| 1 | (***************************************************************************************************************)
|
|---|
| 2 | (****** This is the FeynRules mod-file for the 331 model where beta equals to Sqrt[3] ******)
|
|---|
| 3 | (****** ******)
|
|---|
| 4 | (****** Authors: Dongming Zhang ******)
|
|---|
| 5 | (****** ******)
|
|---|
| 6 | (****** Choose whether Feynman gauge is desired. ******)
|
|---|
| 7 | (****** If set to False, unitary gauge is assumed. ****)
|
|---|
| 8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
|---|
| 9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
|---|
| 10 | (***************************************************************************************************************)
|
|---|
| 11 |
|
|---|
| 12 | (* ************************** *)
|
|---|
| 13 | (* ***** Information ***** *)
|
|---|
| 14 | (* ************************** *)
|
|---|
| 15 | M$ModelName = "331_3 Model";
|
|---|
| 16 |
|
|---|
| 17 | M$Information = {
|
|---|
| 18 | Authors -> {"Dongming Zhang"},
|
|---|
| 19 | Version -> "1.0.0",
|
|---|
| 20 | Date -> "22. 01. 2014",
|
|---|
| 21 | Institutions -> {"Peking University"},
|
|---|
| 22 | Emails -> {"zhangdongming@pku.edu.cn"},
|
|---|
| 23 | URLs -> "http://feynrules.irmp.ucl.ac.be/wiki/331"
|
|---|
| 24 | };
|
|---|
| 25 |
|
|---|
| 26 | FeynmanGauge = True;
|
|---|
| 27 |
|
|---|
| 28 | (* ************************** *)
|
|---|
| 29 | (* ***** Change log ***** *)
|
|---|
| 30 | (* ************************** *)
|
|---|
| 31 |
|
|---|
| 32 | (* ************************** *)
|
|---|
| 33 | (* ***** vevs ***** *)
|
|---|
| 34 | (* ************************** *)
|
|---|
| 35 | M$vevs = { {Rho[2],v}, {Phi[1],v2}, {Chi[3],v3} };
|
|---|
| 36 |
|
|---|
| 37 | (* ************************** *)
|
|---|
| 38 | (* ***** Gauge groups ***** *)
|
|---|
| 39 | (* ************************** *)
|
|---|
| 40 | M$GaugeGroups = {
|
|---|
| 41 | U1X == {
|
|---|
| 42 | Abelian -> True,
|
|---|
| 43 | CouplingConstant -> gx,
|
|---|
| 44 | GaugeBoson -> K,
|
|---|
| 45 | Charge -> X
|
|---|
| 46 | },
|
|---|
| 47 | SU3L == {
|
|---|
| 48 | Abelian -> False,
|
|---|
| 49 | CouplingConstant -> gw,
|
|---|
| 50 | GaugeBoson -> Wi,
|
|---|
| 51 | StructureConstant -> x,
|
|---|
| 52 | Representations -> {Ta,SU3T},
|
|---|
| 53 | Definitions -> {Ta[a_,b_,c_]->Gellmann[a,b,c]/2,FSU3L[i_,j_,k_]:> I x[i,j,k]},
|
|---|
| 54 | SymmetricTensor -> dSUN
|
|---|
| 55 | },
|
|---|
| 56 | ASU3L == {
|
|---|
| 57 | Abelian -> False,
|
|---|
| 58 | CouplingConstant -> gw,
|
|---|
| 59 | GaugeBoson -> WWi,
|
|---|
| 60 | StructureConstant -> x,
|
|---|
| 61 | Representations -> {Tb,ASU3T},
|
|---|
| 62 | Definitions -> {Tb[a_,b_,c_]->-Gellmann[a,c,b]/2,FSU3L[i_,j_,k_]:> I x[i,j,k]},
|
|---|
| 63 | SymmetricTensor -> dSUN
|
|---|
| 64 | },
|
|---|
| 65 | SU3C == {
|
|---|
| 66 | Abelian -> False,
|
|---|
| 67 | CouplingConstant -> gs,
|
|---|
| 68 | GaugeBoson -> G,
|
|---|
| 69 | StructureConstant -> f,
|
|---|
| 70 | Representations -> {T,Colour},
|
|---|
| 71 | SymmetricTensor -> dSUN
|
|---|
| 72 | }
|
|---|
| 73 | };
|
|---|
| 74 |
|
|---|
| 75 | (* ************************** *)
|
|---|
| 76 | (* *** Gellmann matrices *** *)
|
|---|
| 77 | (* ************************** *)
|
|---|
| 78 |
|
|---|
| 79 | Table[Gellmann[i, j, k] = 0, {i, 1, 8}, {j, 1, 3}, {k, 1, 3}] //
|
|---|
| 80 | Flatten;
|
|---|
| 81 |
|
|---|
| 82 | Gellmann[1] = {{0, 1, 0}, {1, 0, 0}, {0, 0, 0}};
|
|---|
| 83 | Gellmann[2] = {{0, -I, 0}, {I, 0, 0}, {0, 0, 0}};
|
|---|
| 84 | Gellmann[3] = {{1, 0, 0}, {0, -1, 0}, {0, 0, 0}};
|
|---|
| 85 | Gellmann[4] = {{0, 0, 1}, {0, 0, 0}, {1, 0, 0}};
|
|---|
| 86 | Gellmann[5] = {{0, 0, -I}, {0, 0, 0}, {I, 0, 0}};
|
|---|
| 87 | Gellmann[6] = {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}};
|
|---|
| 88 | Gellmann[7] = {{0, 0, 0}, {0, 0, -I}, {0, I, 0}};
|
|---|
| 89 | Gellmann[8] = 1/Sqrt[3] {{1, 0, 0}, {0, 1, 0}, {0, 0, -2}};
|
|---|
| 90 |
|
|---|
| 91 | Gellmann[1, 1, 2] = 1; Gellmann[1, 2, 1] = 1;
|
|---|
| 92 | Gellmann[2, 1, 2] = -I; Gellmann[2, 2, 1] = I;
|
|---|
| 93 | Gellmann[3, 1, 1] = 1; Gellmann[3, 2, 2] = -1;
|
|---|
| 94 | Gellmann[4, 1, 3] = 1; Gellmann[4, 3, 1] = 1;
|
|---|
| 95 | Gellmann[5, 1, 3] = -I; Gellmann[5, 3, 1] = I;
|
|---|
| 96 | Gellmann[6, 2, 3] = 1; Gellmann[6, 3, 2] = 1;
|
|---|
| 97 | Gellmann[7, 2, 3] = -I; Gellmann[7, 3, 2] = I;
|
|---|
| 98 | Gellmann[8, 1, 1] = 1/Sqrt[3]; Gellmann[8, 2, 2] = 1/Sqrt[3];
|
|---|
| 99 | Gellmann[8, 3, 3] = -2/Sqrt[3];
|
|---|
| 100 |
|
|---|
| 101 |
|
|---|
| 102 | Gellmann[i_Integer, j_Integer, k_Integer] := Gellmann[i][[j, k]];
|
|---|
| 103 | Gellmann[xx___, Index[_, i_Integer], yy___] := Gellmann[xx, i, yy];
|
|---|
| 104 |
|
|---|
| 105 | Gellmann /:
|
|---|
| 106 | Gellmann[i1_, i2_, i3_?(Not[NumericQ[#]] &)] Gellmann[j1_, i3_,
|
|---|
| 107 | j3_] :=
|
|---|
| 108 | Gellmann[i1, i2, 1] Gellmann[j1, 1, j3] +
|
|---|
| 109 | Gellmann[i1, i2, 2] Gellmann[j1, 2, j3] +
|
|---|
| 110 | Gellmann[i1, i2, 3] Gellmann[j1, 3, j3];
|
|---|
| 111 |
|
|---|
| 112 | Table[x[i, j, k] = 0, {i, 1, 8}, {j, 1, 8}, {k, 1, 8}] // Flatten;
|
|---|
| 113 | x[1, 2, 3] = 1; x[2, 3, 1] = 1; x[3, 1, 2] = 1;
|
|---|
| 114 | x[2, 1, 3] = -1; x[1, 3, 2] = -1; x[3, 2, 1] = -1;
|
|---|
| 115 | x[1, 5, 6] = -1/2; x[3, 6, 7] = -1/2; x[1, 7, 4] = -1/2;
|
|---|
| 116 | x[2, 6, 4] = -1/2; x[2, 7, 5] = -1/2; x[3, 5, 4] = -1/2;
|
|---|
| 117 | x[6, 1, 5] = -1/2; x[7, 3, 6] = -1/2; x[4, 1, 7] = -1/2;
|
|---|
| 118 | x[4, 2, 6] = -1/2; x[5, 2, 7] = -1/2; x[4, 3, 5] = -1/2;
|
|---|
| 119 | x[5, 6, 1] = -1/2; x[6, 7, 3] = -1/2; x[7, 4, 1] = -1/2;
|
|---|
| 120 | x[6, 4, 2] = -1/2; x[7, 5, 2] = -1/2; x[5, 4, 3] = -1/2;
|
|---|
| 121 | x[1, 6, 5] = 1/2; x[3, 7, 6] = 1/2; x[1, 4, 7] = 1/2;
|
|---|
| 122 | x[2, 4, 6] = 1/2; x[2, 5, 7] = 1/2; x[3, 4, 5] = 1/2;
|
|---|
| 123 | x[5, 1, 6] = 1/2; x[7, 6, 3] = 1/2; x[4, 7, 1] = 1/2;
|
|---|
| 124 | x[4, 6, 2] = 1/2; x[5, 7, 2] = 1/2; x[4, 5, 3] = 1/2;
|
|---|
| 125 | x[6, 5, 1] = 1/2; x[6, 3, 7] = 1/2; x[7, 1, 4] = 1/2;
|
|---|
| 126 | x[6, 2, 4] = 1/2; x[7, 2, 5] = 1/2; x[5, 3, 4] = 1/2;
|
|---|
| 127 | x[4, 5, 8] = Sqrt[3]/2; x[6, 7, 8] = Sqrt[3]/2;
|
|---|
| 128 | x[8, 4, 5] = Sqrt[3]/2; x[8, 6, 7] = Sqrt[3]/2;
|
|---|
| 129 | x[5, 8, 4] = Sqrt[3]/2; x[7, 8, 6] = Sqrt[3]/2;
|
|---|
| 130 | x[4, 8, 5] = -Sqrt[3]/2; x[6, 8, 7] = -Sqrt[3]/2;
|
|---|
| 131 | x[5, 4, 8] = -Sqrt[3]/2;
|
|---|
| 132 | x[7, 6, 8] = -Sqrt[3]/2; x[8, 7, 6] = -Sqrt[3]/2;
|
|---|
| 133 | x[8, 5, 4] = -Sqrt[3]/2;
|
|---|
| 134 |
|
|---|
| 135 | x /: x[ii___, Except[Index[___] | _?NumericQ, jj_], kk___] f_[aa___,
|
|---|
| 136 | Index[name_, jj_], cc___] :=
|
|---|
| 137 | x[ii, Index[name, jj], kk] f[aa, Index[name, jj], cc];
|
|---|
| 138 | x /: x[ii___, Except[Index[___] | _?NumericQ, jj_],
|
|---|
| 139 | kk___] f_[aa___, Index[name_, jj_], cc___][ind___] :=
|
|---|
| 140 | x[ii, Index[name, jj], kk] f[aa, Index[name, jj], cc][ind];
|
|---|
| 141 | x /: x[ii___, Except[Index[___] | _?NumericQ, jj_], kk___] f_[aa___,
|
|---|
| 142 | g_[xx___, Index[name_, jj_], yy___], cc___] :=
|
|---|
| 143 | x[ii, Index[name, jj], kk] f[aa, g[xx, Index[name, jj], yy], cc];
|
|---|
| 144 | x /: x[ii___, Except[Index[___] | _?NumericQ, jj_],
|
|---|
| 145 | kk___] f_[aa___, g_[xx___, Index[name_, jj_], yy___], cc___][
|
|---|
| 146 | ind___] :=
|
|---|
| 147 | x[ii, Index[name, jj], kk] f[aa, g[xx, Index[name, jj], yy], cc][
|
|---|
| 148 | ind];
|
|---|
| 149 |
|
|---|
| 150 | x[ii___, Except[_Index | _Done[Index] | _FV,
|
|---|
| 151 | jj_?(Not[NumericQ[#]] &)], kk___, Index[name_, ll_], mm___] :=
|
|---|
| 152 | x[ii, Index[name, jj], kk, Index[name, ll], mm];
|
|---|
| 153 | x[ii___, Index[name_, ll_], kk___,
|
|---|
| 154 | Except[_Index | _Done[Index] | _FV, jj_?(Not[NumericQ[#]] &)],
|
|---|
| 155 | mm___] := x[ii, Index[name, ll], kk, Index[name, jj], mm];
|
|---|
| 156 |
|
|---|
| 157 | x /: x[i_?((Not[NumericQ[#]] && Not[MatchQ[#, Index[_, _?NumericQ]]] &&
|
|---|
| 158 | Not[MatchQ[#, Done[Index][_, _?NumericQ]]]) &), j_, k_] x[
|
|---|
| 159 | i_, m_, n_] :=
|
|---|
| 160 | x[1, j, k] x[1, m, n] + x[2, j, k] x[2, m, n] +
|
|---|
| 161 | x[3, j, k] x[3, m, n] + x[4, j, k] x[4, m, n] +
|
|---|
| 162 | x[5, j, k] x[5, m, n] + x[6, j, k] x[6, m, n] +
|
|---|
| 163 | x[7, j, k] x[7, m, n] + x[8, j, k] x[8, m, n];
|
|---|
| 164 |
|
|---|
| 165 | x /: x[i_?((Not[NumericQ[#]] && Not[MatchQ[#, Index[_, _?NumericQ]]] &&
|
|---|
| 166 | Not[MatchQ[#, Done[Index][_, _?NumericQ]]]) &), j_, k_] x[
|
|---|
| 167 | m_, n_, i_] := x[i, j, k] x[i, m, n];
|
|---|
| 168 | x /: x[i_?((Not[NumericQ[#]] && Not[MatchQ[#, Index[_, _?NumericQ]]] &&
|
|---|
| 169 | Not[MatchQ[#, Done[Index][_, _?NumericQ]]]) &), j_, k_] x[
|
|---|
| 170 | m_, i_, n_] := x[i, j, k] x[i, n, m];
|
|---|
| 171 | x /: x[j_,
|
|---|
| 172 | i_?((Not[NumericQ[#]] && Not[MatchQ[#, Index[_, _?NumericQ]]] &&
|
|---|
| 173 | Not[MatchQ[#, Done[Index][_, _?NumericQ]]]) &), k_] x[m_, i_,
|
|---|
| 174 | n_] := x[i, k, j] x[i, n, m];
|
|---|
| 175 | x /: x[j_,
|
|---|
| 176 | i_?((Not[NumericQ[#]] && Not[MatchQ[#, Index[_, _?NumericQ]]] &&
|
|---|
| 177 | Not[MatchQ[#, Done[Index][_, _?NumericQ]]]) &), k_] x[m_, n_,
|
|---|
| 178 | i_] := x[i, k, j] x[i, m, n];
|
|---|
| 179 | x /: x[j_, k_,
|
|---|
| 180 | i_?((Not[NumericQ[#]] && Not[MatchQ[#, Index[_, _?NumericQ]]] &&
|
|---|
| 181 | Not[MatchQ[#, Done[Index][_, _?NumericQ]]]) &)] x[m_, n_,
|
|---|
| 182 | i_] := x[i, j, k] x[i, m, n];
|
|---|
| 183 |
|
|---|
| 184 | x /: x[___, i_, ___, j_, ___] FV[a_, i_] FV[a_, j_] := 0;
|
|---|
| 185 | x /: x[___, i_, ___, j_, ___] del[del[_, i_], j_] := 0;
|
|---|
| 186 | x /: x[___, i_, ___, j_, ___] del[del[_, j_], i_] := 0;
|
|---|
| 187 |
|
|---|
| 188 | x[xx___, Index[name_, i_?NumericQ], yy___] := x[xx, i, yy];
|
|---|
| 189 |
|
|---|
| 190 | (* ************************** *)
|
|---|
| 191 | (* ***** Indices ***** *)
|
|---|
| 192 | (* ************************** *)
|
|---|
| 193 |
|
|---|
| 194 | IndexRange[Index[SU3W ]] = Unfold[Range[8]];
|
|---|
| 195 | IndexRange[Index[ASU3W ]] = Unfold[Range[8]];
|
|---|
| 196 | IndexRange[Index[ASU3T ]] = Unfold[Range[3]];
|
|---|
| 197 | IndexRange[Index[SU3T ]] = Unfold[Range[3]];
|
|---|
| 198 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]];
|
|---|
| 199 | IndexRange[Index[Colour ]] = NoUnfold[Range[3]];
|
|---|
| 200 | IndexRange[Index[Generation1]] = Range[3,3];
|
|---|
| 201 | IndexRange[Index[Generation2]] = Range[2];
|
|---|
| 202 | IndexRange[Index[Generation]] = Range[3];
|
|---|
| 203 |
|
|---|
| 204 | IndexStyle[SU3W, j];
|
|---|
| 205 | IndexStyle[ASU3W, o];
|
|---|
| 206 | IndexStyle[ASU3T, p];
|
|---|
| 207 | IndexStyle[SU3T, k];
|
|---|
| 208 | IndexStyle[Gluon, a];
|
|---|
| 209 | IndexStyle[Colour, m];
|
|---|
| 210 | IndexStyle[Generation1, r];
|
|---|
| 211 | IndexStyle[Generation2, g];
|
|---|
| 212 | IndexStyle[Generation, f];
|
|---|
| 213 |
|
|---|
| 214 |
|
|---|
| 215 | (* ************************** *)
|
|---|
| 216 | (* *** Interaction orders *** *)
|
|---|
| 217 | (* *** (as used by mg5) *** *)
|
|---|
| 218 | (* ************************** *)
|
|---|
| 219 |
|
|---|
| 220 | M$InteractionOrderHierarchy = {
|
|---|
| 221 | {QCD, 1},
|
|---|
| 222 | {QED, 2}
|
|---|
| 223 | };
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 | (* ************************** *)
|
|---|
| 227 | (* **** Particle classes **** *)
|
|---|
| 228 | (* ************************** *)
|
|---|
| 229 | M$ClassesDescription = {
|
|---|
| 230 |
|
|---|
| 231 | (* Gauge bosons: physical vector fields *)
|
|---|
| 232 | V[1] == {
|
|---|
| 233 | ClassName -> A,
|
|---|
| 234 | SelfConjugate -> True,
|
|---|
| 235 | Mass -> 0,
|
|---|
| 236 | Width -> 0,
|
|---|
| 237 | ParticleName -> "a",
|
|---|
| 238 | PDG -> 22,
|
|---|
| 239 | PropagatorLabel -> "a",
|
|---|
| 240 | PropagatorType -> W,
|
|---|
| 241 | PropagatorArrow -> None,
|
|---|
| 242 | FullName -> "Photon"
|
|---|
| 243 | },
|
|---|
| 244 | V[2] == {
|
|---|
| 245 | ClassName -> Z,
|
|---|
| 246 | SelfConjugate -> True,
|
|---|
| 247 | Mass -> {MZ, 91.1876},
|
|---|
| 248 | Width -> {WZ, 2.4952},
|
|---|
| 249 | ParticleName -> "Z",
|
|---|
| 250 | PDG -> 23,
|
|---|
| 251 | PropagatorLabel -> "Z",
|
|---|
| 252 | PropagatorType -> Sine,
|
|---|
| 253 | PropagatorArrow -> None,
|
|---|
| 254 | FullName -> "Z"
|
|---|
| 255 | },
|
|---|
| 256 | V[3] == {
|
|---|
| 257 | ClassName -> ZP,
|
|---|
| 258 | SelfConjugate -> True,
|
|---|
| 259 | Mass -> {MZP, Internal},
|
|---|
| 260 | Width -> {WZP, 10},
|
|---|
| 261 | ParticleName -> "ZP",
|
|---|
| 262 | PropagatorLabel -> "ZP",
|
|---|
| 263 | PropagatorType -> Sine,
|
|---|
| 264 | PropagatorArrow -> None,
|
|---|
| 265 | FullName -> "ZP"
|
|---|
| 266 | },
|
|---|
| 267 | V[4] == {
|
|---|
| 268 | ClassName -> W,
|
|---|
| 269 | SelfConjugate -> False,
|
|---|
| 270 | Mass -> {MW, 80.385},
|
|---|
| 271 | Width -> {WW, 2.085},
|
|---|
| 272 | ParticleName -> "W+",
|
|---|
| 273 | AntiParticleName -> "W-",
|
|---|
| 274 | QuantumNumbers -> {Q -> 1},
|
|---|
| 275 | PDG -> 24,
|
|---|
| 276 | PropagatorLabel -> "W",
|
|---|
| 277 | PropagatorType -> Sine,
|
|---|
| 278 | PropagatorArrow -> Forward,
|
|---|
| 279 | FullName -> "W"
|
|---|
| 280 | },
|
|---|
| 281 | V[5] == {
|
|---|
| 282 | ClassName -> YY,
|
|---|
| 283 | SelfConjugate -> False,
|
|---|
| 284 | Mass -> {MY, Internal},
|
|---|
| 285 | Width -> {WY, 10},
|
|---|
| 286 | ParticleName -> "Y--",
|
|---|
| 287 | AntiParticleName -> "Y++",
|
|---|
| 288 | QuantumNumbers -> {Q -> -2},
|
|---|
| 289 | PropagatorLabel -> "YY",
|
|---|
| 290 | PropagatorType -> Sine,
|
|---|
| 291 | PropagatorArrow -> Forward,
|
|---|
| 292 | FullName -> "YY"
|
|---|
| 293 | },
|
|---|
| 294 | V[6] == {
|
|---|
| 295 | ClassName -> V,
|
|---|
| 296 | SelfConjugate -> False,
|
|---|
| 297 | Mass -> {MV, Internal},
|
|---|
| 298 | Width -> {WV, 10},
|
|---|
| 299 | ParticleName -> "V-",
|
|---|
| 300 | AntiParticleName -> "V+",
|
|---|
| 301 | QuantumNumbers -> {Q -> -1},
|
|---|
| 302 | PropagatorLabel -> "V",
|
|---|
| 303 | PropagatorType -> Sine,
|
|---|
| 304 | PropagatorArrow -> Forward,
|
|---|
| 305 | FullName -> "V"
|
|---|
| 306 | },
|
|---|
| 307 | V[7] == {
|
|---|
| 308 | ClassName -> G,
|
|---|
| 309 | SelfConjugate -> True,
|
|---|
| 310 | Indices -> {Index[Gluon]},
|
|---|
| 311 | Mass -> 0,
|
|---|
| 312 | Width -> 0,
|
|---|
| 313 | ParticleName -> "g",
|
|---|
| 314 | PDG -> 21,
|
|---|
| 315 | PropagatorLabel -> "G",
|
|---|
| 316 | PropagatorType -> C,
|
|---|
| 317 | PropagatorArrow -> None,
|
|---|
| 318 | FullName -> "G"
|
|---|
| 319 | },
|
|---|
| 320 |
|
|---|
| 321 | (* Ghosts: related to physical gauge bosons *)
|
|---|
| 322 | U[1] == {
|
|---|
| 323 | ClassName -> ghA,
|
|---|
| 324 | SelfConjugate -> False,
|
|---|
| 325 | Ghost -> A,
|
|---|
| 326 | QuantumNumbers -> {GhostNumber -> 1},
|
|---|
| 327 | Mass -> 0,
|
|---|
| 328 | Width -> 0,
|
|---|
| 329 | PropagatorLabel -> "uA",
|
|---|
| 330 | PropagatorType -> GhostDash,
|
|---|
| 331 | PropagatorArrow -> Forward
|
|---|
| 332 | },
|
|---|
| 333 | U[2] == {
|
|---|
| 334 | ClassName -> ghZ,
|
|---|
| 335 | SelfConjugate -> False,
|
|---|
| 336 | Ghost -> Z,
|
|---|
| 337 | QuantumNumbers -> {GhostNumber -> 1},
|
|---|
| 338 | Mass -> {MZ,91.1876},
|
|---|
| 339 | Width -> {WZ, 2.4952},
|
|---|
| 340 | PropagatorLabel -> "uZ",
|
|---|
| 341 | PropagatorType -> GhostDash,
|
|---|
| 342 | PropagatorArrow -> Forward
|
|---|
| 343 | },
|
|---|
| 344 | U[3] == {
|
|---|
| 345 | ClassName -> ghZP,
|
|---|
| 346 | SelfConjugate -> False,
|
|---|
| 347 | Ghost -> ZP,
|
|---|
| 348 | QuantumNumbers -> {GhostNumber -> 1},
|
|---|
| 349 | Mass -> {MZP,Internal},
|
|---|
| 350 | Width -> {WZP, 10},
|
|---|
| 351 | PropagatorLabel -> "uZP",
|
|---|
| 352 | PropagatorType -> GhostDash,
|
|---|
| 353 | PropagatorArrow -> Forward
|
|---|
| 354 | },
|
|---|
| 355 | U[41] == {
|
|---|
| 356 | ClassName -> ghWp,
|
|---|
| 357 | SelfConjugate -> False,
|
|---|
| 358 | Ghost -> W,
|
|---|
| 359 | QuantumNumbers -> {GhostNumber -> 1, Q -> 1},
|
|---|
| 360 | Mass -> {MW, 80.385},
|
|---|
| 361 | Width -> {WW, 2.085},
|
|---|
| 362 | PropagatorLabel -> "uWp",
|
|---|
| 363 | PropagatorType -> GhostDash,
|
|---|
| 364 | PropagatorArrow -> Forward
|
|---|
| 365 | },
|
|---|
| 366 | U[42] == {
|
|---|
| 367 | ClassName -> ghWm,
|
|---|
| 368 | SelfConjugate -> False,
|
|---|
| 369 | Ghost -> Wbar,
|
|---|
| 370 | QuantumNumbers -> {GhostNumber -> 1, Q -> -1},
|
|---|
| 371 | Mass -> {MW, 80.385},
|
|---|
| 372 | Width -> {WW, 2.085},
|
|---|
| 373 | PropagatorLabel -> "uWm",
|
|---|
| 374 | PropagatorType -> GhostDash,
|
|---|
| 375 | PropagatorArrow -> Forward
|
|---|
| 376 | },
|
|---|
| 377 | U[51] == {
|
|---|
| 378 | ClassName -> ghYp,
|
|---|
| 379 | SelfConjugate -> False,
|
|---|
| 380 | Ghost -> YY,
|
|---|
| 381 | QuantumNumbers -> {GhostNumber -> 1, Q -> -2},
|
|---|
| 382 | Mass -> {MY, Internal},
|
|---|
| 383 | Width -> {WY, 10},
|
|---|
| 384 | PropagatorLabel -> "uYp",
|
|---|
| 385 | PropagatorType -> GhostDash,
|
|---|
| 386 | PropagatorArrow -> Forward
|
|---|
| 387 | },
|
|---|
| 388 | U[52] == {
|
|---|
| 389 | ClassName -> ghYm,
|
|---|
| 390 | SelfConjugate -> False,
|
|---|
| 391 | Ghost -> YYbar,
|
|---|
| 392 | QuantumNumbers -> {GhostNumber -> 1, Q -> 2},
|
|---|
| 393 | Mass -> {MY, Internal},
|
|---|
| 394 | Width -> {WY, 10},
|
|---|
| 395 | PropagatorLabel -> "uYm",
|
|---|
| 396 | PropagatorType -> GhostDash,
|
|---|
| 397 | PropagatorArrow -> Forward
|
|---|
| 398 | },
|
|---|
| 399 | U[61] == {
|
|---|
| 400 | ClassName -> ghVp,
|
|---|
| 401 | SelfConjugate -> False,
|
|---|
| 402 | Ghost -> V,
|
|---|
| 403 | QuantumNumbers -> {GhostNumber -> 1, Q -> -1},
|
|---|
| 404 | Mass -> {MV,Internal},
|
|---|
| 405 | Width -> {WV, 10},
|
|---|
| 406 | PropagatorLabel -> "uVp",
|
|---|
| 407 | PropagatorType -> GhostDash,
|
|---|
| 408 | PropagatorArrow -> Forward
|
|---|
| 409 | },
|
|---|
| 410 | U[62] == {
|
|---|
| 411 | ClassName -> ghVm,
|
|---|
| 412 | SelfConjugate -> False,
|
|---|
| 413 | Ghost -> Vbar,
|
|---|
| 414 | QuantumNumbers -> {GhostNumber -> 1, Q -> 1},
|
|---|
| 415 | Mass -> {MV,Internal},
|
|---|
| 416 | Width -> {WV, 10},
|
|---|
| 417 | PropagatorLabel -> "uVm",
|
|---|
| 418 | PropagatorType -> GhostDash,
|
|---|
| 419 | PropagatorArrow -> Forward
|
|---|
| 420 | },
|
|---|
| 421 | U[7] == {
|
|---|
| 422 | ClassName -> ghG,
|
|---|
| 423 | SelfConjugate -> False,
|
|---|
| 424 | Indices -> {Index[Gluon]},
|
|---|
| 425 | Ghost -> G,
|
|---|
| 426 | QuantumNumbers ->{GhostNumber -> 1},
|
|---|
| 427 | Mass -> 0,
|
|---|
| 428 | Width -> 0,
|
|---|
| 429 | PropagatorLabel -> "uG",
|
|---|
| 430 | PropagatorType -> GhostDash,
|
|---|
| 431 | PropagatorArrow -> Forward
|
|---|
| 432 | },
|
|---|
| 433 |
|
|---|
| 434 | (* Gauge bosons: unphysical vector fields *)
|
|---|
| 435 | V[12] == {
|
|---|
| 436 | ClassName -> K,
|
|---|
| 437 | Unphysical -> True,
|
|---|
| 438 | SelfConjugate -> True,
|
|---|
| 439 | Definitions -> { K[mu_] -> c3 (cz ZP[mu]-sz Z[mu]) + s3 (-sw (cz Z[mu]+sz ZP[mu]) + cw A[mu])}
|
|---|
| 440 | },
|
|---|
| 441 | V[13] == {
|
|---|
| 442 | ClassName -> Wi,
|
|---|
| 443 | Unphysical -> True,
|
|---|
| 444 | SelfConjugate -> True,
|
|---|
| 445 | Indices -> {Index[SU3W]},
|
|---|
| 446 | FlavorIndex -> SU3W,
|
|---|
| 447 | Definitions -> {
|
|---|
| 448 | Wi[mu_,1] -> (Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2] -> (Wbar[mu]-W[mu])/(I*Sqrt[2]),
|
|---|
| 449 | Wi[mu_,4] -> (YYbar[mu]+YY[mu])/Sqrt[2], Wi[mu_,5] -> (YY[mu]-YYbar[mu])/(I*Sqrt[2]),
|
|---|
| 450 | Wi[mu_,6] -> (Vbar[mu]+V[mu])/Sqrt[2], Wi[mu_,7] -> (V[mu]-Vbar[mu])/(I*Sqrt[2]),
|
|---|
| 451 | Wi[mu_,3] -> cw (cz Z[mu]+sz ZP[mu]) + sw A[mu], Wi[mu_,8] -> -s3 (cz ZP[mu]-sz Z[mu]) + c3 (-sw (cz Z[mu]+sz ZP[mu]) +cw A[mu])}
|
|---|
| 452 | },
|
|---|
| 453 | V[14] == {
|
|---|
| 454 | ClassName -> WWi,
|
|---|
| 455 | Unphysical -> True,
|
|---|
| 456 | SelfConjugate -> True,
|
|---|
| 457 | Indices -> {Index[ASU3W]},
|
|---|
| 458 | FlavorIndex -> ASU3W,
|
|---|
| 459 | Definitions -> {
|
|---|
| 460 | WWi[mu_,1] -> (Wbar[mu]+W[mu])/Sqrt[2], WWi[mu_,2] -> (Wbar[mu]-W[mu])/(I*Sqrt[2]),
|
|---|
| 461 | WWi[mu_,4] -> (YYbar[mu]+YY[mu])/Sqrt[2], WWi[mu_,5] -> (YY[mu]-YYbar[mu])/(I*Sqrt[2]),
|
|---|
| 462 | WWi[mu_,6] -> (Vbar[mu]+V[mu])/Sqrt[2], WWi[mu_,7] -> (V[mu]-Vbar[mu])/(I*Sqrt[2]),
|
|---|
| 463 | WWi[mu_,3] -> cw (cz Z[mu]+sz ZP[mu]) + sw A[mu], WWi[mu_,8] -> -s3 (cz ZP[mu]-sz Z[mu])+c3 (-sw (cz Z[mu]+sz ZP[mu])+cw A[mu])}
|
|---|
| 464 | },
|
|---|
| 465 |
|
|---|
| 466 | (* Ghosts: related to unphysical gauge bosons *)
|
|---|
| 467 | U[12] == {
|
|---|
| 468 | ClassName -> ghK,
|
|---|
| 469 | Unphysical -> True,
|
|---|
| 470 | SelfConjugate -> False,
|
|---|
| 471 | Ghost -> K,
|
|---|
| 472 | Definitions -> { ghK -> -c3 (cz ghZP-sz ghZ) + s3 (-sw (cz ghZ+sz ghZP) + cw ghA)}
|
|---|
| 473 | },
|
|---|
| 474 | U[13] == {
|
|---|
| 475 | ClassName -> ghWi,
|
|---|
| 476 | Unphysical -> True,
|
|---|
| 477 | SelfConjugate -> False,
|
|---|
| 478 | Ghost -> Wi,
|
|---|
| 479 | Indices -> {Index[SU3W]},
|
|---|
| 480 | FlavorIndex -> SU3W,
|
|---|
| 481 | Definitions -> { ghWi[1] -> (ghWp+ghWm)/Sqrt[2], ghWi[2] -> (ghWm-ghWp)/(I*Sqrt[2]), ghWi[4] -> (ghYp+ghYm)/Sqrt[2], ghWi[5] -> (ghYp-ghYm)/(I*Sqrt[2]),ghWi[6] -> (ghVp+ghVm)/Sqrt[2], ghWi[7] -> (ghVp-ghVm)/(I*Sqrt[2]), ghWi[3] -> cw (cz ghZ+sz ghZP)+sw ghA, ghWi[8] -> -s3 (cz ghZP-sz ghZ)+c3 (-sw (cz ghZ+sz ghZP) + cw ghA)}
|
|---|
| 482 | },
|
|---|
| 483 |
|
|---|
| 484 | (* Fermions: physical fields *)
|
|---|
| 485 | F[1] == {
|
|---|
| 486 | ClassName -> vl,
|
|---|
| 487 | ClassMembers -> {ve,vm,vt},
|
|---|
| 488 | Indices -> {Index[Generation]},
|
|---|
| 489 | FlavorIndex -> Generation,
|
|---|
| 490 | SelfConjugate -> False,
|
|---|
| 491 | Mass -> 0,
|
|---|
| 492 | Width -> 0,
|
|---|
| 493 | QuantumNumbers -> {LeptonNumber -> 1},
|
|---|
| 494 | PropagatorLabel -> {"v", "ve", "vm", "vt"} ,
|
|---|
| 495 | PropagatorType -> S,
|
|---|
| 496 | PropagatorArrow -> Forward,
|
|---|
| 497 | PDG -> {12,14,16},
|
|---|
| 498 | ParticleName -> {"ve","vm","vt"},
|
|---|
| 499 | AntiParticleName -> {"ve~","vm~","vt~"},
|
|---|
| 500 | FullName -> {"Electron-neutrino", "Mu-neutrino", "Tau-neutrino"}
|
|---|
| 501 | },
|
|---|
| 502 | F[2] == {
|
|---|
| 503 | ClassName -> l,
|
|---|
| 504 | ClassMembers -> {e, mu, ta},
|
|---|
| 505 | Indices -> {Index[Generation]},
|
|---|
| 506 | FlavorIndex -> Generation,
|
|---|
| 507 | SelfConjugate -> False,
|
|---|
| 508 | Mass -> {Ml, {Me,5.11*^-4}, {MMU,0.10566}, {MTA,1.777}},
|
|---|
| 509 | Width -> 0,
|
|---|
| 510 | QuantumNumbers -> {Q -> -1, LeptonNumber -> 1},
|
|---|
| 511 | PropagatorLabel -> {"l", "e", "mu", "ta"},
|
|---|
| 512 | PropagatorType -> Straight,
|
|---|
| 513 | PropagatorArrow -> Forward,
|
|---|
| 514 | PDG -> {11, 13, 15},
|
|---|
| 515 | ParticleName -> {"e-", "mu-", "ta-"},
|
|---|
| 516 | AntiParticleName -> {"e+", "mu+", "ta+"},
|
|---|
| 517 | FullName -> {"Electron", "Muon", "Tau"}
|
|---|
| 518 | },
|
|---|
| 519 | F[3] == {
|
|---|
| 520 | ClassName -> EE,
|
|---|
| 521 | ClassMembers -> {Ee, Emu, Eta},
|
|---|
| 522 | Indices -> {Index[Generation]},
|
|---|
| 523 | FlavorIndex -> Generation,
|
|---|
| 524 | SelfConjugate -> False,
|
|---|
| 525 | Mass -> {ME, {MEE,1*^3}, {MEMU,1*^3}, {META,1*^3}},
|
|---|
| 526 | Width -> {WE, {WEE,10},{WEMU,10},{WETA,10}},
|
|---|
| 527 | QuantumNumbers -> {Q -> 1, LeptonNumber -> 1},
|
|---|
| 528 | PropagatorLabel -> {"E", "Ee", "Emu", "Eta"},
|
|---|
| 529 | PropagatorType -> Straight,
|
|---|
| 530 | PropagatorArrow -> Forward,
|
|---|
| 531 | ParticleName -> {"Ee+", "Emu+", "Eta+"},
|
|---|
| 532 | AntiParticleName -> {"Ee-", "Emu-", "Eta-"},
|
|---|
| 533 | FullName -> {"HElectron", "HMuon", "HTau"}
|
|---|
| 534 | },
|
|---|
| 535 | F[4] == {
|
|---|
| 536 | ClassName -> uq,
|
|---|
| 537 | ClassMembers -> {u, c, t},
|
|---|
| 538 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 539 | FlavorIndex -> Generation,
|
|---|
| 540 | SelfConjugate -> False,
|
|---|
| 541 | Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}},
|
|---|
| 542 | Width -> {0, 0, {WT,1.50833649}},
|
|---|
| 543 | QuantumNumbers -> {Q -> 2/3},
|
|---|
| 544 | PropagatorLabel -> {"uq", "u", "c", "t"},
|
|---|
| 545 | PropagatorType -> Straight,
|
|---|
| 546 | PropagatorArrow -> Forward,
|
|---|
| 547 | PDG -> {2, 4, 6},
|
|---|
| 548 | ParticleName -> {"u", "c", "t" },
|
|---|
| 549 | AntiParticleName -> {"u~", "c~", "t~"},
|
|---|
| 550 | FullName -> {"u-quark", "c-quark", "t-quark"}
|
|---|
| 551 | },
|
|---|
| 552 | F[5] == {
|
|---|
| 553 | ClassName -> dq,
|
|---|
| 554 | ClassMembers -> {d, s, b},
|
|---|
| 555 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 556 | FlavorIndex -> Generation,
|
|---|
| 557 | SelfConjugate -> False,
|
|---|
| 558 | Mass -> {Md, {MD,5.04*^-3}, {MS,0.101}, {MB,4.7}},
|
|---|
| 559 | Width -> 0,
|
|---|
| 560 | QuantumNumbers -> {Q -> -1/3},
|
|---|
| 561 | PropagatorLabel -> {"dq", "d", "s", "b"},
|
|---|
| 562 | PropagatorType -> Straight,
|
|---|
| 563 | PropagatorArrow -> Forward,
|
|---|
| 564 | PDG -> {1,3,5},
|
|---|
| 565 | ParticleName -> {"d", "s", "b" },
|
|---|
| 566 | AntiParticleName -> {"d~", "s~", "b~"},
|
|---|
| 567 | FullName -> {"d-quark", "s-quark", "b-quark"}
|
|---|
| 568 | },
|
|---|
| 569 | F[6] == {
|
|---|
| 570 | ClassName -> Jq12,
|
|---|
| 571 | ClassMembers -> {Jd, Js},
|
|---|
| 572 | Indices -> {Index[Generation2], Index[Colour]},
|
|---|
| 573 | FlavorIndex -> Generation2,
|
|---|
| 574 | SelfConjugate -> False,
|
|---|
| 575 | Mass -> {MJ12, {MJD,1*^3}, {MJS,1*^3}},
|
|---|
| 576 | Width -> {WJQ12,{WJD,10},{WJS,10}},
|
|---|
| 577 | QuantumNumbers -> {Q -> -4/3},
|
|---|
| 578 | PropagatorLabel -> {"Jq12", "Jd", "Js"},
|
|---|
| 579 | PropagatorType -> Straight,
|
|---|
| 580 | PropagatorArrow -> Forward,
|
|---|
| 581 | ParticleName -> {"Jd", "Js"},
|
|---|
| 582 | AntiParticleName -> {"Jd~", "Js~"},
|
|---|
| 583 | FullName -> {"Jd-quark", "Js-quark"}
|
|---|
| 584 | },
|
|---|
| 585 | F[7] == {
|
|---|
| 586 | ClassName -> Jt,
|
|---|
| 587 | Indices -> {Index[Colour]},
|
|---|
| 588 | SelfConjugate -> False,
|
|---|
| 589 | Mass -> {MJT,1*^3},
|
|---|
| 590 | Width -> 10,
|
|---|
| 591 | QuantumNumbers -> {Q -> 5/3},
|
|---|
| 592 | PropagatorLabel -> "Jt",
|
|---|
| 593 | PropagatorType -> Straight,
|
|---|
| 594 | PropagatorArrow -> Forward,
|
|---|
| 595 | ParticleName -> "Jt",
|
|---|
| 596 | AntiParticleName -> "Jt~",
|
|---|
| 597 | FullName -> "Jt-quark"
|
|---|
| 598 | },
|
|---|
| 599 |
|
|---|
| 600 |
|
|---|
| 601 |
|
|---|
| 602 | (* Fermions: unphysical fields *)
|
|---|
| 603 | F[11] == {
|
|---|
| 604 | ClassName -> LL,
|
|---|
| 605 | Unphysical -> True,
|
|---|
| 606 | Indices -> {Index[ASU3T], Index[Generation]},
|
|---|
| 607 | FlavorIndex -> ASU3T,
|
|---|
| 608 | SelfConjugate -> False,
|
|---|
| 609 | QuantumNumbers -> {X ->0},
|
|---|
| 610 | Definitions -> {
|
|---|
| 611 | LL[sp1_,1,ff_] :> Module[{sp2}, ProjM[sp1,sp2] l[sp2,ff]],
|
|---|
| 612 | LL[sp1_,2,ff_] :> -Module[{sp2}, ProjM[sp1,sp2] vl[sp2,ff]],
|
|---|
| 613 | LL[sp1_,3,ff_] :> Module[{sp2}, ProjM[sp1,sp2] EE[sp2,ff]]}
|
|---|
| 614 | },
|
|---|
| 615 | F[12] == {
|
|---|
| 616 | ClassName -> lR,
|
|---|
| 617 | Unphysical -> True,
|
|---|
| 618 | Indices -> {Index[Generation]},
|
|---|
| 619 | FlavorIndex -> Generation,
|
|---|
| 620 | SelfConjugate -> False,
|
|---|
| 621 | QuantumNumbers -> {X -> -1},
|
|---|
| 622 | Definitions -> { lR[sp1_,ff_] :> Module[{sp2}, ProjP[sp1,sp2] l[sp2,ff]] }
|
|---|
| 623 | },
|
|---|
| 624 | F[13] == {
|
|---|
| 625 | ClassName -> EER,
|
|---|
| 626 | Unphysical -> True,
|
|---|
| 627 | Indices -> {Index[Generation]},
|
|---|
| 628 | FlavorIndex -> Generation,
|
|---|
| 629 | SelfConjugate -> False,
|
|---|
| 630 | QuantumNumbers -> {X -> 1},
|
|---|
| 631 | Definitions -> { EER[sp1_,ff_] :> Module[{sp2}, ProjP[sp1,sp2] EE[sp2,ff]] }
|
|---|
| 632 | },
|
|---|
| 633 | F[14] == {
|
|---|
| 634 | ClassName -> QL12,
|
|---|
| 635 | Unphysical -> True,
|
|---|
| 636 | Indices -> {Index[SU3T], Index[Generation2], Index[Colour]},
|
|---|
| 637 | FlavorIndex -> SU3T,
|
|---|
| 638 | SelfConjugate -> False,
|
|---|
| 639 | QuantumNumbers -> {X -> -1/3},
|
|---|
| 640 | Definitions -> {
|
|---|
| 641 | QL12[sp1_,1,1,cc_] :> Module[{sp2,ff2}, RU[1,ff2] ProjM[sp1,sp2] uq[sp2,ff2,cc]],
|
|---|
| 642 | QL12[sp1_,1,2,cc_] :> Module[{sp2,ff2}, RU[2,ff2] ProjM[sp1,sp2] uq[sp2,ff2,cc]],
|
|---|
| 643 | QL12[sp1_,2,1,cc_] :> Module[{sp2,ff2}, CKM[1,ff2] ProjM[sp1,sp2] dq[sp2,ff2,cc]],
|
|---|
| 644 | QL12[sp1_,2,2,cc_] :> Module[{sp2,ff2}, CKM[2,ff2] ProjM[sp1,sp2] dq[sp2,ff2,cc]],
|
|---|
| 645 | QL12[sp1_,3,ff12_,cc_] :> Module[{sp2}, ProjM[sp1,sp2] Jq12[sp2,ff12,cc]]}
|
|---|
| 646 | },
|
|---|
| 647 | F[15] == {
|
|---|
| 648 | ClassName -> QL3,
|
|---|
| 649 | Unphysical -> True,
|
|---|
| 650 | Indices -> {Index[ASU3T], Index[Generation1], Index[Colour]},
|
|---|
| 651 | FlavorIndex -> ASU3T,
|
|---|
| 652 | SelfConjugate -> False,
|
|---|
| 653 | QuantumNumbers -> {X -> 2/3},
|
|---|
| 654 | Definitions -> {
|
|---|
| 655 | QL3[sp1_,1,3,cc_] :> Module[{sp2,ff2}, CKM[3,ff2] ProjM[sp1,sp2] dq[sp2,ff2,cc]],
|
|---|
| 656 | QL3[sp1_,2,3,cc_] :>-Module[{sp2,ff2}, RU[3,ff2] ProjM[sp1,sp2] uq[sp2,ff2,cc]],
|
|---|
| 657 | QL3[sp1_,3,3,cc_] :> Module[{sp2}, ProjM[sp1,sp2] Jt[sp2,cc]]}
|
|---|
| 658 | },
|
|---|
| 659 | F[16] == {
|
|---|
| 660 | ClassName -> QL,
|
|---|
| 661 | Unphysical -> True,
|
|---|
| 662 | Indices -> {Index[SU3T], Index[Generation], Index[Colour]},
|
|---|
| 663 | FlavorIndex -> SU3T,
|
|---|
| 664 | SelfConjugate -> False,
|
|---|
| 665 | QuantumNumbers -> {X -> -1/3, X -> -1/3, X -> 2/3},
|
|---|
| 666 | Definitions -> {
|
|---|
| 667 | QL[sp1_,1,1,cc_] :> QL12[sp1,1,1,cc],
|
|---|
| 668 | QL[sp1_,1,2,cc_] :> QL12[sp1,1,2,cc],
|
|---|
| 669 | QL[sp1_,1,3,cc_] :> QL3[sp1,1,3,cc],
|
|---|
| 670 | QL[sp1_,2,1,cc_] :> QL12[sp1,2,1,cc],
|
|---|
| 671 | QL[sp1_,2,2,cc_] :> QL12[sp1,2,2,cc],
|
|---|
| 672 | QL[sp1_,2,3,cc_] :> QL3[sp1,2,3,cc],
|
|---|
| 673 | QL[sp1_,3,1,cc_] :> QL12[sp1,3,1,cc],
|
|---|
| 674 | QL[sp1_,3,2,cc_] :> QL12[sp1,3,2,cc],
|
|---|
| 675 | QL[sp1_,3,3,cc_] :> QL3[sp1,3,3,cc]}
|
|---|
| 676 | },
|
|---|
| 677 | F[17] == {
|
|---|
| 678 | ClassName -> uR,
|
|---|
| 679 | Unphysical -> True,
|
|---|
| 680 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 681 | FlavorIndex -> Generation,
|
|---|
| 682 | SelfConjugate -> False,
|
|---|
| 683 | QuantumNumbers -> {X -> 2/3},
|
|---|
| 684 | Definitions -> { uR[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] uq[sp2,ff,cc]] }
|
|---|
| 685 | },
|
|---|
| 686 | F[18] == {
|
|---|
| 687 | ClassName -> dR,
|
|---|
| 688 | Unphysical -> True,
|
|---|
| 689 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 690 | FlavorIndex -> Generation,
|
|---|
| 691 | SelfConjugate -> False,
|
|---|
| 692 | QuantumNumbers -> {X -> -1/3},
|
|---|
| 693 | Definitions -> { dR[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] dq[sp2,ff,cc]] }
|
|---|
| 694 | },
|
|---|
| 695 | F[19] == {
|
|---|
| 696 | ClassName -> JR12,
|
|---|
| 697 | Unphysical -> True,
|
|---|
| 698 | Indices -> {Index[Generation2], Index[Colour]},
|
|---|
| 699 | FlavorIndex -> Generation2,
|
|---|
| 700 | SelfConjugate -> False,
|
|---|
| 701 | QuantumNumbers -> {X -> -4/3},
|
|---|
| 702 | Definitions -> { JR12[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] Jq12[sp2,ff,cc]] }
|
|---|
| 703 | },
|
|---|
| 704 | F[20] == {
|
|---|
| 705 | ClassName -> JR3,
|
|---|
| 706 | Unphysical -> True,
|
|---|
| 707 | Indices -> {Index[Generation1], Index[Colour]},
|
|---|
| 708 | FlavorIndex -> Generation1,
|
|---|
| 709 | SelfConjugate -> False,
|
|---|
| 710 | QuantumNumbers -> {X -> 5/3},
|
|---|
| 711 | Definitions -> { JR3[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] Jt[sp2,cc]] }
|
|---|
| 712 | },
|
|---|
| 713 | F[21] == {
|
|---|
| 714 | ClassName -> JR,
|
|---|
| 715 | Unphysical -> True,
|
|---|
| 716 | Indices -> {Index[Generation], Index[Colour]},
|
|---|
| 717 | FlavorIndex -> Generation,
|
|---|
| 718 | SelfConjugate -> False,
|
|---|
| 719 | QuantumNumbers -> {X -> -4/3, X -> -4/3, X -> 5/3},
|
|---|
| 720 | Definitions -> { JR[sp1_,1,cc_] :> JR12[sp1,1,cc],
|
|---|
| 721 | JR[sp1_,2,cc_] :> JR12[sp1,2,cc],
|
|---|
| 722 | JR[sp1_,3,cc_] :> JR3[sp1,3,cc] }
|
|---|
| 723 | },
|
|---|
| 724 |
|
|---|
| 725 | (* Higgs: physical scalars *)
|
|---|
| 726 | S[1] == {
|
|---|
| 727 | ClassName -> h,
|
|---|
| 728 | SelfConjugate -> True,
|
|---|
| 729 | Mass -> {Mh,125},
|
|---|
| 730 | Width -> {Wh,0.00407},
|
|---|
| 731 | PropagatorLabel -> "h",
|
|---|
| 732 | PropagatorType -> D,
|
|---|
| 733 | PropagatorArrow -> None,
|
|---|
| 734 | PDG -> 25,
|
|---|
| 735 | ParticleName -> "h",
|
|---|
| 736 | FullName -> "h"
|
|---|
| 737 | },
|
|---|
| 738 | S[2] == {
|
|---|
| 739 | ClassName -> H2,
|
|---|
| 740 | SelfConjugate -> True,
|
|---|
| 741 | Mass -> {MH2,Internal},
|
|---|
| 742 | Width -> {WH2,10},
|
|---|
| 743 | PropagatorLabel -> "H2",
|
|---|
| 744 | PropagatorType -> D,
|
|---|
| 745 | PropagatorArrow -> None,
|
|---|
| 746 | ParticleName -> "H2",
|
|---|
| 747 | FullName -> "H2"
|
|---|
| 748 | },
|
|---|
| 749 | S[3] == {
|
|---|
| 750 | ClassName -> H3,
|
|---|
| 751 | SelfConjugate -> True,
|
|---|
| 752 | Mass -> {MH3,Internal},
|
|---|
| 753 | Width -> {WH3,10},
|
|---|
| 754 | PropagatorLabel -> "H3",
|
|---|
| 755 | PropagatorType -> D,
|
|---|
| 756 | PropagatorArrow -> None,
|
|---|
| 757 | ParticleName -> "H3",
|
|---|
| 758 | FullName -> "H3"
|
|---|
| 759 | },
|
|---|
| 760 | S[4] == {
|
|---|
| 761 | ClassName -> H0,
|
|---|
| 762 | SelfConjugate -> True,
|
|---|
| 763 | Mass -> {MH0,Internal},
|
|---|
| 764 | Width -> {WH0,10},
|
|---|
| 765 | PropagatorLabel -> "H0",
|
|---|
| 766 | PropagatorType -> D,
|
|---|
| 767 | PropagatorArrow -> None,
|
|---|
| 768 | ParticleName -> "H0",
|
|---|
| 769 | FullName -> "H0"
|
|---|
| 770 | },
|
|---|
| 771 | S[5] == {
|
|---|
| 772 | ClassName -> HW,
|
|---|
| 773 | SelfConjugate -> False,
|
|---|
| 774 | Mass -> {MHW,Internal},
|
|---|
| 775 | Width -> {WHW,10},
|
|---|
| 776 | ParticleName -> "HW+",
|
|---|
| 777 | AntiParticleName -> "HW-",
|
|---|
| 778 | QuantumNumbers -> {Q -> 1},
|
|---|
| 779 | PropagatorLabel -> "HW",
|
|---|
| 780 | PropagatorType -> D,
|
|---|
| 781 | PropagatorArrow -> Forward,
|
|---|
| 782 | FullName -> "HW"
|
|---|
| 783 | },
|
|---|
| 784 | S[6] == {
|
|---|
| 785 | ClassName -> HY,
|
|---|
| 786 | SelfConjugate -> False,
|
|---|
| 787 | Mass -> {MHY,Internal},
|
|---|
| 788 | Width -> {WHY,10},
|
|---|
| 789 | ParticleName -> "HY--",
|
|---|
| 790 | AntiParticleName -> "HY++",
|
|---|
| 791 | QuantumNumbers -> {Q -> -2},
|
|---|
| 792 | PropagatorLabel -> "HY",
|
|---|
| 793 | PropagatorType -> D,
|
|---|
| 794 | PropagatorArrow -> Forward,
|
|---|
| 795 | FullName -> "HY"
|
|---|
| 796 | },
|
|---|
| 797 | S[7] == {
|
|---|
| 798 | ClassName -> HV,
|
|---|
| 799 | SelfConjugate -> False,
|
|---|
| 800 | Mass -> {MHV,Internal},
|
|---|
| 801 | Width -> {WHV,10},
|
|---|
| 802 | ParticleName -> "HV-",
|
|---|
| 803 | AntiParticleName -> "HV+",
|
|---|
| 804 | QuantumNumbers -> {Q -> -1},
|
|---|
| 805 | PropagatorLabel -> "HV",
|
|---|
| 806 | PropagatorType -> D,
|
|---|
| 807 | PropagatorArrow -> Forward,
|
|---|
| 808 | FullName -> "HV"
|
|---|
| 809 | },
|
|---|
| 810 |
|
|---|
| 811 |
|
|---|
| 812 | (* Higgs: physical scalars *)
|
|---|
| 813 | S[8] == {
|
|---|
| 814 | ClassName -> GZ,
|
|---|
| 815 | SelfConjugate -> True,
|
|---|
| 816 | Goldstone -> Z,
|
|---|
| 817 | Mass -> {MZ, 91.1876},
|
|---|
| 818 | Width -> {WZ, 2.4952},
|
|---|
| 819 | PropagatorLabel -> "GZ",
|
|---|
| 820 | PropagatorType -> D,
|
|---|
| 821 | PropagatorArrow -> None,
|
|---|
| 822 | PDG -> 250,
|
|---|
| 823 | ParticleName -> "GZ",
|
|---|
| 824 | FullName -> "GZ"
|
|---|
| 825 | },
|
|---|
| 826 | S[9] == {
|
|---|
| 827 | ClassName -> GZP,
|
|---|
| 828 | SelfConjugate -> True,
|
|---|
| 829 | Goldstone -> ZP,
|
|---|
| 830 | Mass -> {MZP, Internal},
|
|---|
| 831 | Width -> {WZP, 10},
|
|---|
| 832 | PropagatorLabel -> "GZP",
|
|---|
| 833 | PropagatorType -> D,
|
|---|
| 834 | PropagatorArrow -> None,
|
|---|
| 835 | ParticleName -> "GZP",
|
|---|
| 836 | FullName -> "GZP"
|
|---|
| 837 | },
|
|---|
| 838 | S[10] == {
|
|---|
| 839 | ClassName -> GW,
|
|---|
| 840 | SelfConjugate -> False,
|
|---|
| 841 | Goldstone -> W,
|
|---|
| 842 | Mass -> {MW, 80.385},
|
|---|
| 843 | QuantumNumbers -> {Q -> 1},
|
|---|
| 844 | Width -> {WW, 2.085},
|
|---|
| 845 | PropagatorLabel -> "GW",
|
|---|
| 846 | PropagatorType -> D,
|
|---|
| 847 | PropagatorArrow -> None,
|
|---|
| 848 | PDG -> 251,
|
|---|
| 849 | ParticleName -> "GW+",
|
|---|
| 850 | AntiParticleName -> "GW-",
|
|---|
| 851 | FullName -> "GW"
|
|---|
| 852 | },
|
|---|
| 853 | S[11] == {
|
|---|
| 854 | ClassName -> GY,
|
|---|
| 855 | SelfConjugate -> False,
|
|---|
| 856 | Goldstone -> YY,
|
|---|
| 857 | Mass -> {MY, Internal},
|
|---|
| 858 | QuantumNumbers -> {Q -> -2},
|
|---|
| 859 | Width -> {WY, 10},
|
|---|
| 860 | PropagatorLabel -> "GY",
|
|---|
| 861 | PropagatorType -> D,
|
|---|
| 862 | PropagatorArrow -> None,
|
|---|
| 863 | ParticleName -> "GY--",
|
|---|
| 864 | AntiParticleName -> "GY++",
|
|---|
| 865 | FullName -> "GY"
|
|---|
| 866 | },
|
|---|
| 867 | S[12] == {
|
|---|
| 868 | ClassName -> GV,
|
|---|
| 869 | SelfConjugate -> False,
|
|---|
| 870 | Goldstone -> V,
|
|---|
| 871 | Mass -> {MV, Internal},
|
|---|
| 872 | QuantumNumbers -> {Q -> -1},
|
|---|
| 873 | Width -> {WV, 10},
|
|---|
| 874 | PropagatorLabel -> "GV",
|
|---|
| 875 | PropagatorType -> D,
|
|---|
| 876 | PropagatorArrow -> None,
|
|---|
| 877 | ParticleName -> "GV-",
|
|---|
| 878 | AntiParticleName -> "GV+",
|
|---|
| 879 | FullName -> "GV"
|
|---|
| 880 | },
|
|---|
| 881 |
|
|---|
| 882 |
|
|---|
| 883 | (* Higgs: unphysical scalars *)
|
|---|
| 884 | S[13] == {
|
|---|
| 885 | ClassName -> Rho,
|
|---|
| 886 | Unphysical -> True,
|
|---|
| 887 | Indices -> {Index[SU3T]},
|
|---|
| 888 | FlavorIndex -> SU3T,
|
|---|
| 889 | SelfConjugate -> False,
|
|---|
| 890 | QuantumNumbers -> {X ->0},
|
|---|
| 891 | Definitions -> { Rho[1] -> -I (HW svv2+GW cvv2), Rho[2] -> (v + UH11 h + UH12 H2 + UH13 H3 + I (Uh11 H0 + Uh12 GZ + Uh13 GZP))/Sqrt[2], Rho[3] -> -I (HV svv3+GV cvv3)}
|
|---|
| 892 | },
|
|---|
| 893 | S[14] == {
|
|---|
| 894 | ClassName -> Phi,
|
|---|
| 895 | Unphysical -> True,
|
|---|
| 896 | Indices -> {Index[SU3T]},
|
|---|
| 897 | FlavorIndex -> SU3T,
|
|---|
| 898 | SelfConjugate -> False,
|
|---|
| 899 | QuantumNumbers -> {X -> -1},
|
|---|
| 900 | Definitions -> { Phi[1] -> (v2 + UH21 h + UH22 H2 + UH23 H3 + I (Uh21 H0 + Uh23 GZP))/Sqrt[2], Phi[2] -> -I(GWbar svv2 -HWbar cvv2), Phi[3] -> -I(HY sv2v3+GY cv2v3) }
|
|---|
| 901 | },
|
|---|
| 902 | S[15] == {
|
|---|
| 903 | ClassName -> Chi,
|
|---|
| 904 | Unphysical -> True,
|
|---|
| 905 | Indices -> {Index[SU3T]},
|
|---|
| 906 | FlavorIndex -> SU3T,
|
|---|
| 907 | SelfConjugate -> False,
|
|---|
| 908 | QuantumNumbers -> {X -> 1},
|
|---|
| 909 | Definitions -> { Chi[1] -> -I (GYbar sv2v3-HYbar cv2v3), Chi[2] -> -I (GVbar svv3-HVbar cvv3), Chi[3] -> (v3 + UH31 h + UH32 H2 + UH33 H3 + I (Uh31 H0 + Uh32 GZ + Uh33 GZP))/Sqrt[2] }
|
|---|
| 910 | },
|
|---|
| 911 | S[16] == {
|
|---|
| 912 | ClassName -> Su,
|
|---|
| 913 | Unphysical -> True,
|
|---|
| 914 | Indices -> {Index[Generation], Index[Generation],Index[SU3T]},
|
|---|
| 915 | FlavorIndex -> SU3T,
|
|---|
| 916 | SelfConjugate -> False,
|
|---|
| 917 | Definitions -> {Su[1,1,kk_] -> Phi[kk], Su[1,2,kk_] -> 0, Su[1,3,kk_] -> 0, Su[2,1,kk_] -> 0, Su[2,2,kk_] -> Phi[kk], Su[2,3,kk_] -> 0, Su[3,1,kk_] -> 0, Su[3,2,kk_] -> 0, Su[3,3,kk_] -> -Rhobar[kk]}
|
|---|
| 918 | },
|
|---|
| 919 | S[17] == {
|
|---|
| 920 | ClassName -> Sd,
|
|---|
| 921 | Unphysical -> True,
|
|---|
| 922 | Indices -> {Index[Generation], Index[Generation],Index[SU3T]},
|
|---|
| 923 | FlavorIndex -> SU3T,
|
|---|
| 924 | SelfConjugate -> False,
|
|---|
| 925 | Definitions -> {Sd[1,1,kk_] -> Rho[kk], Sd[1,2,kk_] -> 0, Sd[1,3,kk_] -> 0, Sd[2,1,kk_] -> 0, Sd[2,2,kk_] -> Rho[kk], Sd[2,3,kk_] -> 0, Sd[3,1,kk_] -> 0, Sd[3,2,kk_] -> 0, Sd[3,3,kk_] -> Phibar[kk]}
|
|---|
| 926 | },
|
|---|
| 927 | S[18] == {
|
|---|
| 928 | ClassName -> SJ,
|
|---|
| 929 | Unphysical -> True,
|
|---|
| 930 | Indices -> {Index[Generation], Index[Generation],Index[SU3T]},
|
|---|
| 931 | FlavorIndex -> SU3T,
|
|---|
| 932 | SelfConjugate -> False,
|
|---|
| 933 | Definitions -> {SJ[1,1,kk_] -> Chi[kk], SJ[1,2,kk_] -> 0, SJ[1,3,kk_] -> 0, SJ[2,1,kk_] -> 0, SJ[2,2,kk_] -> Chi[kk], SJ[2,3,kk_] -> 0, SJ[3,1,kk_] -> 0, SJ[3,2,kk_] -> 0, SJ[3,3,kk_] -> Chibar[kk]}
|
|---|
| 934 | }
|
|---|
| 935 | };
|
|---|
| 936 |
|
|---|
| 937 |
|
|---|
| 938 | (* ************************** *)
|
|---|
| 939 | (* ***** Gauge ***** *)
|
|---|
| 940 | (* ***** Parameters ***** *)
|
|---|
| 941 | (* ***** (FeynArts) ***** *)
|
|---|
| 942 | (* ************************** *)
|
|---|
| 943 |
|
|---|
| 944 | GaugeXi[ V[1] ] = GaugeXi[A];
|
|---|
| 945 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
|---|
| 946 | GaugeXi[ V[3] ] = GaugeXi[ZP];
|
|---|
| 947 | GaugeXi[ V[4] ] = GaugeXi[W];
|
|---|
| 948 | GaugeXi[ V[5] ] = GaugeXi[YY];
|
|---|
| 949 | GaugeXi[ V[6] ] = GaugeXi[V];
|
|---|
| 950 | GaugeXi[ V[7] ] = GaugeXi[G];
|
|---|
| 951 | GaugeXi[ S[1] ] = 1;
|
|---|
| 952 | GaugeXi[ S[2] ] = 1;
|
|---|
| 953 | GaugeXi[ S[3] ] = 1;
|
|---|
| 954 | GaugeXi[ S[4] ] = 1;
|
|---|
| 955 | GaugeXi[ S[5] ] = 1;
|
|---|
| 956 | GaugeXi[ S[6] ] = 1;
|
|---|
| 957 | GaugeXi[ S[7] ] = 1;
|
|---|
| 958 | GaugeXi[ S[8] ] = GaugeXi[Z];
|
|---|
| 959 | GaugeXi[ S[9] ] = GaugeXi[ZP];
|
|---|
| 960 | GaugeXi[ S[10] ] = GaugeXi[W];
|
|---|
| 961 | GaugeXi[ S[11] ] = GaugeXi[YY];
|
|---|
| 962 | GaugeXi[ S[12] ] = GaugeXi[V];
|
|---|
| 963 | GaugeXi[ U[1] ] = GaugeXi[A];
|
|---|
| 964 | GaugeXi[ U[2] ] = GaugeXi[Z];
|
|---|
| 965 | GaugeXi[ U[3] ] = GaugeXi[ZP];
|
|---|
| 966 | GaugeXi[ U[41] ] = GaugeXi[W];
|
|---|
| 967 | GaugeXi[ U[42] ] = GaugeXi[W];
|
|---|
| 968 | GaugeXi[ U[51] ] = GaugeXi[YY];
|
|---|
| 969 | GaugeXi[ U[52] ] = GaugeXi[YY];
|
|---|
| 970 | GaugeXi[ U[61] ] = GaugeXi[V];
|
|---|
| 971 | GaugeXi[ U[62] ] = GaugeXi[V];
|
|---|
| 972 | GaugeXi[ U[7] ] = GaugeXi[G];
|
|---|
| 973 |
|
|---|
| 974 |
|
|---|
| 975 | (* ************************** *)
|
|---|
| 976 | (* ***** Parameters ***** *)
|
|---|
| 977 | (* ************************** *)
|
|---|
| 978 | M$Parameters = {
|
|---|
| 979 |
|
|---|
| 980 | (* External parameters *)
|
|---|
| 981 | aEWM1 == {
|
|---|
| 982 | ParameterType -> External,
|
|---|
| 983 | BlockName -> SMINPUTS,
|
|---|
| 984 | OrderBlock -> 1,
|
|---|
| 985 | Value -> 127.9,
|
|---|
| 986 | InteractionOrder -> {QED,-2},
|
|---|
| 987 | Description -> "Inverse of the EW coupling constant at the Z pole"
|
|---|
| 988 | },
|
|---|
| 989 | Gf == {
|
|---|
| 990 | ParameterType -> External,
|
|---|
| 991 | BlockName -> SMINPUTS,
|
|---|
| 992 | OrderBlock -> 2,
|
|---|
| 993 | Value -> 1.16637*^-5,
|
|---|
| 994 | InteractionOrder -> {QED,2},
|
|---|
| 995 | TeX -> Subscript[G,f],
|
|---|
| 996 | Description -> "Fermi constant"
|
|---|
| 997 | },
|
|---|
| 998 | aS == {
|
|---|
| 999 | ParameterType -> External,
|
|---|
| 1000 | BlockName -> SMINPUTS,
|
|---|
| 1001 | OrderBlock -> 3,
|
|---|
| 1002 | Value -> 0.1184,
|
|---|
| 1003 | InteractionOrder -> {QCD,2},
|
|---|
| 1004 | TeX -> Subscript[\[Alpha],s],
|
|---|
| 1005 | Description -> "Strong coupling constant at the Z pole"
|
|---|
| 1006 | },
|
|---|
| 1007 | ymdo == {
|
|---|
| 1008 | ParameterType -> External,
|
|---|
| 1009 | BlockName -> YUKAWA,
|
|---|
| 1010 | OrderBlock -> 1,
|
|---|
| 1011 | Value -> 5.04*^-3,
|
|---|
| 1012 | Description -> "Down Yukawa mass"
|
|---|
| 1013 | },
|
|---|
| 1014 | ymup == {
|
|---|
| 1015 | ParameterType -> External,
|
|---|
| 1016 | BlockName -> YUKAWA,
|
|---|
| 1017 | OrderBlock -> 2,
|
|---|
| 1018 | Value -> 2.55*^-3,
|
|---|
| 1019 | Description -> "Up Yukawa mass"
|
|---|
| 1020 | },
|
|---|
| 1021 | yms == {
|
|---|
| 1022 | ParameterType -> External,
|
|---|
| 1023 | BlockName -> YUKAWA,
|
|---|
| 1024 | OrderBlock -> 3,
|
|---|
| 1025 | Value -> 0.101,
|
|---|
| 1026 | Description -> "Strange Yukawa mass"
|
|---|
| 1027 | },
|
|---|
| 1028 | ymc == {
|
|---|
| 1029 | ParameterType -> External,
|
|---|
| 1030 | BlockName -> YUKAWA,
|
|---|
| 1031 | OrderBlock -> 4,
|
|---|
| 1032 | Value -> 1.27,
|
|---|
| 1033 | Description -> "Charm Yukawa mass"
|
|---|
| 1034 | },
|
|---|
| 1035 | ymb == {
|
|---|
| 1036 | ParameterType -> External,
|
|---|
| 1037 | BlockName -> YUKAWA,
|
|---|
| 1038 | OrderBlock -> 5,
|
|---|
| 1039 | Value -> 4.7,
|
|---|
| 1040 | Description -> "Bottom Yukawa mass"
|
|---|
| 1041 | },
|
|---|
| 1042 | ymt == {
|
|---|
| 1043 | ParameterType -> External,
|
|---|
| 1044 | BlockName -> YUKAWA,
|
|---|
| 1045 | OrderBlock -> 6,
|
|---|
| 1046 | Value -> 172,
|
|---|
| 1047 | Description -> "Top Yukawa mass"
|
|---|
| 1048 | },
|
|---|
| 1049 | ymD == {
|
|---|
| 1050 | ParameterType -> External,
|
|---|
| 1051 | BlockName -> YUKAWA,
|
|---|
| 1052 | OrderBlock -> 7,
|
|---|
| 1053 | Value -> 1*^3,
|
|---|
| 1054 | Description -> "Heavy Down Yukawa mass"
|
|---|
| 1055 | },
|
|---|
| 1056 | ymS == {
|
|---|
| 1057 | ParameterType -> External,
|
|---|
| 1058 | BlockName -> YUKAWA,
|
|---|
| 1059 | OrderBlock -> 8,
|
|---|
| 1060 | Value -> 1*^3,
|
|---|
| 1061 | Description -> "Heavy Strange Yukawa mass"
|
|---|
| 1062 | },
|
|---|
| 1063 | ymT == {
|
|---|
| 1064 | ParameterType -> External,
|
|---|
| 1065 | BlockName -> YUKAWA,
|
|---|
| 1066 | OrderBlock -> 9,
|
|---|
| 1067 | Value -> 1*^3,
|
|---|
| 1068 | Description -> "Heavy Top Yukawa mass"
|
|---|
| 1069 | },
|
|---|
| 1070 | yme == {
|
|---|
| 1071 | ParameterType -> External,
|
|---|
| 1072 | BlockName -> YUKAWA,
|
|---|
| 1073 | OrderBlock -> 11,
|
|---|
| 1074 | Value -> 5.11*^-4,
|
|---|
| 1075 | Description -> "Electron Yukawa mass"
|
|---|
| 1076 | },
|
|---|
| 1077 | ymm == {
|
|---|
| 1078 | ParameterType -> External,
|
|---|
| 1079 | BlockName -> YUKAWA,
|
|---|
| 1080 | OrderBlock -> 13,
|
|---|
| 1081 | Value -> 0.10566,
|
|---|
| 1082 | Description -> "Muon Yukawa mass"
|
|---|
| 1083 | },
|
|---|
| 1084 | ymtau == {
|
|---|
| 1085 | ParameterType -> External,
|
|---|
| 1086 | BlockName -> YUKAWA,
|
|---|
| 1087 | OrderBlock -> 15,
|
|---|
| 1088 | Value -> 1.777,
|
|---|
| 1089 | Description -> "Tau Yukawa mass"
|
|---|
| 1090 | },
|
|---|
| 1091 | ymEe == {
|
|---|
| 1092 | ParameterType -> External,
|
|---|
| 1093 | BlockName -> YUKAWA,
|
|---|
| 1094 | OrderBlock -> 16,
|
|---|
| 1095 | Value -> 1*^3,
|
|---|
| 1096 | Description -> "Heavy Electron Yukawa mass"
|
|---|
| 1097 | },
|
|---|
| 1098 | ymEm == {
|
|---|
| 1099 | ParameterType -> External,
|
|---|
| 1100 | BlockName -> YUKAWA,
|
|---|
| 1101 | OrderBlock -> 17,
|
|---|
| 1102 | Value -> 1*^3,
|
|---|
| 1103 | Description -> "Heavy Muon Yukawa mass"
|
|---|
| 1104 | },
|
|---|
| 1105 | ymEtau == {
|
|---|
| 1106 | ParameterType -> External,
|
|---|
| 1107 | BlockName -> YUKAWA,
|
|---|
| 1108 | OrderBlock -> 18,
|
|---|
| 1109 | Value -> 1*^3,
|
|---|
| 1110 | Description -> "Heavy Tau Yukawa mass"
|
|---|
| 1111 | },
|
|---|
| 1112 | cabi == {
|
|---|
| 1113 | ParameterType -> External,
|
|---|
| 1114 | BlockName -> CKMBLOCK,
|
|---|
| 1115 | OrderBlock -> 1,
|
|---|
| 1116 | Value -> 0.227736,
|
|---|
| 1117 | TeX -> Subscript[\[Theta], c],
|
|---|
| 1118 | Description -> "Cabibbo angle"
|
|---|
| 1119 | },
|
|---|
| 1120 | v2 == {
|
|---|
| 1121 | ParameterType -> External,
|
|---|
| 1122 | BlockName -> OTHERS,
|
|---|
| 1123 | OrderBlock -> 21,
|
|---|
| 1124 | Value -> 174.105,
|
|---|
| 1125 | InteractionOrder -> {QED,-1},
|
|---|
| 1126 | Description -> "phi vacuum expectation value"
|
|---|
| 1127 | },
|
|---|
| 1128 | v3 == {
|
|---|
| 1129 | ParameterType -> External,
|
|---|
| 1130 | BlockName -> OTHERS,
|
|---|
| 1131 | OrderBlock -> 1,
|
|---|
| 1132 | Value -> 761.11,
|
|---|
| 1133 | InteractionOrder -> {QED,-1},
|
|---|
| 1134 | Description -> "Chi vaccum expectation value"
|
|---|
| 1135 | },
|
|---|
| 1136 | lam2 == {
|
|---|
| 1137 | ParameterType -> External,
|
|---|
| 1138 | BlockName -> OTHERS,
|
|---|
| 1139 | OrderBlock -> 2,
|
|---|
| 1140 | Value -> -1,
|
|---|
| 1141 | InteractionOrder -> {QED, 2},
|
|---|
| 1142 | TeX -> Subscript[\[Lambda], 2],
|
|---|
| 1143 | Description -> "phi quartic coupling"
|
|---|
| 1144 | },
|
|---|
| 1145 | lam3 == {
|
|---|
| 1146 | ParameterType -> External,
|
|---|
| 1147 | BlockName -> OTHERS,
|
|---|
| 1148 | OrderBlock -> 3,
|
|---|
| 1149 | Value -> -1,
|
|---|
| 1150 | InteractionOrder -> {QED, 2},
|
|---|
| 1151 | TeX -> Subscript[\[Lambda], 3],
|
|---|
| 1152 | Description -> "Chi quartic coupling"
|
|---|
| 1153 | },
|
|---|
| 1154 | lam12 == {
|
|---|
| 1155 | ParameterType -> External,
|
|---|
| 1156 | BlockName -> OTHERS,
|
|---|
| 1157 | OrderBlock -> 4,
|
|---|
| 1158 | Value -> -1,
|
|---|
| 1159 | InteractionOrder -> {QED, 2},
|
|---|
| 1160 | TeX -> Subscript[\[Lambda], 12],
|
|---|
| 1161 | Description -> "Rho Rho and phi phi quartic coupling"
|
|---|
| 1162 | },
|
|---|
| 1163 | lam13 == {
|
|---|
| 1164 | ParameterType -> External,
|
|---|
| 1165 | BlockName -> OTHERS,
|
|---|
| 1166 | OrderBlock -> 5,
|
|---|
| 1167 | Value -> -1,
|
|---|
| 1168 | InteractionOrder -> {QED, 2},
|
|---|
| 1169 | TeX -> Subscript[\[Lambda], 13],
|
|---|
| 1170 | Description -> "Rho Rho and Chi Chi quartic coupling"
|
|---|
| 1171 | },
|
|---|
| 1172 | lam23 == {
|
|---|
| 1173 | ParameterType -> External,
|
|---|
| 1174 | BlockName -> OTHERS,
|
|---|
| 1175 | OrderBlock -> 6,
|
|---|
| 1176 | Value -> -1,
|
|---|
| 1177 | InteractionOrder -> {QED, 2},
|
|---|
| 1178 | TeX -> Subscript[\[Lambda], 23],
|
|---|
| 1179 | Description -> "Chi Chi and phi phi quartic coupling"
|
|---|
| 1180 | },
|
|---|
| 1181 | lam12P == {
|
|---|
| 1182 | ParameterType -> External,
|
|---|
| 1183 | BlockName -> OTHERS,
|
|---|
| 1184 | OrderBlock -> 7,
|
|---|
| 1185 | Value -> -1,
|
|---|
| 1186 | InteractionOrder -> {QED, 2},
|
|---|
| 1187 | TeX -> Subscript[\[Lambda]', 12],
|
|---|
| 1188 | Description -> "Rho phi and phi Rho quartic coupling"
|
|---|
| 1189 | },
|
|---|
| 1190 | lam13P == {
|
|---|
| 1191 | ParameterType -> External,
|
|---|
| 1192 | BlockName -> OTHERS,
|
|---|
| 1193 | OrderBlock -> 8,
|
|---|
| 1194 | Value -> -1,
|
|---|
| 1195 | InteractionOrder -> {QED, 2},
|
|---|
| 1196 | TeX -> Subscript[\[Lambda]', 13],
|
|---|
| 1197 | Description -> "Rho Chi and Chi Rho quartic coupling"
|
|---|
| 1198 | },
|
|---|
| 1199 | lam23P == {
|
|---|
| 1200 | ParameterType -> External,
|
|---|
| 1201 | BlockName -> OTHERS,
|
|---|
| 1202 | OrderBlock -> 9,
|
|---|
| 1203 | Value -> -1,
|
|---|
| 1204 | InteractionOrder -> {QED, 2},
|
|---|
| 1205 | TeX -> Subscript[\[Lambda]', 23],
|
|---|
| 1206 | Description -> "phi Chi and Chi phi quartic coupling"
|
|---|
| 1207 | },
|
|---|
| 1208 | UH11 == {
|
|---|
| 1209 | ParameterType -> External,
|
|---|
| 1210 | BlockName -> OTHERS,
|
|---|
| 1211 | OrderBlock -> 10,
|
|---|
| 1212 | Value -> -0.798432,
|
|---|
| 1213 | TeX -> Subsuperscript[U,11,H],
|
|---|
| 1214 | Description -> "11 rotation-matrix element of Realscalar"
|
|---|
| 1215 | },
|
|---|
| 1216 | UH12 == {
|
|---|
| 1217 | ParameterType -> External,
|
|---|
| 1218 | BlockName -> OTHERS,
|
|---|
| 1219 | OrderBlock -> 11,
|
|---|
| 1220 | Value -> 0.598063,
|
|---|
| 1221 | TeX -> Subsuperscript[U,12,H],
|
|---|
| 1222 | Description -> "12 rotation-matrix element of Realscalar"
|
|---|
| 1223 | },
|
|---|
| 1224 | UH13 == {
|
|---|
| 1225 | ParameterType -> External,
|
|---|
| 1226 | BlockName -> OTHERS,
|
|---|
| 1227 | OrderBlock -> 12,
|
|---|
| 1228 | Value -> 0.0694831,
|
|---|
| 1229 | TeX -> Subsuperscript[U,13,H],
|
|---|
| 1230 | Description -> "13 rotation-matrix element of Realscalar"
|
|---|
| 1231 | },
|
|---|
| 1232 | UH21 == {
|
|---|
| 1233 | ParameterType -> External,
|
|---|
| 1234 | BlockName -> OTHERS,
|
|---|
| 1235 | OrderBlock -> 13,
|
|---|
| 1236 | Value -> -0.593153,
|
|---|
| 1237 | TeX -> Subsuperscript[U,21,H],
|
|---|
| 1238 | Description -> "21 rotation-matrix element of Realscalar"
|
|---|
| 1239 | },
|
|---|
| 1240 | UH22 == {
|
|---|
| 1241 | ParameterType -> External,
|
|---|
| 1242 | BlockName -> OTHERS,
|
|---|
| 1243 | OrderBlock -> 14,
|
|---|
| 1244 | Value -> -0.801136,
|
|---|
| 1245 | TeX -> Subsuperscript[U,22,H],
|
|---|
| 1246 | Description -> "22 rotation-matrix element of Realscalar"
|
|---|
| 1247 | },
|
|---|
| 1248 | UH23 == {
|
|---|
| 1249 | ParameterType -> External,
|
|---|
| 1250 | BlockName -> OTHERS,
|
|---|
| 1251 | OrderBlock -> 15,
|
|---|
| 1252 | Value -> 0.0796957,
|
|---|
| 1253 | TeX -> Subsuperscript[U,23,H],
|
|---|
| 1254 | Description -> "23 rotation-matrix element of Realscalar"
|
|---|
| 1255 | },
|
|---|
| 1256 | UH31 == {
|
|---|
| 1257 | ParameterType -> External,
|
|---|
| 1258 | BlockName -> OTHERS,
|
|---|
| 1259 | OrderBlock -> 16,
|
|---|
| 1260 | Value -> 0.103328,
|
|---|
| 1261 | TeX -> Subsuperscript[U,31,H],
|
|---|
| 1262 | Description -> "31 rotation-matrix element of Realscalar"
|
|---|
| 1263 | },
|
|---|
| 1264 | UH32 == {
|
|---|
| 1265 | ParameterType -> External,
|
|---|
| 1266 | BlockName -> OTHERS,
|
|---|
| 1267 | OrderBlock -> 17,
|
|---|
| 1268 | Value -> 0.0224175,
|
|---|
| 1269 | TeX -> Subsuperscript[U,32,H],
|
|---|
| 1270 | Description -> "32 rotation-matrix element of Realscalar"
|
|---|
| 1271 | },
|
|---|
| 1272 | UH33 == {
|
|---|
| 1273 | ParameterType -> External,
|
|---|
| 1274 | BlockName -> OTHERS,
|
|---|
| 1275 | OrderBlock -> 18,
|
|---|
| 1276 | Value -> 0.994395,
|
|---|
| 1277 | TeX -> Subsuperscript[U,33,H],
|
|---|
| 1278 | Description -> "33 rotation-matrix element of Realscalar"
|
|---|
| 1279 | },
|
|---|
| 1280 | tz == {
|
|---|
| 1281 | ParameterType -> External,
|
|---|
| 1282 | BlockName -> OTHERS,
|
|---|
| 1283 | OrderBlock -> 19,
|
|---|
| 1284 | Definitions -> {tz->0},
|
|---|
| 1285 | Description -> "Tan of z zp mixing angle"
|
|---|
| 1286 | },
|
|---|
| 1287 | lam1 == {
|
|---|
| 1288 | ParameterType -> External,
|
|---|
| 1289 | BlockName -> OTHERS,
|
|---|
| 1290 | OrderBlock -> 20,
|
|---|
| 1291 | Value -> 0.799425,
|
|---|
| 1292 | InteractionOrder -> {QED, 2},
|
|---|
| 1293 | TeX -> Subscript[\[Lambda], 1],
|
|---|
| 1294 | Description -> "Rho quartic coupling"
|
|---|
| 1295 | },
|
|---|
| 1296 | lamWS == {
|
|---|
| 1297 | ParameterType -> External,
|
|---|
| 1298 | BlockName -> WOLFENSTEIN,
|
|---|
| 1299 | OrderBlock -> 1,
|
|---|
| 1300 | Value -> 0.2253,
|
|---|
| 1301 | TeX -> \[Lambda],
|
|---|
| 1302 | Description -> "Wolfenstein variable lam"
|
|---|
| 1303 | },
|
|---|
| 1304 | AWS == {
|
|---|
| 1305 | ParameterType -> External,
|
|---|
| 1306 | BlockName -> WOLFENSTEIN,
|
|---|
| 1307 | OrderBlock -> 2,
|
|---|
| 1308 | Value -> 0.808,
|
|---|
| 1309 | TeX -> A,
|
|---|
| 1310 | Description -> "Wolfenstein variable A"
|
|---|
| 1311 | },
|
|---|
| 1312 | rhoWS == {
|
|---|
| 1313 | ParameterType -> External,
|
|---|
| 1314 | BlockName -> WOLFENSTEIN,
|
|---|
| 1315 | OrderBlock -> 3,
|
|---|
| 1316 | Value -> 0.132,
|
|---|
| 1317 | TeX -> \[Rho],
|
|---|
| 1318 | Description -> "Wolfenstein variable rho"
|
|---|
| 1319 | },
|
|---|
| 1320 | etaWS == {
|
|---|
| 1321 | ParameterType -> External,
|
|---|
| 1322 | BlockName -> WOLFENSTEIN,
|
|---|
| 1323 | OrderBlock -> 4,
|
|---|
| 1324 | Value -> 0.341,
|
|---|
| 1325 | TeX -> \[Eta],
|
|---|
| 1326 | Description -> "Wolfenstein variable eta"
|
|---|
| 1327 | },
|
|---|
| 1328 |
|
|---|
| 1329 |
|
|---|
| 1330 | (* Internal Parameters *)
|
|---|
| 1331 | beta == {
|
|---|
| 1332 | ParameterType -> Internal,
|
|---|
| 1333 | Definitions -> {beta -> Sqrt[3]},
|
|---|
| 1334 | TeX -> \[Beta],
|
|---|
| 1335 | Description -> "beta"
|
|---|
| 1336 | },
|
|---|
| 1337 | aEW == {
|
|---|
| 1338 | ParameterType -> Internal,
|
|---|
| 1339 | Value -> 1/aEWM1,
|
|---|
| 1340 | InteractionOrder -> {QED,2},
|
|---|
| 1341 | TeX -> Subscript[\[Alpha], EW],
|
|---|
| 1342 | Description -> "Electroweak coupling contant"
|
|---|
| 1343 | },
|
|---|
| 1344 | sw2 == {
|
|---|
| 1345 | ParameterType -> Internal,
|
|---|
| 1346 | Value -> 1-(MW/MZ)^2,
|
|---|
| 1347 | Description -> "Squared Sin of the Weinberg angle"
|
|---|
| 1348 | },
|
|---|
| 1349 | ee == {
|
|---|
| 1350 | ParameterType -> Internal,
|
|---|
| 1351 | Value -> Sqrt[4 Pi aEW],
|
|---|
| 1352 | InteractionOrder -> {QED,1},
|
|---|
| 1353 | TeX -> e,
|
|---|
| 1354 | Description -> "Electric coupling constant"
|
|---|
| 1355 | },
|
|---|
| 1356 | cw == {
|
|---|
| 1357 | ParameterType -> Internal,
|
|---|
| 1358 | Value -> Sqrt[1-sw2],
|
|---|
| 1359 | TeX -> Subscript[c,w],
|
|---|
| 1360 | Description -> "Cosine of the Weinberg angle"
|
|---|
| 1361 | },
|
|---|
| 1362 | sw == {
|
|---|
| 1363 | ParameterType -> Internal,
|
|---|
| 1364 | Value -> Sqrt[sw2],
|
|---|
| 1365 | TeX -> Subscript[s,w],
|
|---|
| 1366 | Description -> "Sine of the Weinberg angle"
|
|---|
| 1367 | },
|
|---|
| 1368 | c3 == {
|
|---|
| 1369 | ParameterType -> Internal,
|
|---|
| 1370 | Definitions -> {c3->beta sw/cw},
|
|---|
| 1371 | TeX -> Subscript[c,3],
|
|---|
| 1372 | Description -> "Cosine of the 331 angle"
|
|---|
| 1373 | },
|
|---|
| 1374 | s3 == {
|
|---|
| 1375 | ParameterType -> Internal,
|
|---|
| 1376 | Definitions -> {s3->Sqrt[1-(1+beta^2)*sw^2]/cw},
|
|---|
| 1377 | TeX -> Subscript[s,3],
|
|---|
| 1378 | Description -> "Sine of the 331 angle"
|
|---|
| 1379 | },
|
|---|
| 1380 | gw == {
|
|---|
| 1381 | ParameterType -> Internal,
|
|---|
| 1382 | Definitions -> {gw->ee/sw},
|
|---|
| 1383 | InteractionOrder -> {QED,1},
|
|---|
| 1384 | TeX -> Subscript[g,w],
|
|---|
| 1385 | Description -> "Weak coupling constant at the Z pole"
|
|---|
| 1386 | },
|
|---|
| 1387 | gx == {
|
|---|
| 1388 | ParameterType -> Internal,
|
|---|
| 1389 | Definitions -> {gx->gw sw/Sqrt[1-(1+beta^2)*sw^2]},
|
|---|
| 1390 | InteractionOrder -> {QED,1},
|
|---|
| 1391 | TeX -> Subscript[g,x],
|
|---|
| 1392 | Description -> "U(1)X coupling constant at the Z pole"
|
|---|
| 1393 | },
|
|---|
| 1394 | gs == {
|
|---|
| 1395 | ParameterType -> Internal,
|
|---|
| 1396 | Value -> Sqrt[4 Pi aS],
|
|---|
| 1397 | InteractionOrder -> {QCD,1},
|
|---|
| 1398 | TeX -> Subscript[g,s],
|
|---|
| 1399 | ParameterName -> G,
|
|---|
| 1400 | Description -> "Strong coupling constant at the Z pole"
|
|---|
| 1401 | },
|
|---|
| 1402 | v == {
|
|---|
| 1403 | ParameterType -> Internal,
|
|---|
| 1404 | Value -> Sqrt[4*MW^2*sw2/(ee^2)-v2^2],
|
|---|
| 1405 | InteractionOrder -> {QED,-1},
|
|---|
| 1406 | Description -> "Rho vaccum expectation value"
|
|---|
| 1407 | },
|
|---|
| 1408 | v3 == {
|
|---|
| 1409 | ParameterType -> Internal,
|
|---|
| 1410 | Value -> MZP Sqrt[3*(1-4*sw^2)]/(gw*cw),
|
|---|
| 1411 | InteractionOrder -> {QED,-1},
|
|---|
| 1412 | Description -> "Chi vaccum expectation value"
|
|---|
| 1413 | },
|
|---|
| 1414 | cz == {
|
|---|
| 1415 | ParameterType -> Internal,
|
|---|
| 1416 | Definitions -> {cz->1/Sqrt[1+tz^2]},
|
|---|
| 1417 | Description -> "Cosin of z zp mixing angle"
|
|---|
| 1418 | },
|
|---|
| 1419 | sz == {
|
|---|
| 1420 | ParameterType -> Internal,
|
|---|
| 1421 | Definitions -> {sz->-tz/Sqrt[1+tz^2]},
|
|---|
| 1422 | Description -> "Sin of z zp mixing angle"
|
|---|
| 1423 | },
|
|---|
| 1424 | svv2 == {
|
|---|
| 1425 | ParameterType -> Internal,
|
|---|
| 1426 | Value -> 1/Sqrt[1+(v/v2)^2],
|
|---|
| 1427 | TeX -> Subscript[s,vv2],
|
|---|
| 1428 | Description -> "Sine of the vv2 angle"
|
|---|
| 1429 | },
|
|---|
| 1430 | cvv2 == {
|
|---|
| 1431 | ParameterType -> Internal,
|
|---|
| 1432 | Value -> Sqrt[1-svv2^2],
|
|---|
| 1433 | TeX -> Subscript[c,vv2],
|
|---|
| 1434 | Description -> "Cosine of the vv2 angle"
|
|---|
| 1435 | },
|
|---|
| 1436 | svv3 == {
|
|---|
| 1437 | ParameterType -> Internal,
|
|---|
| 1438 | Value -> 1/Sqrt[1+(v/v3)^2],
|
|---|
| 1439 | TeX -> Subscript[s,vv3],
|
|---|
| 1440 | Description -> "Sine of the vv3 angle"
|
|---|
| 1441 | },
|
|---|
| 1442 | cvv3 == {
|
|---|
| 1443 | ParameterType -> Internal,
|
|---|
| 1444 | Value -> Sqrt[1-svv3^2],
|
|---|
| 1445 | TeX -> Subscript[c,vv3],
|
|---|
| 1446 | Description -> "Cosine of the vv3 angle"
|
|---|
| 1447 | },
|
|---|
| 1448 | sv2v3 == {
|
|---|
| 1449 | ParameterType -> Internal,
|
|---|
| 1450 | Value -> 1/Sqrt[1+(v2/v3)^2],
|
|---|
| 1451 | TeX -> Subscript[s,v2v3],
|
|---|
| 1452 | Description -> "Sine of the v2v3 angle"
|
|---|
| 1453 | },
|
|---|
| 1454 | cv2v3 == {
|
|---|
| 1455 | ParameterType -> Internal,
|
|---|
| 1456 | Value -> Sqrt[1-sv2v3^2],
|
|---|
| 1457 | TeX -> Subscript[c,v2v3],
|
|---|
| 1458 | Description -> "Cosine of the v2v3 angle"
|
|---|
| 1459 | },
|
|---|
| 1460 | ff == {
|
|---|
| 1461 | ParameterType -> Internal,
|
|---|
| 1462 | Value -> -v3/(2Sqrt[2]),
|
|---|
| 1463 | InteractionOrder -> {QED,1},
|
|---|
| 1464 | TeX -> f,
|
|---|
| 1465 | Description -> "Coefficient of the cubic piece of the Higgs potential"
|
|---|
| 1466 | },
|
|---|
| 1467 | mu1 == {
|
|---|
| 1468 | ParameterType -> Internal,
|
|---|
| 1469 | Definitions -> {mu1->Sqrt[-lam1*v^2-lam12*v2^2/2-lam13*v3^2/2+ff*v3*v2/v]},
|
|---|
| 1470 | Description -> "Coefficient of the quadratic piece of the Rho potential"
|
|---|
| 1471 | },
|
|---|
| 1472 | mu2 == {
|
|---|
| 1473 | ParameterType -> Internal,
|
|---|
| 1474 | Definitions -> {mu2->Sqrt[-lam2*v2^2-lam12*v^2/2-lam23*v3^2/2+ff*v3*v/v2]},
|
|---|
| 1475 | Description -> "Coefficient of the quadratic piece of the phi potential"
|
|---|
| 1476 | },
|
|---|
| 1477 | mu3 == {
|
|---|
| 1478 | ParameterType -> Internal,
|
|---|
| 1479 | Definitions -> {mu3->Sqrt[-lam3*v3^2-lam13*v^2/2-lam23*v2^2/2+ff*v*v2/v3]},
|
|---|
| 1480 | Description -> "Coefficient of the quadratic piece of the Chi potential"
|
|---|
| 1481 | },
|
|---|
| 1482 | yl == {
|
|---|
| 1483 | ParameterType -> Internal,
|
|---|
| 1484 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1485 | Definitions -> {yl[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
|---|
| 1486 | Value -> {yl[1,1] -> Sqrt[2] yme / v2, yl[2,2] -> Sqrt[2] ymm / v2, yl[3,3] -> Sqrt[2] ymtau / v2},
|
|---|
| 1487 | InteractionOrder -> {QED, 1},
|
|---|
| 1488 | ParameterName -> {yl[1,1] -> ye, yl[2,2] -> ym, yl[3,3] -> ytau},
|
|---|
| 1489 | TeX -> Superscript[y, l],
|
|---|
| 1490 | Description -> "Lepton Yukawa couplings"
|
|---|
| 1491 | },
|
|---|
| 1492 | yE == {
|
|---|
| 1493 | ParameterType -> Internal,
|
|---|
| 1494 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1495 | Definitions -> {yE[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
|---|
| 1496 | Value -> {yE[1,1] -> Sqrt[2] ymEe / v3, yE[2,2] -> Sqrt[2] ymEm / v3, yE[3,3] -> Sqrt[2] ymEtau / v3},
|
|---|
| 1497 | InteractionOrder -> {QED, 1},
|
|---|
| 1498 | ParameterName -> {yE[1,1] -> yEe, yl[2,2] -> yEm, yl[3,3] -> yEtau},
|
|---|
| 1499 | TeX -> Superscript[y, E],
|
|---|
| 1500 | Description -> "Heavy Lepton Yukawa couplings"
|
|---|
| 1501 | },
|
|---|
| 1502 | yu == {
|
|---|
| 1503 | ParameterType -> Internal,
|
|---|
| 1504 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1505 | Definitions -> {yu[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
|---|
| 1506 | Value -> {yu[1,1] -> Sqrt[2] ymup/v2, yu[2,2] -> Sqrt[2] ymc/v2, yu[3,3] -> Sqrt[2] ymt/v2},
|
|---|
| 1507 | InteractionOrder -> {QED, 1},
|
|---|
| 1508 | ParameterName -> {yu[1,1] -> yup, yu[2,2] -> yc, yu[3,3] -> yt},
|
|---|
| 1509 | TeX -> Superscript[y, u],
|
|---|
| 1510 | Description -> "Up-type Yukawa couplings"
|
|---|
| 1511 | },
|
|---|
| 1512 | yd == {
|
|---|
| 1513 | ParameterType -> Internal,
|
|---|
| 1514 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1515 | Definitions -> {yd[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
|---|
| 1516 | Value -> {yd[1,1] -> Sqrt[2] ymdo/v, yd[2,2] -> Sqrt[2] yms/v, yd[3,3] -> Sqrt[2] ymb/v},
|
|---|
| 1517 | InteractionOrder -> {QED, 1},
|
|---|
| 1518 | ParameterName -> {yd[1,1] -> ydo, yd[2,2] -> ys, yd[3,3] -> yb},
|
|---|
| 1519 | TeX -> Superscript[y, d],
|
|---|
| 1520 | Description -> "Down-type Yukawa couplings"
|
|---|
| 1521 | },
|
|---|
| 1522 | yJ == {
|
|---|
| 1523 | ParameterType -> Internal,
|
|---|
| 1524 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1525 | Definitions -> {yJ[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j)},
|
|---|
| 1526 | Value -> {yJ[1,1] -> Sqrt[2] ymD/v3, yJ[2,2] -> Sqrt[2] ymS/v3, yJ[3,3] -> Sqrt[2] ymT/v3},
|
|---|
| 1527 | InteractionOrder -> {QED, 1},
|
|---|
| 1528 | ParameterName -> {yJ[1,1] -> yD, yJ[2,2] -> yS, yJ[3,3] -> yT},
|
|---|
| 1529 | TeX -> Superscript[y, J],
|
|---|
| 1530 | Description -> "Heavy-type Yukawa couplings"
|
|---|
| 1531 | },
|
|---|
| 1532 | MY == {
|
|---|
| 1533 | ParameterType -> Internal,
|
|---|
| 1534 | Value -> 1/2 gw Sqrt[v3^2+v2^2],
|
|---|
| 1535 | TeX -> Subscript[M,Y],
|
|---|
| 1536 | Description -> "YY mass"
|
|---|
| 1537 | },
|
|---|
| 1538 | MV == {
|
|---|
| 1539 | ParameterType -> Internal,
|
|---|
| 1540 | Value -> 1/2 gw Sqrt[v3^2+v^2],
|
|---|
| 1541 | TeX -> Subscript[M,V],
|
|---|
| 1542 | Description -> "V mass"
|
|---|
| 1543 | },
|
|---|
| 1544 | MH2 == {
|
|---|
| 1545 | ParameterType -> Internal,
|
|---|
| 1546 | Value -> Sqrt[2] Sqrt[ff UH22 UH32 v-lam1 UH12^2 v^2+ff UH12 UH32 v2-lam12 UH12 UH22 v v2-lam2 UH22^2 v2^2-(ff UH32^2 v v2)/(2 v3)+ff UH12 UH22 v3-lam13 UH12 UH32 v v3-(ff UH22^2 v v3)/(2 v2)-lam23 UH22 UH32 v2 v3-(ff UH12^2 v2 v3)/(2 v)-lam3 UH32^2 v3^2],
|
|---|
| 1547 | TeX -> Subscript[M,H2],
|
|---|
| 1548 | Description -> "H2 mass"
|
|---|
| 1549 | },
|
|---|
| 1550 | MH3 == {
|
|---|
| 1551 | ParameterType -> Internal,
|
|---|
| 1552 | Value -> Sqrt[2] Sqrt[ff UH23 UH33 v-lam1 UH13^2 v^2+ff UH13 UH33 v2-lam12 UH13 UH23 v v2-lam2 UH23^2 v2^2-(ff UH33^2 v v2)/(2 v3)+ff UH13 UH23 v3-lam13 UH13 UH33 v v3-(ff UH23^2 v v3)/(2 v2)-lam23 UH23 UH33 v2 v3-(ff UH13^2 v2 v3)/(2 v)-lam3 UH33^2 v3^2],
|
|---|
| 1553 | TeX -> Subscript[M,H3],
|
|---|
| 1554 | Description -> "H3 mass"
|
|---|
| 1555 | },
|
|---|
| 1556 | Uh11 == {
|
|---|
| 1557 | ParameterType -> Internal,
|
|---|
| 1558 | Value -> v3/(v Sqrt[1 + (1/v^2 + 1/v2^2) v3^2]),
|
|---|
| 1559 | TeX -> Subsuperscript[U, 11, h],
|
|---|
| 1560 | Description -> "11 rotation-matrix element of Pseudoscalar"
|
|---|
| 1561 | },
|
|---|
| 1562 | Uh12 == {
|
|---|
| 1563 | ParameterType -> Internal,
|
|---|
| 1564 | Value -> -v/(Sqrt[1 + v^2/v3^2] v3),
|
|---|
| 1565 | TeX -> Subsuperscript[U, 12, h],
|
|---|
| 1566 | Description -> "12 rotation-matrix element of Pseudoscalar"
|
|---|
| 1567 | },
|
|---|
| 1568 | Uh13 == {
|
|---|
| 1569 | ParameterType -> Internal,
|
|---|
| 1570 | Value -> -(v v2 v3^2 (v^2 + v3^2))/(Sqrt[
|
|---|
| 1571 | v2^2 (v^2 + v3^2)^2] Sqrt[(v^2 + v3^2) (v2^2 v3^2 +
|
|---|
| 1572 | v^2 (v2^2 + v3^2))]),
|
|---|
| 1573 | TeX -> Subsuperscript[U, 13, h],
|
|---|
| 1574 | Description -> "13 rotation-matrix element of Pseudoscalar"
|
|---|
| 1575 | },
|
|---|
| 1576 | Uh21 == {
|
|---|
| 1577 | ParameterType -> Internal,
|
|---|
| 1578 | Value -> v3/(v2 Sqrt[1 + (1/v^2 + 1/v2^2) v3^2]),
|
|---|
| 1579 | TeX -> Subsuperscript[U, 21, h],
|
|---|
| 1580 | Description -> "21 rotation-matrix element of Pseudoscalar"
|
|---|
| 1581 | },
|
|---|
| 1582 | Uh23 == {
|
|---|
| 1583 | ParameterType -> Internal,
|
|---|
| 1584 | Value -> Sqrt[
|
|---|
| 1585 | v2^2 (v^2 + v3^2)^2]/Sqrt[(v^2 + v3^2) (v2^2 v3^2 +
|
|---|
| 1586 | v^2 (v2^2 + v3^2))],
|
|---|
| 1587 | TeX -> Subsuperscript[U, 23, h],
|
|---|
| 1588 | Description -> "23 rotation-matrix element of Pseudoscalar"
|
|---|
| 1589 | },
|
|---|
| 1590 | Uh31 == {
|
|---|
| 1591 | ParameterType -> Internal,
|
|---|
| 1592 | Value -> 1/Sqrt[1 + (1/v^2 + 1/v2^2) v3^2],
|
|---|
| 1593 | TeX -> Subsuperscript[U, 31, h],
|
|---|
| 1594 | Description -> "31 rotation-matrix element of Pseudoscalar"
|
|---|
| 1595 | },
|
|---|
| 1596 | Uh32 == {
|
|---|
| 1597 | ParameterType -> Internal,
|
|---|
| 1598 | Value -> 1/Sqrt[1 + v^2/v3^2],
|
|---|
| 1599 | TeX -> Subsuperscript[U, 32, h],
|
|---|
| 1600 | Description -> "32 rotation-matrix element of Pseudoscalar"
|
|---|
| 1601 | },
|
|---|
| 1602 | Uh33 == {
|
|---|
| 1603 | ParameterType -> Internal,
|
|---|
| 1604 | Value -> -(v^2 v2 v3 (v^2 + v3^2))/(Sqrt[
|
|---|
| 1605 | v2^2 (v^2 + v3^2)^2] Sqrt[(v^2 + v3^2) (v2^2 v3^2 +
|
|---|
| 1606 | v^2 (v2^2 + v3^2))]),
|
|---|
| 1607 | TeX -> Subsuperscript[U, 33, h],
|
|---|
| 1608 | Description -> "33 rotation-matrix element of Pseudoscalar"
|
|---|
| 1609 | },
|
|---|
| 1610 | MH0 == {
|
|---|
| 1611 | ParameterType -> Internal,
|
|---|
| 1612 | Value -> Sqrt[2] Sqrt[-ff Uh21 Uh31 v-ff Uh11 Uh31 v2-(ff Uh31^2 v v2)/(2 v3)-ff Uh11 Uh21 v3-(ff Uh21^2 v v3)/(2 v2)-(ff Uh11^2 v2 v3)/(2 v)],
|
|---|
| 1613 | TeX -> Subscript[M,H0],
|
|---|
| 1614 | Description -> "H0 mass"
|
|---|
| 1615 | },
|
|---|
| 1616 | MHW == {
|
|---|
| 1617 | ParameterType -> Internal,
|
|---|
| 1618 | Value -> Sqrt[ (v^2+v2^2) ((-ff v3)/(v v2)-lam12P/2)],
|
|---|
| 1619 | TeX -> Subscript[M,HW],
|
|---|
| 1620 | Description -> "HW mass"
|
|---|
| 1621 | },
|
|---|
| 1622 | MHY == {
|
|---|
| 1623 | ParameterType -> Internal,
|
|---|
| 1624 | Value -> Sqrt[ (v2^2+v3^2) ((-ff v)/(v2 v3)-lam23P/2)],
|
|---|
| 1625 | TeX -> Subscript[M,HY],
|
|---|
| 1626 | Description -> "HY mass"
|
|---|
| 1627 | },
|
|---|
| 1628 | MHV == {
|
|---|
| 1629 | ParameterType -> Internal,
|
|---|
| 1630 | Value -> Sqrt[ (v^2+v3^2) ((-ff v2)/(v v3)-lam13P/2)],
|
|---|
| 1631 | TeX -> Subscript[M,HV],
|
|---|
| 1632 | Description -> "HV mass"
|
|---|
| 1633 | },
|
|---|
| 1634 |
|
|---|
| 1635 |
|
|---|
| 1636 |
|
|---|
| 1637 |
|
|---|
| 1638 | (* N. B. : only Cabibbo mixing! *)
|
|---|
| 1639 | CKM == {
|
|---|
| 1640 | ParameterType -> Internal,
|
|---|
| 1641 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1642 | Unitary -> True,
|
|---|
| 1643 | Value -> {CKM[1,1] -> 1-lamWS^2/2, CKM[1,2] -> lamWS, CKM[1,3] -> AWS*lamWS^3*(rhoWS-I*etaWS), CKM[2,1] -> -lamWS, CKM[2,2] -> 1-lamWS^2/2, CKM[2,3] -> AWS*lamWS^2, CKM[3,1] -> AWS*lamWS^3*(1-rhoWS-I*etaWS), CKM[3,2] -> -AWS*lamWS^2, CKM[3,3] -> 1},
|
|---|
| 1644 | TeX -> Superscript[V,CKM],
|
|---|
| 1645 | Description -> "CKM-Matrix"
|
|---|
| 1646 | },
|
|---|
| 1647 | RU == {
|
|---|
| 1648 | ParameterType -> Internal,
|
|---|
| 1649 | Indices -> {Index[Generation], Index[Generation]},
|
|---|
| 1650 | Unitary -> True,
|
|---|
| 1651 | Definitions -> {RU[1,1] -> 1, RU[1,2] -> 0, RU[1,3] -> 0, RU[2,1] -> 0, RU[2,2] -> 1, RU[2,3] -> 0, RU[3,1] -> 0, RU[3,2] -> 0, RU[3,3] -> 1},
|
|---|
| 1652 | TeX -> Superscript[R,u],
|
|---|
| 1653 | Description -> "RU-Matrix"
|
|---|
| 1654 | }
|
|---|
| 1655 |
|
|---|
| 1656 | };
|
|---|
| 1657 |
|
|---|
| 1658 | (* ************************** *)
|
|---|
| 1659 | (* ***** Lagrangian ***** *)
|
|---|
| 1660 | (* ************************** *)
|
|---|
| 1661 |
|
|---|
| 1662 | LGauge := Block[{mu,nu,ii,aa},
|
|---|
| 1663 |
|
|---|
| 1664 | ExpandIndices[-1/4 FS[K,mu,nu] FS[K,mu,nu] - 1/4 FS[Wi,mu,nu,ii]FS[Wi,mu,nu,ii] - 1/4 FS[G,mu,nu,aa] FS[G,mu,nu,aa], FlavorExpand->SU3W]];
|
|---|
| 1665 |
|
|---|
| 1666 |
|
|---|
| 1667 | LFermions := Block[{mu,fermi},
|
|---|
| 1668 |
|
|---|
| 1669 | fermi=ExpandIndices[I*(
|
|---|
| 1670 | QL12bar.Ga[mu].DC[QL12, mu] + QL3bar.Ga[mu].DC[QL3, mu] + LLbar.Ga[mu].DC[LL, mu] + uRbar.Ga[mu].DC[uR, mu] + dRbar.Ga[mu].DC[dR, mu] + JR12bar.Ga[mu].DC[JR12,mu] + JR3bar.Ga[mu].DC[JR3,mu] + lRbar.Ga[mu].DC[lR, mu] + EERbar.Ga[mu].DC[EER, mu]),
|
|---|
| 1671 | FlavorExpand->{SU3W,SU3T,ASU3W,ASU3T}];
|
|---|
| 1672 | fermi = ExpandIndices[fermi]];
|
|---|
| 1673 |
|
|---|
| 1674 | LHiggs := Block[{ii,mu, feynmangaugerules},
|
|---|
| 1675 | feynmangaugerules = If[Not[FeynmanGauge], {GZ|GZP|GW|GWbar|GY|GYbar|GV|GVbar ->0}, {}];
|
|---|
| 1676 |
|
|---|
| 1677 | ExpandIndices[DC[Rhobar[ii],mu] DC[Rho[ii],mu] + DC[Phibar[ii],mu] DC[Phi[ii],mu] + DC[Chibar[ii],mu] DC[Chi[ii],mu] + mu1^2 Rhobar[ii] Rho[ii] + lam1 Rhobar[ii] Rho[ii] Rhobar[jj] Rho[jj] + mu2^2 Phibar[ii] Phi[ii] + lam2 Phibar[ii] Phi[ii] Phibar[jj] Phi[jj] + mu3^2 Chibar[ii] Chi[ii] + lam3 Chibar[ii] Chi[ii] Chibar[jj] Chi[jj] + lam12 Rhobar[ii] Rho[ii] Phibar[jj] Phi[jj] + lam13 Rhobar[ii] Rho[ii] Chibar[jj] Chi[jj] + lam23 Phibar[ii] Phi[ii] Chibar[jj] Chi[jj] + lam12P Rhobar[ii] Phi[ii] Phibar[jj] Rho[jj] + lam13P Rhobar[ii] Chi[ii] Chibar[jj] Rho[jj] + lam23P Phibar[ii] Chi[ii] Chibar[jj] Phi[jj] + Sqrt[2] ff Eps[ii,jj,kk] Rho[ii] Phi[jj] Chi[kk] + Sqrt[2] ff HC[Eps[ii,jj,kk] Rho[ii] Phi[jj] Chi[kk]], FlavorExpand->{SU3T,SU3W}]/.feynmangaugerules
|
|---|
| 1678 | ];
|
|---|
| 1679 |
|
|---|
| 1680 | LYukawa := Block[{sp,ii,cc,ff1,ff3,ff4,yuk,feynmangaugerules},
|
|---|
| 1681 | feynmangaugerules = If[Not[FeynmanGauge], {GZ|GZP|GW|GWbar|GY|GYbar|GV|GVbar ->0}, {}];
|
|---|
| 1682 |
|
|---|
| 1683 | yuk = ExpandIndices[
|
|---|
| 1684 | -yl[ff1, ff3] LLbar[sp, ii, ff1].lR [sp, ff3] Phibar[ii]
|
|---|
| 1685 | -yE[ff1, ff3] LLbar[sp, ii, ff1].EER [sp, ff3] Chibar[ii]
|
|---|
| 1686 | -yu[ff1, ff3] RU[ff2, ff1] QLbar[sp, ii, ff4, cc].uR [sp, ff3, cc] Su[ff4, ff1, ii]
|
|---|
| 1687 | -yd[ff1, ff3] CKM[ff2, ff1] QLbar[sp, ii, ff4, cc].dR [sp, ff3, cc] Sd[ff4, ff2, ii]
|
|---|
| 1688 | -yJ[ff1, ff3] QLbar[sp, ii, ff2, cc].JR[sp, ff3, cc] SJ[ff2, ff1, ii],
|
|---|
| 1689 | FlavorExpand -> {SU3T}];
|
|---|
| 1690 | yuk = ExpandIndices[yuk] /.{CKM[a_, b_] Conjugate[CKM[a_, c_]] -> 1/3 IndexDelta[b, c],CKM[b_, a_] Conjugate[CKM[c_, a_]] -> 1/3 IndexDelta[b, c]};
|
|---|
| 1691 | yuk+HC[yuk]/.feynmangaugerules
|
|---|
| 1692 | ];
|
|---|
| 1693 |
|
|---|
| 1694 | LGhost := Block[{LGh1,LGhw,LGhs,LGhhiggs,LGhrho,LGhphi,LGhchi,mu, generators,gh,ghbar,Vectorize,rho1,rho2,rho3,rho4,phi1,phi2,phi3,phi4,chi1,chi2,chi3,chi4,togoldstones,rho,rho0,phi,phi0,chi,chi0},
|
|---|
| 1695 | (* Pure gauge piece *)
|
|---|
| 1696 | LGh1 = -ghKbar.del[DC[ghK,mu],mu];
|
|---|
| 1697 | LGhw = -ghWibar.del[DC[ghWi,mu],mu];
|
|---|
| 1698 | LGhs = -ghGbar.del[DC[ghG,mu],mu];
|
|---|
| 1699 |
|
|---|
| 1700 | (* Scalar pieces: see Peskin pages 739-742 *)
|
|---|
| 1701 | (* rho1, rho2, rho3 and rho4 are the real degrees of freedom of HW and GW *)
|
|---|
| 1702 | (* Vectorize transforms a triplet in a vector in the phi-basis, i.e. the basis of real degrees of freedom *)
|
|---|
| 1703 | gh = {ghK, ghWi[1], ghWi[2], ghWi[3], ghWi[4], ghWi[5], ghWi[6], ghWi[7], ghWi[8]};
|
|---|
| 1704 | ghbar = {ghKbar, ghWibar[1], ghWibar[2], ghWibar[3], ghWibar[4], ghWibar[5], ghWibar[6], ghWibar[7], ghWibar[8]};
|
|---|
| 1705 | generators = {-I/2 gx IdentityMatrix[3], -I/2 gw Gellmann[1], -I/2 gw Gellmann[2], -I/2 gw Gellmann[3], -I/2 gw Gellmann[4], -I/2 gw Gellmann[5], -I/2 gw Gellmann[6], -I/2 gw Gellmann[7], -I/2 gw Gellmann[8]};
|
|---|
| 1706 | rho = Expand[{(-I rho1 - rho2)/Sqrt[2], (UH11 h + UH12 H2 + UH13 H3 + I (Uh11 H0 + Uh12 GZ + Uh13 GZP))/Sqrt[2], (-I rho3 - rho4)/Sqrt[2] } ];
|
|---|
| 1707 | rho0 = {0, v/Sqrt[2], 0};
|
|---|
| 1708 | phi = Expand[{(UH21 h + UH22 H2 + UH23 H3 + I (Uh21 H0 + Uh23 GZP))/Sqrt[2], (-I phi1 - phi2)/Sqrt[2], (-I phi3 - phi4)/Sqrt[2] } ];
|
|---|
| 1709 | phi0 = {v2/Sqrt[2], 0, 0};
|
|---|
| 1710 | chi = Expand[{(-I chi1 - chi2)/Sqrt[2], (-I chi3 - chi4)/Sqrt[2], (UH31 h + UH32 H2 + UH33 H3 + I (Uh31 H0 + Uh32 GZ + Uh33 GZP))/Sqrt[2] } ];
|
|---|
| 1711 | chi0 = {0, 0, v3/Sqrt[2]};
|
|---|
| 1712 | Vectorize[{a_, b_, c_}]:= Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]], Sqrt[2] Re[Expand[c]], Sqrt[2] Im[Expand[c]]}/.{Im[_]->0, Re[num_]->num}];
|
|---|
| 1713 | togoldstones := {
|
|---|
| 1714 | rho1 -> (HW svv2 + GW cvv2 + HWbar svv2 + GWbar cvv2)/Sqrt[2],
|
|---|
| 1715 | rho2 -> (- HW svv2 - GW cvv2 + HWbar svv2 + GWbar cvv2)/(I Sqrt[2]),
|
|---|
| 1716 | rho3 -> (GV cvv3 + HV svv3 + GVbar cvv3 + HVbar svv3)/Sqrt[2],
|
|---|
| 1717 | rho4 -> (- GV cvv3 - HV svv3 + GVbar cvv3 + HVbar svv3)/(I Sqrt[2]),
|
|---|
| 1718 | phi1 -> (- HW cvv2 + GW svv2 - HWbar cvv2 + GWbar svv2)/Sqrt[2],
|
|---|
| 1719 | phi2 -> (HWbar cvv2 - GWbar svv2 - HW cvv2 + GW svv2)/(I Sqrt[2]),
|
|---|
| 1720 | phi3 -> (GY cv2v3 + HY sv2v3 + GYbar cv2v3 + HYbar sv2v3)/Sqrt[2],
|
|---|
| 1721 | phi4 -> (- GY cv2v3 - HY sv2v3 + GYbar cv2v3 + HYbar sv2v3)/(I Sqrt[2]),
|
|---|
| 1722 | chi1 -> (- HY cv2v3 + GY sv2v3 - HYbar cv2v3 + GYbar sv2v3)/Sqrt[2],
|
|---|
| 1723 | chi2 -> (HYbar cv2v3 - GYbar sv2v3 - HY cv2v3 + GY sv2v3)/(I Sqrt[2]),
|
|---|
| 1724 | chi3 -> (- HV cvv3 + GV svv3 - HVbar cvv3 + GVbar svv3)/Sqrt[2],
|
|---|
| 1725 | chi4 -> (HVbar cvv3 - GVbar svv3 - HV cvv3 + GV svv3)/(I Sqrt[2])};
|
|---|
| 1726 | LGhrho=
|
|---|
| 1727 | Plus@@Flatten[Table[-ghbar[[kkk]].gh[[lll]] Vectorize[generators[[kkk]].(rho0)].Vectorize[generators[[lll]].(rho + rho0)],{kkk,9},{lll,9}]];
|
|---|
| 1728 | LGhphi=
|
|---|
| 1729 | Plus@@Flatten[Table[-ghbar[[kkkk]].gh[[llll]] Vectorize[generators[[kkkk]].(phi0)].Vectorize[generators[[llll]].(phi + phi0)],{kkkk,9},{llll,9}]];
|
|---|
| 1730 | LGhchi=
|
|---|
| 1731 | Plus@@Flatten[Table[-ghbar[[kkkkk]].gh[[lllll]] Vectorize[generators[[kkkkk]].(chi0)].Vectorize[generators[[lllll]].(chi + chi0)],{kkkkk,9},{lllll,9}]];
|
|---|
| 1732 |
|
|---|
| 1733 | LGhhiggs=LGhrho+ LGhphi+ LGhchi /.togoldstones;
|
|---|
| 1734 |
|
|---|
| 1735 | ExpandIndices[ LGhs + If[FeynmanGauge, LGhw +LGh1 + LGhhiggs ,0], FlavorExpand->SU3W]];
|
|---|
| 1736 |
|
|---|
| 1737 | LThree:= LHiggs+LFermions+LYukawa+LGhost+LGauge;
|
|---|