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
3884 FeynRules`FV[3,
3885 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
3886 FeynRules`FV[2,
3887 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
3888 FeynRules`FV[3,
3889 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
3890 FeynRules`Eps[
3891 FeynRules`Index[FeynRules`Lorentz,
3892 FeynRules`Ext[2]],
3893 FeynRules`Index[FeynRules`Lorentz,
3894 FeynRules`Ext[3]],
3895 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
3896 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (-
3897 FeynRules`FV[2,
3898 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
3899 FeynRules`FV[3,
3900 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
3901 FeynRules`FV[2,
3902 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]
3903 FeynRules`FV[3,
3904 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
3905 FeynRules`Eps[
3906 FeynRules`Index[FeynRules`Lorentz,
3907 FeynRules`Ext[2]],
3908 FeynRules`Index[FeynRules`Lorentz,
3909 FeynRules`Ext[3]],
3910 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1],
3911 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
3912 FeynRules`FV[2,
3913 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
3914 FeynRules`FV[3,
3915 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] -
3916 FeynRules`FV[2,
3917 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]
3918 FeynRules`FV[3,
3919 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]) +
3920 FeynRules`Eps[
3921 FeynRules`Index[FeynRules`Lorentz,
3922 FeynRules`Ext[2]],
3923 FeynRules`Index[FeynRules`Lorentz,
3924 FeynRules`Ext[3]],
3925 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1],
3926 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
3927 FeynRules`FV[2,
3928 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]
3929 FeynRules`FV[3,
3930 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] -
3931 FeynRules`FV[2,
3932 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]
3933 FeynRules`FV[3,
3934 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]]))
3935 FeynRules`IndexDelta[
3936 FeynRules`Index[FeynRules`Gluon,
3937 FeynRules`Ext[2]],
3938 FeynRules`Index[FeynRules`Gluon,
3939 FeynRules`Ext[3]]]}, {{{$CellContext`ALP, 1}, {
3940 FeynRules`W, 2}, {$CellContext`Wbar, 3}},
3941 Rational[1, 16] $CellContext`fa^(-1)
3942 Pi^(-2) $CellContext`sw^(-2) (
3943 Complex[0, 2] Pi $CellContext`sw FeynRules`Eps[
3944 FeynRules`Index[FeynRules`Lorentz,
3945 FeynRules`Ext[2]],
3946 FeynRules`Index[FeynRules`Lorentz,
3947 FeynRules`Ext[3]],
3948 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
3949 FeynRules`Index[
3950 FeynRules`Lorentz, $CellContext`mu$2]] ($CellContext`C2 FeynRules`ee
3951 FeynRules`FV[1,
3952 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (-
3953 FeynRules`FV[2,
3954 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] +
3955 FeynRules`FV[3,
3956 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]) +
3957 16 $CellContext`CWtil Pi $CellContext`sw (FeynRules`FV[2,
3958 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
3959 FeynRules`FV[3,
3960 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
3961 FeynRules`FV[2,
3962 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
3963 FeynRules`FV[3,
3964 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]])) -
3965 FeynRules`ee (FeynRules`FV[1,
3966 FeynRules`Index[FeynRules`Lorentz,
3967 FeynRules`Ext[3]]] ($CellContext`C8 FeynRules`ee FeynRules`FV[2,
3968 FeynRules`Index[FeynRules`Lorentz,
3969 FeynRules`Ext[2]]] +
3970 4 $CellContext`C6 Pi $CellContext`sw FeynRules`FV[3,
3971 FeynRules`Index[FeynRules`Lorentz,
3972 FeynRules`Ext[2]]]) - FeynRules`FV[1,
3973 FeynRules`Index[FeynRules`Lorentz,
3974 FeynRules`Ext[2]]] (
3975 4 $CellContext`C6 Pi $CellContext`sw FeynRules`FV[2,
3976 FeynRules`Index[FeynRules`Lorentz,
3977 FeynRules`Ext[3]]] + $CellContext`C8 FeynRules`ee
3978 FeynRules`FV[3,
3979 FeynRules`Index[FeynRules`Lorentz,
3980 FeynRules`Ext[3]]]) +
3981 4 $CellContext`C6 Pi $CellContext`sw FeynRules`ME[
3982 FeynRules`Index[FeynRules`Lorentz,
3983 FeynRules`Ext[2]],
3984 FeynRules`Index[FeynRules`Lorentz,
3985 FeynRules`Ext[3]]] (FeynRules`SP[1, 2] - FeynRules`SP[
3986 1, 3])))}, {{{$CellContext`A, 1}, {$CellContext`ALP,
3987 2}, {$CellContext`Z, 3}}, Complex[0,
3988 Rational[-1, 8]] $CellContext`cw^(-1) $CellContext`fa^(-1)
3989 Pi^(-1) $CellContext`sw^(-1) FeynRules`Eps[
3990 FeynRules`Index[FeynRules`Lorentz,
3991 FeynRules`Ext[1]],
3992 FeynRules`Index[FeynRules`Lorentz,
3993 FeynRules`Ext[3]],
3994 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
3995 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (FeynRules`FV[1,
3996 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (
3997 FeynRules`ee (
3998 2 $CellContext`C1 $CellContext`cw + ($CellContext`C2 +
3999 2 $CellContext`C7) $CellContext`sw) FeynRules`FV[2,
4000 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
4001 16 ($CellContext`CBtil - $CellContext`CWtil)
4002 Pi $CellContext`sw^2 (-1 + $CellContext`sw^2) FeynRules`FV[3,
4003 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]) +
4004 16 ($CellContext`CBtil - $CellContext`CWtil)
4005 Pi $CellContext`sw^2 (-1 + $CellContext`sw^2) FeynRules`FV[1,
4006 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
4007 FeynRules`FV[3,
4008 FeynRules`Index[
4009 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP,
4010 1}, {$CellContext`Z, 2}, {$CellContext`Z, 3}}, Complex[0,
4011 Rational[-1, 8]] $CellContext`cw^(-1) $CellContext`fa^(-1)
4012 Pi^(-1) $CellContext`sw^(-1) FeynRules`Eps[
4013 FeynRules`Index[FeynRules`Lorentz,
4014 FeynRules`Ext[2]],
4015 FeynRules`Index[FeynRules`Lorentz,
4016 FeynRules`Ext[3]],
4017 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
4018 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] (
4019 FeynRules`ee ($CellContext`C2 $CellContext`cw +
4020 2 $CellContext`C7 $CellContext`cw - 2 $CellContext`C1 $CellContext`sw)
4021 FeynRules`FV[1,
4022 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (
4023 FeynRules`FV[2,
4024 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] -
4025 FeynRules`FV[3,
4026 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]) +
4027 16 $CellContext`cw
4028 Pi $CellContext`sw (-$CellContext`CWtil + (-$CellContext`CBtil + \
4029$CellContext`CWtil) $CellContext`sw^2) (FeynRules`FV[2,
4030 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
4031 FeynRules`FV[3,
4032 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] -
4033 FeynRules`FV[2,
4034 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]]
4035 FeynRules`FV[3,
4036 FeynRules`Index[
4037 FeynRules`Lorentz, $CellContext`mu$2]]))}, {{{$CellContext`ALP,
4038 1}, {FeynRules`G, 2}, {FeynRules`G, 3}, {
4039 FeynRules`G, 4}}, -$CellContext`CGtil $CellContext`fa^(-1) FeynRules`gs
4040 FeynRules`f[
4041 FeynRules`Index[FeynRules`Gluon,
4042 FeynRules`Ext[2]],
4043 FeynRules`Index[FeynRules`Gluon,
4044 FeynRules`Ext[3]],
4045 FeynRules`Index[FeynRules`Gluon,
4046 FeynRules`Ext[4]]] (FeynRules`Eps[
4047 FeynRules`Index[FeynRules`Lorentz,
4048 FeynRules`Ext[2]],
4049 FeynRules`Index[FeynRules`Lorentz,
4050 FeynRules`Ext[3]],
4051 FeynRules`Index[FeynRules`Lorentz,
4052 FeynRules`Ext[4]],
4053 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] (
4054 FeynRules`FV[2,
4055 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
4056 FeynRules`FV[3,
4057 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]] +
4058 FeynRules`FV[4,
4059 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Alpha]1]]) +
4060 FeynRules`Eps[
4061 FeynRules`Index[FeynRules`Lorentz,
4062 FeynRules`Ext[2]],
4063 FeynRules`Index[FeynRules`Lorentz,
4064 FeynRules`Ext[3]],
4065 FeynRules`Index[FeynRules`Lorentz,
4066 FeynRules`Ext[4]],
4067 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] (
4068 FeynRules`FV[2,
4069 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
4070 FeynRules`FV[3,
4071 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]] +
4072 FeynRules`FV[4,
4073 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Beta]1]]) +
4074 FeynRules`Eps[
4075 FeynRules`Index[FeynRules`Lorentz,
4076 FeynRules`Ext[2]],
4077 FeynRules`Index[FeynRules`Lorentz,
4078 FeynRules`Ext[3]],
4079 FeynRules`Index[FeynRules`Lorentz,
4080 FeynRules`Ext[4]],
4081 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] (
4082 FeynRules`FV[2,
4083 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
4084 FeynRules`FV[3,
4085 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]] +
4086 FeynRules`FV[4,
4087 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Gamma]1]]) +
4088 FeynRules`Eps[
4089 FeynRules`Index[FeynRules`Lorentz,
4090 FeynRules`Ext[2]],
4091 FeynRules`Index[FeynRules`Lorentz,
4092 FeynRules`Ext[3]],
4093 FeynRules`Index[FeynRules`Lorentz,
4094 FeynRules`Ext[4]],
4095 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] (
4096 FeynRules`FV[2,
4097 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
4098 FeynRules`FV[3,
4099 FeynRules`Index[FeynRules`Lorentz, $CellContext`\[Delta]1]] +
4100 FeynRules`FV[4,
4101 FeynRules`Index[
4102 FeynRules`Lorentz, $CellContext`\[Delta]1]]))}, \
4103{{{$CellContext`dqbar, 1}, {$CellContext`dq, 2}, {$CellContext`ALP, 3}, {
4104 FeynRules`H, 4}}, Rational[-1, 4]
4105 2^Rational[-1, 2] $CellContext`aD $CellContext`fa^(-1)
4106 Pi^(-2) $CellContext`vev^(-2) FeynRules`IndexDelta[
4107 FeynRules`Index[FeynRules`Colour,
4108 FeynRules`Ext[1]],
4109 FeynRules`Index[FeynRules`Colour,
4110 FeynRules`Ext[2]]] (
4111 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
4112 FeynRules`SP[3, 3]) (Conjugate[
4113 $CellContext`CKM[
4114 FeynRules`Index[$CellContext`Generation,
4115 FeynRules`Ext[2]],
4116
4117 FeynRules`Index[$CellContext`Generation, \
4118$CellContext`Generation$1]]] Conjugate[
4119 $CellContext`yd[
4120 FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
4121 FeynRules`Index[$CellContext`Generation,
4122 FeynRules`Ext[1]]]] FeynRules`ProjM[
4123 FeynRules`Index[FeynRules`Spin,
4124 FeynRules`Ext[1]],
4125 FeynRules`Index[FeynRules`Spin,
4126 FeynRules`Ext[2]]] - $CellContext`CKM[
4127 FeynRules`Index[$CellContext`Generation,
4128 FeynRules`Ext[1]],
4129 FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1]]
4130 FeynRules`ProjP[
4131 FeynRules`Index[FeynRules`Spin,
4132 FeynRules`Ext[1]],
4133 FeynRules`Index[FeynRules`Spin,
4134 FeynRules`Ext[2]]] $CellContext`yd[
4135 FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
4136 FeynRules`Index[$CellContext`Generation,
4137 FeynRules`Ext[2]]])}, {{{$CellContext`dqbar, 1}, {$CellContext`dq,
4138 2}, {$CellContext`ALP, 3}}, Rational[-1, 8]
4139 2^Rational[-1, 2] $CellContext`fa^(-1) Pi^(-2) $CellContext`vev^(-1)
4140 FeynRules`IndexDelta[
4141 FeynRules`Index[FeynRules`Colour,
4142 FeynRules`Ext[1]],
4143 FeynRules`Index[FeynRules`Colour,
4144 FeynRules`Ext[2]]] (
4145 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
4146 FeynRules`SP[3, 3]) (Conjugate[
4147 $CellContext`CKM[
4148 FeynRules`Index[$CellContext`Generation,
4149 FeynRules`Ext[2]],
4150
4151 FeynRules`Index[$CellContext`Generation, \
4152$CellContext`Generation$1]]] Conjugate[
4153 $CellContext`yd[
4154 FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
4155 FeynRules`Index[$CellContext`Generation,
4156 FeynRules`Ext[1]]]] FeynRules`ProjM[
4157 FeynRules`Index[FeynRules`Spin,
4158 FeynRules`Ext[1]],
4159 FeynRules`Index[FeynRules`Spin,
4160 FeynRules`Ext[2]]] - $CellContext`CKM[
4161 FeynRules`Index[$CellContext`Generation,
4162 FeynRules`Ext[1]],
4163 FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1]]
4164 FeynRules`ProjP[
4165 FeynRules`Index[FeynRules`Spin,
4166 FeynRules`Ext[1]],
4167 FeynRules`Index[FeynRules`Spin,
4168 FeynRules`Ext[2]]] $CellContext`yd[
4169 FeynRules`Index[$CellContext`Generation, $CellContext`Generation$1],
4170 FeynRules`Index[$CellContext`Generation,
4171 FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
4172 FeynRules`l, 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}},
4173 Rational[-1, 4] 2^Rational[-1, 2] $CellContext`aL $CellContext`fa^(-1)
4174 Pi^(-2) $CellContext`vev^(-2) (
4175 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
4176 FeynRules`SP[3, 3]) (Conjugate[
4177 $CellContext`yl[
4178 FeynRules`Index[$CellContext`Generation,
4179 FeynRules`Ext[2]],
4180 FeynRules`Index[$CellContext`Generation,
4181 FeynRules`Ext[1]]]] FeynRules`ProjM[
4182 FeynRules`Index[FeynRules`Spin,
4183 FeynRules`Ext[1]],
4184 FeynRules`Index[FeynRules`Spin,
4185 FeynRules`Ext[2]]] - FeynRules`ProjP[
4186 FeynRules`Index[FeynRules`Spin,
4187 FeynRules`Ext[1]],
4188 FeynRules`Index[FeynRules`Spin,
4189 FeynRules`Ext[2]]] $CellContext`yl[
4190 FeynRules`Index[$CellContext`Generation,
4191 FeynRules`Ext[1]],
4192 FeynRules`Index[$CellContext`Generation,
4193 FeynRules`Ext[2]]])}, {{{$CellContext`lbar, 1}, {
4194 FeynRules`l, 2}, {$CellContext`ALP, 3}}, Rational[-1, 8]
4195 2^Rational[-1, 2] $CellContext`fa^(-1)
4196 Pi^(-2) $CellContext`vev^(-1) (
4197 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
4198 FeynRules`SP[3, 3]) (Conjugate[
4199 $CellContext`yl[
4200 FeynRules`Index[$CellContext`Generation,
4201 FeynRules`Ext[2]],
4202 FeynRules`Index[$CellContext`Generation,
4203 FeynRules`Ext[1]]]] FeynRules`ProjM[
4204 FeynRules`Index[FeynRules`Spin,
4205 FeynRules`Ext[1]],
4206 FeynRules`Index[FeynRules`Spin,
4207 FeynRules`Ext[2]]] - FeynRules`ProjP[
4208 FeynRules`Index[FeynRules`Spin,
4209 FeynRules`Ext[1]],
4210 FeynRules`Index[FeynRules`Spin,
4211 FeynRules`Ext[2]]] $CellContext`yl[
4212 FeynRules`Index[$CellContext`Generation,
4213 FeynRules`Ext[1]],
4214 FeynRules`Index[$CellContext`Generation,
4215 FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
4216 2}, {$CellContext`ALP, 3}, {FeynRules`H, 4}}, Rational[1, 4]
4217 2^Rational[-1, 2] $CellContext`aU $CellContext`fa^(-1)
4218 Pi^(-2) $CellContext`vev^(-2) FeynRules`IndexDelta[
4219 FeynRules`Index[FeynRules`Colour,
4220 FeynRules`Ext[1]],
4221 FeynRules`Index[FeynRules`Colour,
4222 FeynRules`Ext[2]]] (
4223 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
4224 FeynRules`SP[3, 3]) (Conjugate[
4225 $CellContext`yu[
4226 FeynRules`Index[$CellContext`Generation,
4227 FeynRules`Ext[2]],
4228 FeynRules`Index[$CellContext`Generation,
4229 FeynRules`Ext[1]]]] FeynRules`ProjM[
4230 FeynRules`Index[FeynRules`Spin,
4231 FeynRules`Ext[1]],
4232 FeynRules`Index[FeynRules`Spin,
4233 FeynRules`Ext[2]]] - FeynRules`ProjP[
4234 FeynRules`Index[FeynRules`Spin,
4235 FeynRules`Ext[1]],
4236 FeynRules`Index[FeynRules`Spin,
4237 FeynRules`Ext[2]]] $CellContext`yu[
4238 FeynRules`Index[$CellContext`Generation,
4239 FeynRules`Ext[1]],
4240 FeynRules`Index[$CellContext`Generation,
4241 FeynRules`Ext[2]]])}, {{{$CellContext`uqbar, 1}, {$CellContext`uq,
4242 2}, {$CellContext`ALP, 3}}, Rational[1, 8]
4243 2^Rational[-1, 2] $CellContext`fa^(-1) Pi^(-2) $CellContext`vev^(-1)
4244 FeynRules`IndexDelta[
4245 FeynRules`Index[FeynRules`Colour,
4246 FeynRules`Ext[1]],
4247 FeynRules`Index[FeynRules`Colour,
4248 FeynRules`Ext[2]]] (
4249 16 $CellContext`C2D Pi^2 $CellContext`vev^2 - $CellContext`C17
4250 FeynRules`SP[3, 3]) (Conjugate[
4251 $CellContext`yu[
4252 FeynRules`Index[$CellContext`Generation,
4253 FeynRules`Ext[2]],
4254 FeynRules`Index[$CellContext`Generation,
4255 FeynRules`Ext[1]]]] FeynRules`ProjM[
4256 FeynRules`Index[FeynRules`Spin,
4257 FeynRules`Ext[1]],
4258 FeynRules`Index[FeynRules`Spin,
4259 FeynRules`Ext[2]]] - FeynRules`ProjP[
4260 FeynRules`Index[FeynRules`Spin,
4261 FeynRules`Ext[1]],
4262 FeynRules`Index[FeynRules`Spin,
4263 FeynRules`Ext[2]]] $CellContext`yu[
4264 FeynRules`Index[$CellContext`Generation,
4265 FeynRules`Ext[1]],
4266 FeynRules`Index[$CellContext`Generation,
4267 FeynRules`Ext[2]]])}, {{{$CellContext`ALP, 1}, {FeynRules`H, 2}, {
4268 FeynRules`W, 3}, {$CellContext`Wbar, 4}}, Rational[-1, 8]
4269 FeynRules`ee $CellContext`fa^(-1)
4270 Pi^(-2) $CellContext`sw^(-2) $CellContext`vev^(-1) (FeynRules`FV[1,
4271 FeynRules`Index[FeynRules`Lorentz,
4272 FeynRules`Ext[4]]] ($CellContext`a8 $CellContext`C8 FeynRules`ee
4273 FeynRules`FV[3,
4274 FeynRules`Index[FeynRules`Lorentz,
4275 FeynRules`Ext[3]]] +
4276 4 Pi $CellContext`sw ($CellContext`a10 $CellContext`C10
4277 FeynRules`FV[2,
4278 FeynRules`Index[FeynRules`Lorentz,
4279 FeynRules`Ext[3]]] + $CellContext`a6 $CellContext`C6
4280 FeynRules`FV[4,
4281 FeynRules`Index[FeynRules`Lorentz,
4282 FeynRules`Ext[3]]])) - FeynRules`FV[1,
4283 FeynRules`Index[FeynRules`Lorentz,
4284 FeynRules`Ext[3]]] (
4285 4 Pi $CellContext`sw ($CellContext`a10 $CellContext`C10 FeynRules`FV[2,
4286 FeynRules`Index[FeynRules`Lorentz,
4287 FeynRules`Ext[4]]] + $CellContext`a6 $CellContext`C6
4288 FeynRules`FV[3,
4289 FeynRules`Index[FeynRules`Lorentz,
4290 FeynRules`Ext[4]]]) + $CellContext`a8 $CellContext`C8
4291 FeynRules`ee FeynRules`FV[4,
4292 FeynRules`Index[FeynRules`Lorentz,
4293 FeynRules`Ext[4]]]) +
4294 2 Pi $CellContext`sw (
4295 Complex[0, -1] FeynRules`a2 $CellContext`C2 FeynRules`Eps[
4296 FeynRules`Index[FeynRules`Lorentz,
4297 FeynRules`Ext[4]],
4298 FeynRules`Index[FeynRules`Lorentz,
4299 FeynRules`Ext[3]],
4300 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
4301 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
4302 FeynRules`FV[1,
4303 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (
4304 FeynRules`FV[3,
4305 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] -
4306 FeynRules`FV[4,
4307 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]) +
4308 2 $CellContext`a6 $CellContext`C6 FeynRules`ME[
4309 FeynRules`Index[FeynRules`Lorentz,
4310 FeynRules`Ext[3]],
4311 FeynRules`Index[FeynRules`Lorentz,
4312 FeynRules`Ext[4]]] (FeynRules`SP[1, 3] - FeynRules`SP[
4313 1, 4])))}, {{{$CellContext`A, 1}, {$CellContext`ALP, 2}, {
4314 FeynRules`W, 3}, {$CellContext`Wbar, 4}}, Rational[1, 16]
4315 FeynRules`ee $CellContext`fa^(-1)
4316 Pi^(-2) $CellContext`sw^(-2) (
4317 Complex[0, -4] Pi $CellContext`sw FeynRules`Eps[
4318 FeynRules`Index[FeynRules`Lorentz,
4319 FeynRules`Ext[1]],
4320 FeynRules`Index[FeynRules`Lorentz,
4321 FeynRules`Ext[4]],
4322 FeynRules`Index[FeynRules`Lorentz,
4323 FeynRules`Ext[3]],
4324 FeynRules`Index[
4325 FeynRules`Lorentz, $CellContext`mu$1]] (-$CellContext`C2
4326 FeynRules`ee FeynRules`FV[2,
4327 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
4328 16 $CellContext`CWtil Pi $CellContext`sw (FeynRules`FV[1,
4329 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
4330 FeynRules`FV[3,
4331 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
4332 FeynRules`FV[4,
4333 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]])) +
4334 FeynRules`ee ($CellContext`C8 FeynRules`ee - 4 $CellContext`C6
4335 Pi $CellContext`sw) (FeynRules`FV[2,
4336 FeynRules`Index[FeynRules`Lorentz,
4337 FeynRules`Ext[4]]] FeynRules`ME[
4338 FeynRules`Index[FeynRules`Lorentz,
4339 FeynRules`Ext[1]],
4340 FeynRules`Index[FeynRules`Lorentz,
4341 FeynRules`Ext[3]]] + FeynRules`FV[2,
4342 FeynRules`Index[FeynRules`Lorentz,
4343 FeynRules`Ext[3]]] FeynRules`ME[
4344 FeynRules`Index[FeynRules`Lorentz,
4345 FeynRules`Ext[1]],
4346 FeynRules`Index[FeynRules`Lorentz,
4347 FeynRules`Ext[4]]]) +
4348 8 $CellContext`C6 FeynRules`ee Pi $CellContext`sw FeynRules`FV[2,
4349 FeynRules`Index[FeynRules`Lorentz,
4350 FeynRules`Ext[1]]] FeynRules`ME[
4351 FeynRules`Index[FeynRules`Lorentz,
4352 FeynRules`Ext[3]],
4353 FeynRules`Index[FeynRules`Lorentz,
4354 FeynRules`Ext[4]]])}, {{{$CellContext`ALP, 1}, {
4355 FeynRules`W, 2}, {$CellContext`Wbar, 3}, {$CellContext`Z, 4}},
4356 Rational[1, 32] $CellContext`cw^(-1) FeynRules`ee $CellContext`fa^(-1)
4357 Pi^(-2) $CellContext`sw^(-3) (
4358 Complex[0, -4] Pi $CellContext`sw FeynRules`Eps[
4359 FeynRules`Index[FeynRules`Lorentz,
4360 FeynRules`Ext[4]],
4361 FeynRules`Index[FeynRules`Lorentz,
4362 FeynRules`Ext[2]],
4363 FeynRules`Index[FeynRules`Lorentz,
4364 FeynRules`Ext[3]],
4365 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (
4366 FeynRules`ee (3 $CellContext`C2 + 2 $CellContext`C7 -
4367 2 $CellContext`C2 $CellContext`sw^2) FeynRules`FV[1,
4368 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
4369 32 $CellContext`CWtil
4370 Pi $CellContext`sw (-1 + $CellContext`sw^2) (FeynRules`FV[2,
4371 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
4372 FeynRules`FV[3,
4373 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] +
4374 FeynRules`FV[4,
4375 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]])) +
4376 FeynRules`ee (
4377 2 ($CellContext`C5 FeynRules`ee - 8 $CellContext`C6
4378 Pi $CellContext`sw (-1 + $CellContext`sw^2)) FeynRules`FV[1,
4379 FeynRules`Index[FeynRules`Lorentz,
4380 FeynRules`Ext[4]]] FeynRules`ME[
4381 FeynRules`Index[FeynRules`Lorentz,
4382 FeynRules`Ext[2]],
4383 FeynRules`Index[FeynRules`Lorentz,
4384 FeynRules`Ext[3]]] + ($CellContext`C4 FeynRules`ee +
4385 2 $CellContext`sw (-$CellContext`C8 FeynRules`ee $CellContext`sw +
4386 4 $CellContext`C6 Pi (-1 + $CellContext`sw^2))) (FeynRules`FV[1,
4387 FeynRules`Index[FeynRules`Lorentz,
4388 FeynRules`Ext[3]]] FeynRules`ME[
4389 FeynRules`Index[FeynRules`Lorentz,
4390 FeynRules`Ext[2]],
4391 FeynRules`Index[FeynRules`Lorentz,
4392 FeynRules`Ext[4]]] + FeynRules`FV[1,
4393 FeynRules`Index[FeynRules`Lorentz,
4394 FeynRules`Ext[2]]] FeynRules`ME[
4395 FeynRules`Index[FeynRules`Lorentz,
4396 FeynRules`Ext[3]],
4397 FeynRules`Index[FeynRules`Lorentz,
4398 FeynRules`Ext[4]]])))}, {{{$CellContext`A,
4399 1}, {$CellContext`ALP, 2}, {FeynRules`H, 3}, {$CellContext`Z, 4}},
4400 Complex[0,
4401 Rational[-1, 4]] $CellContext`cw^(-1)
4402 FeynRules`ee $CellContext`fa^(-1)
4403 Pi^(-1) $CellContext`sw^(-1) (
4404 2 FeynRules`a1 $CellContext`C1 $CellContext`cw +
4405 FeynRules`a2 $CellContext`C2 $CellContext`sw +
4406 2 $CellContext`a7 $CellContext`C7 $CellContext`sw) $CellContext`vev^(-1)
4407 FeynRules`Eps[
4408 FeynRules`Index[FeynRules`Lorentz,
4409 FeynRules`Ext[1]],
4410 FeynRules`Index[FeynRules`Lorentz,
4411 FeynRules`Ext[4]],
4412 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
4413 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
4414 FeynRules`FV[1,
4415 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
4416 FeynRules`FV[2,
4417 FeynRules`Index[
4418 FeynRules`Lorentz, $CellContext`mu$1]]}, {{{$CellContext`ALP, 1}, {
4419 FeynRules`H, 2}, {$CellContext`Z, 3}, {$CellContext`Z, 4}}, Complex[0,
4420 Rational[1, 4]] $CellContext`cw^(-1) FeynRules`ee $CellContext`fa^(-1)
4421 Pi^(-1) $CellContext`sw^(-1) (
4422 FeynRules`a2 $CellContext`C2 $CellContext`cw +
4423 2 $CellContext`a7 $CellContext`C7 $CellContext`cw - 2
4424 FeynRules`a1 $CellContext`C1 $CellContext`sw) $CellContext`vev^(-1)
4425 FeynRules`Eps[
4426 FeynRules`Index[FeynRules`Lorentz,
4427 FeynRules`Ext[3]],
4428 FeynRules`Index[FeynRules`Lorentz,
4429 FeynRules`Ext[4]],
4430 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1],
4431 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]]
4432 FeynRules`FV[1,
4433 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$1]] (-
4434 FeynRules`FV[3,
4435 FeynRules`Index[FeynRules`Lorentz, $CellContext`mu$2]] +
4436 FeynRules`FV[4,
4437 FeynRules`Index[
4438 FeynRules`Lorentz, $CellContext`mu$2]])}, {{{$CellContext`ALP,
4439 1}, {$CellContext`Z, 2}, {$CellContext`Z, 3}, {$CellContext`Z, 4}},
4440 Rational[1, 16] ($CellContext`C4 + $CellContext`C5 +
4441 2 $CellContext`C9) $CellContext`cw^(-3)
4442 FeynRules`ee^3 $CellContext`fa^(-1)
4443 Pi^(-2) $CellContext`sw^(-3) (FeynRules`FV[1,
4444 FeynRules`Index[FeynRules`Lorentz,
4445 FeynRules`Ext[4]]] FeynRules`ME[
4446 FeynRules`Index[FeynRules`Lorentz,
4447 FeynRules`Ext[2]],
4448 FeynRules`Index[FeynRules`Lorentz,
4449 FeynRules`Ext[3]]] + FeynRules`FV[1,
4450 FeynRules`Index[FeynRules`Lorentz,
4451 FeynRules`Ext[3]]] FeynRules`ME[
4452 FeynRules`Index[FeynRules`Lorentz,
4453 FeynRules`Ext[2]],
4454 FeynRules`Index[FeynRules`Lorentz,
4455 FeynRules`Ext[4]]] + FeynRules`FV[1,
4456 FeynRules`Index[FeynRules`Lorentz,
4457 FeynRules`Ext[2]]] FeynRules`ME[
4458 FeynRules`Index[FeynRules`Lorentz,
4459 FeynRules`Ext[3]],
4460 FeynRules`Index[FeynRules`Lorentz,
4461 FeynRules`Ext[4]]])}}]]], "Output",
4462 CellChangeTimes->{{3.638614114774802*^9, 3.638614120544181*^9}, {
4463 3.638614318695908*^9, 3.638614365439787*^9}, {3.638614433232692*^9,
4464 3.638614464705694*^9}, 3.6386224388916407`*^9, 3.6386225007679977`*^9,
4465 3.6386226973043947`*^9, 3.6386227333544188`*^9, 3.638623278409637*^9,
4466 3.6386236952225227`*^9, 3.63862388459741*^9, 3.638681852154767*^9,
4467 3.63868270965028*^9, 3.6386851562356977`*^9, 3.638686844261732*^9,
4468 3.638700137162476*^9, 3.638702832337493*^9, 3.6387029349627132`*^9, {
4469 3.638703100427805*^9, 3.6387031136888237`*^9}, {3.63870321256925*^9,
4470 3.638703230424244*^9}, {3.638703278436899*^9, 3.638703292187565*^9},
4471 3.6387033347871733`*^9, 3.638703390597958*^9, 3.638704548504233*^9,
4472 3.638707599815777*^9, 3.638708193011647*^9, 3.638708294314163*^9,
4473 3.638712328104225*^9, 3.638714899545281*^9, 3.6387158861274137`*^9, {
4474 3.638716073530249*^9, 3.6387160868743467`*^9}, {3.63871612959566*^9,
4475 3.638716213883053*^9}, 3.638768861462468*^9, 3.639820343194125*^9,
4476 3.6415554721097116`*^9, 3.641556006389512*^9, 3.641556218296584*^9,
4477 3.6415568954663677`*^9, 3.675577255235321*^9, 3.6755773956759577`*^9,
4478 3.6761156287361507`*^9, 3.676199644982154*^9, {3.6761997657926407`*^9,
4479 3.676199788244617*^9}, 3.676202161727428*^9, 3.676286259801929*^9,
4480 3.676286831252707*^9, 3.676286963494295*^9, 3.7149005669550333`*^9}]
4481}, Open ]]
4482}, Closed]],
4483
4484Cell[CellGroupData[{
4485
4486Cell["Export to UFO", "Subsection",
4487 CellChangeTimes->{{3.638798084002553*^9, 3.6387980887087*^9}, {
4488 3.7149007705746527`*^9, 3.7149007713720427`*^9}}],
4489
4490Cell[CellGroupData[{
4491
4492Cell[BoxData[
4493 RowBox[{"WriteUFO", "[",
4494 RowBox[{
4495 RowBox[{"LSM", "+", "LALP"}], ",",
4496 RowBox[{"MaxParticles", "\[Rule]", "4"}], ",", " ",
4497 RowBox[{"Output", "\[Rule]", "\"\<ALP_chiral_UFO\>\""}]}], "]"}]], "Input",\
4498
4499 CellChangeTimes->{{3.638796268087139*^9, 3.638796293694366*^9}, {
4500 3.676286245623457*^9, 3.676286247246126*^9}, {3.6943356972519197`*^9,
4501 3.6943356990015907`*^9}, {3.714900494999193*^9, 3.714900536696802*^9}}],
4502
4503Cell[CellGroupData[{
4504
4505Cell[BoxData["\<\" --- Universal FeynRules Output (UFO) v 1.1 ---\"\>"], \
4506"Print",
4507 CellChangeTimes->{3.714900591927953*^9}],
4508
4509Cell[BoxData[
4510 StyleBox["\<\"Starting Feynman rule calculation.\"\>",
4511 StripOnInput->False,
4512 LineColor->RGBColor[1, 0.5, 0],
4513 FrontFaceColor->RGBColor[1, 0.5, 0],
4514 BackFaceColor->RGBColor[1, 0.5, 0],
4515 GraphicsColor->RGBColor[1, 0.5, 0],
4516 FontWeight->Bold,
4517 FontColor->RGBColor[1, 0.5, 0]]], "Print",
4518 CellChangeTimes->{3.714900592506741*^9}],
4519
4520Cell[BoxData["\<\"Expanding the Lagrangian...\"\>"], "Print",
4521 CellChangeTimes->{3.714900592507815*^9}],
4522
4523Cell[BoxData[
4524 InterpretationBox[
4525 RowBox[{"\<\"Expanding the indices over \"\>", "\[InvisibleSpace]", "2",
4526 "\[InvisibleSpace]", "\<\" cores\"\>"}],
4527 SequenceForm["Expanding the indices over ", 2, " cores"],
4528 Editable->False]], "Print",
4529 CellChangeTimes->{3.714900592508318*^9}],
4530
4531Cell[BoxData["\<\"Collecting the different structures that enter the \
4532vertex.\"\>"], "Print",
4533 CellChangeTimes->{3.714900608629657*^9}],
4534
4535Cell[BoxData[
4536 InterpretationBox[
4537 RowBox[{
4538 "58", "\[InvisibleSpace]", "\<\" possible non-zero vertices have been found \
4539-> starting the computation: \"\>", "\[InvisibleSpace]",
4540 DynamicBox[ToBoxes[FeynRules`FR$FeynmanRules, StandardForm],
4541 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
4542 "\[InvisibleSpace]", "58", "\[InvisibleSpace]", "\<\".\"\>"}],
4543 SequenceForm[
4544 58, " possible non-zero vertices have been found -> starting the \
4545computation: ",
4546 Dynamic[FeynRules`FR$FeynmanRules], " / ", 58, "."],
4547 Editable->False]], "Print",
4548 CellChangeTimes->{3.714900608708271*^9}],
4549
4550Cell[BoxData[
4551 InterpretationBox[
4552 RowBox[{"53", "\[InvisibleSpace]", "\<\" vertices obtained.\"\>"}],
4553 SequenceForm[53, " vertices obtained."],
4554 Editable->False]], "Print",
4555 CellChangeTimes->{3.714900616841229*^9}],
4556
4557Cell[BoxData[
4558 InterpretationBox[
4559 RowBox[{"\<\"Flavor expansion of the vertices distributed over \"\>",
4560 "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" cores: \"\>",
4561 "\[InvisibleSpace]",
4562 DynamicBox[ToBoxes[FeynRules`FR$Count1, StandardForm],
4563 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
4564 "\[InvisibleSpace]", "53"}],
4565 SequenceForm[
4566 "Flavor expansion of the vertices distributed over ", 2, " cores: ",
4567 Dynamic[FeynRules`FR$Count1], " / ", 53],
4568 Editable->False]], "Print",
4569 CellChangeTimes->{3.714900618127434*^9}],
4570
4571Cell[BoxData["\<\" - Saved vertices in InterfaceRun[ 1 ].\"\>"], "Print",
4572 CellChangeTimes->{3.714900624975767*^9}],
4573
4574Cell[BoxData[
4575 StyleBox["\<\"Computing the squared matrix elements relevant for the 1->2 \
4576decays: \"\>",
4577 StripOnInput->False,
4578 LineColor->RGBColor[1, 0.5, 0],
4579 FrontFaceColor->RGBColor[1, 0.5, 0],
4580 BackFaceColor->RGBColor[1, 0.5, 0],
4581 GraphicsColor->RGBColor[1, 0.5, 0],
4582 FontWeight->Bold,
4583 FontColor->RGBColor[1, 0.5, 0]]], "Print",
4584 CellChangeTimes->{3.7149006250032682`*^9}],
4585
4586Cell[BoxData[
4587 InterpretationBox[
4588 RowBox[{
4589 DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
4590 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
4591 "\[InvisibleSpace]", "70"}],
4592 SequenceForm[
4593 Dynamic[PRIVATE`mycounter], " / ", 70],
4594 Editable->False]], "Print",
4595 CellChangeTimes->{3.714900625010377*^9}],
4596
4597Cell[BoxData[
4598 InterpretationBox[
4599 RowBox[{"\<\"Squared matrix elent compute in \"\>", "\[InvisibleSpace]",
4600 "20.716`", "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
4601 SequenceForm["Squared matrix elent compute in ", 20.716, " seconds."],
4602 Editable->False]], "Print",
4603 CellChangeTimes->{3.714900682420899*^9}],
4604
4605Cell[BoxData[
4606 InterpretationBox[
4607 RowBox[{
4608 DynamicBox[ToBoxes[PRIVATE`mycounter, StandardForm],
4609 ImageSizeCache->{17., {0., 9.}}], "\[InvisibleSpace]", "\<\" / \"\>",
4610 "\[InvisibleSpace]", "89"}],
4611 SequenceForm[
4612 Dynamic[PRIVATE`mycounter], " / ", 89],
4613 Editable->False]], "Print",
4614 CellChangeTimes->{3.714900682430378*^9}],
4615
4616Cell[BoxData[
4617 InterpretationBox[
4618 RowBox[{"\<\"Decay widths computed in \"\>", "\[InvisibleSpace]", "4.82`",
4619 "\[InvisibleSpace]", "\<\" seconds.\"\>"}],
4620 SequenceForm["Decay widths computed in ", 4.82, " seconds."],
4621 Editable->False]], "Print",
4622 CellChangeTimes->{3.7149006884162073`*^9}],
4623
4624Cell[BoxData["\<\"Preparing Python output.\"\>"], "Print",
4625 CellChangeTimes->{3.7149006884176807`*^9}],
4626
4627Cell[BoxData["\<\" - Splitting vertices into building blocks.\"\>"], \
4628"Print",
4629 CellChangeTimes->{3.714900688859367*^9}],
4630
4631Cell[BoxData[
4632 InterpretationBox[
4633 RowBox[{"\<\"Splitting of vertices distributed over \"\>",
4634 "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" kernels.\"\>"}],
4635 SequenceForm["Splitting of vertices distributed over ", 2, " kernels."],
4636 Editable->False]], "Print",
4637 CellChangeTimes->{3.714900688951193*^9}],
4638
4639Cell[BoxData[
4640 InterpretationBox[
4641 RowBox[{"\<\" - Optimizing: \"\>", "\[InvisibleSpace]",
4642 DynamicBox[ToBoxes[PRIVATE`PY$SplitVertexCounter, StandardForm],
4643 ImageSizeCache->{24., {0., 9.}}], "\[InvisibleSpace]", "\<\"/\"\>",
4644 "\[InvisibleSpace]", "121", "\[InvisibleSpace]", "\<\" .\"\>"}],
4645 SequenceForm[" - Optimizing: ",
4646 Dynamic[PRIVATE`PY$SplitVertexCounter], "/", 121, " ."],
4647 Editable->False]], "Print",
4648 CellChangeTimes->{3.71490069124506*^9}],
4649
4650Cell[BoxData["\<\" - Writing files.\"\>"], "Print",
4651 CellChangeTimes->{3.714900691465427*^9}],
4652
4653Cell[BoxData["\<\"Done!\"\>"], "Print",
4654 CellChangeTimes->{3.7149006929108877`*^9}]
4655}, Open ]]
4656}, Open ]]
4657}, Closed]]
4658}, Closed]]
4659}, Open ]]
4660},
4661WindowSize->{1149, 1028},
4662WindowMargins->{{Automatic, 322}, {-123, Automatic}},
4663PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}},
4664ShowSelection->True,
4665FrontEndVersion->"11.0 for Linux x86 (64-bit) (September 21, 2016)",
4666StyleDefinitions->"Default.nb"
4667]
4668(* End of Notebook Content *)
4669
4670(* Internal cache information *)
4671(*CellTagsOutline
4672CellTagsIndex->{}
4673*)
4674(*CellTagsIndex
4675CellTagsIndex->{}
4676*)
4677(*NotebookFileOutline
4678Notebook[{
4679Cell[CellGroupData[{
4680Cell[567, 22, 173, 2, 66, "Chapter"],
4681Cell[743, 26, 506, 14, 209, "Text"],
4682Cell[1252, 42, 991, 16, 159, "Text"],
4683Cell[CellGroupData[{
4684Cell[2268, 62, 212, 3, 65, "Section"],
4685Cell[2483, 67, 1183, 20, 78, "Input"]
4686}, Open ]],
4687Cell[CellGroupData[{
4688Cell[3703, 92, 301, 4, 65, "Section"],
4689Cell[CellGroupData[{
4690Cell[4029, 100, 1690, 29, 58, "Input"],
4691Cell[CellGroupData[{
4692Cell[5744, 133, 327, 4, 24, "Print"],
4693Cell[6074, 139, 345, 4, 24, "Print"],
4694Cell[6422, 145, 380, 5, 26, "Print"],
4695Cell[6805, 152, 447, 8, 24, "Print"],
4696Cell[7255, 162, 318, 4, 24, "Print"],
4697Cell[7576, 168, 321, 4, 24, "Print"],
4698Cell[7900, 174, 350, 4, 24, "Print"],
4699Cell[8253, 180, 352, 5, 26, "Print"],
4700Cell[8608, 187, 305, 4, 24, "Print"],
4701Cell[8916, 193, 334, 4, 24, "Print"],
4702Cell[9253, 199, 338, 4, 24, "Print"],
4703Cell[9594, 205, 336, 4, 24, "Print"],
4704Cell[9933, 211, 509, 9, 45, "Print"]
4705}, Open ]]
4706}, Open ]],
4707Cell[CellGroupData[{
4708Cell[10491, 226, 203, 3, 45, "Subsection"],
4709Cell[CellGroupData[{
4710Cell[10719, 233, 628, 13, 34, "Input"],
4711Cell[CellGroupData[{
4712Cell[11372, 250, 1225, 21, 24, "Print"],
4713Cell[12600, 273, 982, 13, 24, "Print"],
4714Cell[13585, 288, 1161, 18, 24, "Print"],
4715Cell[14749, 308, 1204, 19, 24, "Print"],
4716Cell[15956, 329, 1013, 14, 24, "Print"],
4717Cell[16972, 345, 1494, 25, 24, "Print"],
4718Cell[18469, 372, 1095, 17, 24, "Print"]
4719}, Open ]]
4720}, Open ]],
4721Cell[CellGroupData[{
4722Cell[19613, 395, 1267, 24, 36, "Input"],
4723Cell[20883, 421, 43874, 1114, 834, "Output"]
4724}, Open ]]
4725}, Open ]],
4726Cell[CellGroupData[{
4727Cell[64806, 1541, 152, 2, 45, "Subsection"],
4728Cell[CellGroupData[{
4729Cell[64983, 1547, 494, 10, 34, "Input"],
4730Cell[CellGroupData[{
4731Cell[65502, 1561, 147, 2, 24, "Print"],
4732Cell[65652, 1565, 372, 9, 24, "Print"],
4733Cell[66027, 1576, 125, 1, 24, "Print"],
4734Cell[66155, 1579, 309, 6, 24, "Print"],
4735Cell[66467, 1587, 158, 2, 24, "Print"],
4736Cell[66628, 1591, 639, 13, 24, "Print"],
4737Cell[67270, 1606, 242, 5, 24, "Print"],
4738Cell[67515, 1613, 594, 12, 24, "Print"],
4739Cell[68112, 1627, 141, 1, 24, "Print"],
4740Cell[68256, 1630, 406, 10, 24, "Print"],
4741Cell[68665, 1642, 359, 9, 24, "Print"],
4742Cell[69027, 1653, 332, 6, 24, "Print"],
4743Cell[69362, 1661, 360, 9, 24, "Print"],
4744Cell[69725, 1672, 317, 6, 24, "Print"],
4745Cell[70045, 1680, 122, 1, 24, "Print"],
4746Cell[70170, 1683, 146, 2, 24, "Print"],
4747Cell[70319, 1687, 336, 6, 24, "Print"],
4748Cell[70658, 1695, 496, 9, 24, "Print"],
4749Cell[71157, 1706, 118, 1, 24, "Print"],
4750Cell[71278, 1709, 103, 1, 24, "Print"]
4751}, Open ]]
4752}, Open ]]
4753}, Open ]]
4754}, Closed]],
4755Cell[CellGroupData[{
4756Cell[71454, 1718, 250, 3, 51, "Section"],
4757Cell[CellGroupData[{
4758Cell[71729, 1725, 1638, 28, 58, "Input"],
4759Cell[CellGroupData[{
4760Cell[73392, 1757, 283, 4, 24, "Print"],
4761Cell[73678, 1763, 299, 4, 24, "Print"],
4762Cell[73980, 1769, 334, 5, 26, "Print"],
4763Cell[74317, 1776, 401, 8, 24, "Print"],
4764Cell[74721, 1786, 270, 4, 24, "Print"],
4765Cell[74994, 1792, 275, 4, 24, "Print"],
4766Cell[75272, 1798, 304, 4, 24, "Print"],
4767Cell[75579, 1804, 307, 5, 26, "Print"],
4768Cell[75889, 1811, 259, 4, 24, "Print"],
4769Cell[76151, 1817, 289, 4, 24, "Print"],
4770Cell[76443, 1823, 292, 4, 24, "Print"],
4771Cell[76738, 1829, 292, 4, 24, "Print"],
4772Cell[77033, 1835, 463, 9, 45, "Print"]
4773}, Open ]]
4774}, Open ]],
4775Cell[CellGroupData[{
4776Cell[77545, 1850, 203, 3, 45, "Subsection"],
4777Cell[CellGroupData[{
4778Cell[77773, 1857, 628, 13, 34, "Input"],
4779Cell[CellGroupData[{
4780Cell[78426, 1874, 1203, 21, 24, "Print"],
4781Cell[79632, 1897, 961, 13, 24, "Print"],
4782Cell[80596, 1912, 1143, 18, 24, "Print"],
4783Cell[81742, 1932, 1185, 19, 24, "Print"],
4784Cell[82930, 1953, 994, 14, 24, "Print"],
4785Cell[83927, 1969, 1474, 25, 24, "Print"],
4786Cell[85404, 1996, 1076, 17, 24, "Print"]
4787}, Open ]]
4788}, Open ]],
4789Cell[CellGroupData[{
4790Cell[86529, 2019, 1267, 24, 36, "Input"],
4791Cell[87799, 2045, 98371, 2434, 1292, "Output"]
4792}, Open ]]
4793}, Closed]],
4794Cell[CellGroupData[{
4795Cell[186219, 4485, 152, 2, 37, "Subsection"],
4796Cell[CellGroupData[{
4797Cell[186396, 4491, 441, 9, 34, "Input"],
4798Cell[CellGroupData[{
4799Cell[186862, 4504, 125, 2, 24, "Print"],
4800Cell[186990, 4508, 348, 9, 24, "Print"],
4801Cell[187341, 4519, 103, 1, 24, "Print"],
4802Cell[187447, 4522, 285, 6, 24, "Print"],
4803Cell[187735, 4530, 136, 2, 24, "Print"],
4804Cell[187874, 4534, 617, 13, 24, "Print"],
4805Cell[188494, 4549, 218, 5, 24, "Print"],
4806Cell[188715, 4556, 572, 12, 24, "Print"],
4807Cell[189290, 4570, 117, 1, 24, "Print"],
4808Cell[189410, 4573, 386, 10, 24, "Print"],
4809Cell[189799, 4585, 338, 9, 24, "Print"],
4810Cell[190140, 4596, 312, 6, 24, "Print"],
4811Cell[190455, 4604, 338, 9, 24, "Print"],
4812Cell[190796, 4615, 296, 6, 24, "Print"],
4813Cell[191095, 4623, 102, 1, 24, "Print"],
4814Cell[191200, 4626, 124, 2, 24, "Print"],
4815Cell[191327, 4630, 315, 6, 24, "Print"],
4816Cell[191645, 4638, 473, 9, 24, "Print"],
4817Cell[192121, 4649, 96, 1, 24, "Print"],
4818Cell[192220, 4652, 83, 1, 24, "Print"]
4819}, Open ]]
4820}, Open ]]
4821}, Closed]]
4822}, Closed]]
4823}, Open ]]
4824}
4825]
4826*)
4827